1
|
Xia R, Liu W, Nghiem LD, Cao D, Li Y, Li G, Luo W. A novel chitosan and polyferric sulfate composite coagulant for biogas slurry pretreatment by simultaneous flocculation and floatation: Performance and underlying mechanisms. WATER RESEARCH 2024; 258:121781. [PMID: 38761597 DOI: 10.1016/j.watres.2024.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Biogas slurry from anaerobic digestion is rich in nutrients but has not been fully utilized due to a high content of suspended solids (SS) causing clogging during agricultural irrigation. This study aimed to evaluate the performance of a novel chitosan and polyferric sulfate (CTS-PFS) composite coagulant for simultaneous flocculation and floatation to enhance SS removal while preserving nutrients in biogas slurry. Orthogonal method was used for experimental design to determine the optimal synthesis and operational conditions of CTS-PFS. Results show that CTS-PFS outperformed individual CTS and PFS coagulant in terms of SS removal and nutrient (nitrogen, phosphorus, and potassium) preservation. Compared to individual CTS and PFS coagulation, the combination of CTS and PFS at the mass ratio of 1:6 showed significantly higher performance by 41.5 % increase in SS removal and 5.2 % reduction in nutrient loss. The improved performance of CTS-PFS was attributed to its formation of polynuclear hydroxyl complexes with ferric oxide groups (e.g. Fe-OH, Fe-O-Fe, Fe-OH-Fe and COO-Fe) to strengthen charge neutralization and adsorption bridging. Data from this study further confirm that CTS-PFS enhanced the removal of small suspended particles and dissolved organic matter in the molecular weight range of 0.4-2.0 kDa and preserved ammonia and potassium better in biogas slurry. Bubbles were generated as hydrogen ions from coagulant hydrolysis interacted with bicarbonate and carbonate in biogas slurry for removing the produced flocs by floatation. Floc flotation was more effective in CTS-PFS coagulation due to the significant production of uniform bubbles, evidenced by the reduction in the viscosity of biogas slurry.
Collapse
Affiliation(s)
- Ruohan Xia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dingge Cao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Ruffino B, Zanetti M. Is the assimilation to a solid recovered fuel a viable solution for automobile shredder residues' management? ENVIRONMENTAL RESEARCH 2024; 247:118131. [PMID: 38215920 DOI: 10.1016/j.envres.2024.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Directive 2000/53/EC and the European Circular Economy Package (2018) required the Member States to take all the necessary measures to reach the reuse-recycling goal of 85% for end-of-life vehicles (ELVs). In 2019, Europe achieved 89.6% of reuse-recycling, but most EC countries are still not completely compliant, Italy standing, for example, at only 84.2%. For this reason, actions are necessary to increase reuse-recycling for the waste generated in the operations of ELV shredding and separation, known as automobile shredded residues (ASRs). This study was aimed at assessing if the assimilation of ASRs to a solid recovered fuel (SRF) was a feasible solution. That would allow the waste to lose its status (end-of-waste, EoW), thus increasing the recycling rate. The assimilation of ASRs to SRFs requires the compliance with a series of parameters, namely net calorific value (NCV), content of chlorine (Cl), mercury (Hg) and selected heavy metals. The above-mentioned parameters were analyzed in the principal ASR fractions, namely textile, plastic and foam rubber, found in the samples collected during four sampling campaigns (2017-2021) performed at the same ELV treatment plant. Notwithstanding the great variability observed in the four samples, the results of the analyses revealed that the three fractions were compliant with NCV, Cl and Hg content. Conversely, the heavy metals' content was found a more critical parameter, in fact only the plastic fraction was suitable for SRF assimilation. Textiles presented criticality for the content of copper (Cu), nickel (Ni) and antimony (Sb). The heavy metals' contamination of foam rubber was found to be strongly related to particles' dimensions. A model which put particle size and metals' content into relationship was developed and validated. Removing particles of <40 mm significantly improved the quality of the material, however the content of Cu and Ni remained a critical issue for particles up to 200 mm. The SRF assimilation of the plastic fraction would increase the reuse-recycling rate of approx. 2.4-3.3%, thus allowing the achievement of the EC goals concerning the ELV management.
Collapse
Affiliation(s)
- Barbara Ruffino
- DIATI, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy.
| | - Mariachiara Zanetti
- DIATI, Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
3
|
Zhang K, Xie Y, Niu L, Huang X, Yu X, Feng M. Fe(IV)/Fe(V)-mediated polyferric sulfate/periodate system: A novel coagulant/oxidant strategy in promoting micropollutant abatement. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133614. [PMID: 38290329 DOI: 10.1016/j.jhazmat.2024.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Strategic modulation of the advanced oxidation processes for the selective oxidation of micropollutants has attracted accumulating attention in water decontamination. This study first reported the combination of the coagulant polyferric sulfate (PFS) and oxidant periodate (PI) to accomplish synergistic abatement of the antibiotic sulfamethoxazole (SMX). The oxidizing performance of SMX by this system was almost unaffected by coexisting water constituents, indicating the great promise of selective oxidation. Different from the current hydroxyl radicals (•OH)-mediated coagulant/oxidant systems (e.g., PFS/H2O2 and PFS/ozone), the dominance of high-valent Fe(IV)/Fe(V) intermediates was unambiguously verified in the PFS/PI treatment. The PFS colloids before and after the oxidation were characterized and the iron speciation was analyzed. The transformation of monomeric iron configurations (Fe(a)) to oligomeric iron configurations (Fe(b)) could maintain the homeostasis of surface-bound Fe(III) and Fe(II). The interaction mechanisms included the production of reactive species and dynamic reaction equilibrium for micropollutant degradation. Finally, the transformation pathways of SMX and carbamazepine (CMZ) in the PFS/PI system were postulated. Overall, this study provided a novel coagulant/oxidant strategy to achieve selective and sustainable water purification.
Collapse
Affiliation(s)
- Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xiangbin Huang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Gan Y, Ding C, Xu B, Liu Z, Zhang S, Cui Y, Wu B, Huang W, Song X. Antimony (Sb) pollution control by coagulation and membrane filtration in water/wastewater treatment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130072. [PMID: 36303342 DOI: 10.1016/j.jhazmat.2022.130072] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb) pollution in the water environment caused by the large-scale mining of Sb ore and the wide use of Sb-containing products seriously endangers human health and poses a great threat to the ecological environment. Coagulation is one of the most cost-effective technologies for Sb pollution control in water/wastewater treatment and has been widely used. However, a comprehensive understanding of Sb pollution control by coagulation, from fundamental research to practical applications, is lacking. In this work, based on the current status of Sb pollution in the water environment, a critical review of the Sb removal performance and mechanism by coagulation and related combined processes was carried out. The influencing factors of Sb removal performance by coagulation are introduced in detail. The internal mechanisms and improvement strategies of Sb removal by oxidation/reduction-coagulation and coagulation-membrane filtration technologies are emphasized. Moreover, given the development of Sb-removing coagulants and the resource utilization of Sb-containing sludge, future perspectives of coagulation for Sb removal are discussed. As the first review in this field, this work will illuminate avenues of basic research and practical applications for Sb and Sb-like pollution control in water/wastewater treatment.
Collapse
Affiliation(s)
- Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| | - Wenguang Huang
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Xiaojie Song
- SINOPEC Yangzi Petrochemical Co., Ltd., Nanjing 210048, China
| |
Collapse
|
5
|
Li Q, Huang M, Shu S, Chen X, Gao N, Zhu Y. Quinone-mediated Sb removal from sulfate-rich wastewater by anaerobic granular sludge: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156217. [PMID: 35623523 DOI: 10.1016/j.scitotenv.2022.156217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 μg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 μg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Wu B, Li J, Gan Y, Zhihao H, Li H, Zhang S. Titanium xerogel as a potential alternative for polymeric ferric sulfate in coagulation removal of antimony from reverse osmosis concentrate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Wang C, Yuan Z, Li J, Liu Y, Li R, Li S. Acute effects of antimony exposure on adult zebrafish (Danio rerio): From an oxidative stress and intestinal microbiota perspective. FISH & SHELLFISH IMMUNOLOGY 2022; 123:1-9. [PMID: 35219828 DOI: 10.1016/j.fsi.2022.02.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The rapid development of the textile industry has resulted in a large influx of wastewater production. The "national discharge standards of water pollutants for dyeing and finishing of textile industry (GB4287-2012)" stipulates that the discharge of total Sb from textile industry effluent must be < 0.10 mg/L, but it is difficult to meet the standard at present. Antimony is potentially carcinogenic, and the pathogenic mechanism of antimony is poorly understood. In this study, the acute toxic effects of various concentrations of antimony on adult zebrafish (Danio rerio) were investigated, including effects on oxidative stress, neurotransmitters and intestinal microbiota. The activities of catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and acetylcholinesterase (AChE) were measured in zebrafish muscle and intestine tissue samples. In addition, intestinal microbial community composition and diversity of zebrafish were also analyzed. The results demonstrated that SOD, CAT and GSH-Px activities in the zebrafish gut showed a decreasing and then increasing trend with antimony concentration increasing. SOD, CAT and MDA in zebrafish muscle decreased with increasing exposure time. GSH-Px activities increased with increasing exposure time. T-AOC increased and then decreased. In addition, antimony exposure was neurotoxic to zebrafish, and a significant decrease in AChE activity was found in the intestine with increased exposure time. The neurotoxicity caused by antimony in the high concentration group (40 mg/L) was stronger than that in low concentration groups (10 mg/L and 20 mg/L). Notably, antimony exposure caused increases in the relative abundance of phyla Fusobacteriota and Actinomycetes, but decreases in the relative abundance of the phyla Firmicutes and Proteobacteria in zebrafish intestine. These outcomes will advance our understanding of antimony-induced biotoxicity, environmental problems, and health hazards. In conclusion, this study shows that acute exposure of antimony to zebrafish induces host oxidative stress and neurotoxicity, dysregulates the intestinal microbiota, showing adverse effects on the health and gut microbiota of zebrafish.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shuangshuang Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China.
| |
Collapse
|
8
|
Wang K, Liu H, Wang Y, Zhao D, Zhai J. Study on the Flocculation Performance of a Cationic Starch‐Based Flocculant on Humic Substances in Textile Dyeing Wastewater. STARCH-STARKE 2022. [DOI: 10.1002/star.202100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kexu Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Hongfei Liu
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Yating Wang
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Dishun Zhao
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| | - Jianhua Zhai
- College of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang Hebei 050000 China
| |
Collapse
|