1
|
Pantuso E, Ahmed E, Fontananova E, Brunetti A, Tahir I, Karothu DP, Alnaji NA, Dushaq G, Rasras M, Naumov P, Di Profio G. Smart dynamic hybrid membranes with self-cleaning capability. Nat Commun 2023; 14:5751. [PMID: 37717049 PMCID: PMC10505219 DOI: 10.1038/s41467-023-41446-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
The growing freshwater scarcity has caused increased use of membrane desalination of seawater as a relatively sustainable technology that promises to provide long-term solution for the increasingly water-stressed world. However, the currently used membranes for desalination on an industrial scale are inevitably prone to fouling that results in decreased flux and necessity for periodic chemical cleaning, and incur unacceptably high energy cost while also leaving an environmental footprint with unforeseeable long-term consequences. This extant problem requires an immediate shift to smart separation approaches with self-cleaning capability for enhanced efficiency and prolonged operational lifetime. Here, we describe a conceptually innovative approach to the design of smart membranes where a dynamic functionality is added to the surface layer of otherwise static membranes by incorporating stimuli-responsive organic crystals. We demonstrate a gating effect in the resulting smart dynamic membranes, whereby mechanical instability caused by rapid mechanical response of the crystals to heating slightly above room temperature activates the membrane and effectively removes the foulants, thereby increasing the mass transfer and extending its operational lifetime. The approach proposed here sets a platform for the development of a variety of energy-efficient hybrid membranes for water desalination and other separation processes that are devoid of fouling issues and circumvents the necessity of chemical cleaning operations.
Collapse
Affiliation(s)
- Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ejaz Ahmed
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Adele Brunetti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Nisreen Amer Alnaji
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Ghada Dushaq
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Mahmoud Rasras
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
2
|
Wu Z, Guo F. Finned Tubular Air Gap Membrane Distillation. MEMBRANES 2023; 13:membranes13050498. [PMID: 37233559 DOI: 10.3390/membranes13050498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE membrane and finned tubes were constructed in this work, and three representative air gap structures, including tapered finned tube, flat finned tube, and expanded finned tube, were designed. Membrane distillation experiments were carried out in the form of water cooling and air cooling, and the influences of air gap structures, temperature, concentration, and flow rate on the transmembrane flux were analyzed. The good water-treatment ability of the finned tubular air gap membrane distillation model and the applicability of air cooling for the finned tubular air gap membrane distillation structure were verified. The membrane distillation test results show that with the tapered finned tubular air gap structure, the finned tubular air gap membrane distillation has the best performance. The maximum transmembrane flux of the finned tubular air gap membrane distillation could reach 16.3 kg/m2/h. Strengthening the convection heat transfer between air and fin tube could increase the transmembrane flux and improve the efficiency coefficient. The efficiency coefficient (σ) could reach 0.19 under the condition of air cooling. Compared with the conventional air gap membrane distillation configuration, air cooling configuration for air gap membrane distillation is an effective way to simplify the system design and offers a potential way for the practical applications of membrane distillation on an industrial scale.
Collapse
Affiliation(s)
- Zhiqiang Wu
- School of Energy and Power Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Fei Guo
- School of Energy and Power Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
4
|
The Potential of Membrane Contactors in the Pre-Treatment and Post-Treatment Lines of a Reverse Osmosis Desalination Plant. SEPARATIONS 2023. [DOI: 10.3390/separations10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The flexibility of membrane contactors (MCs) is highlighted for a reverse osmosis (RO) desalination plant. MCs are applied as pre-treatment for the oxygen removal and the pH reduction of seawater, also as post-treatment for the pH increase of the RO permeate and the reduction of the RO brine volume. A decrease of the seawater pH down to neutral values, as needed when coagulation is used in the pre-treatment line of RO, together with an increase of the RO permeate pH up to 7.58, matching the target of produced water, can be obtained without the use of chemicals. Direct Contact Membrane Distillation (DCMD) and Vacuum Membrane Distillation (VMD) are investigated as function of the feed concentration (ranging from 40 g/L to 80 g/L) and temperature (40 °C–80° C). Their performance is compared at parity of operating conditions and in terms of applied driving force. Both distillation systems are able to efficiently reject salts (rejection > 99.99%), while higher distillate fluxes are obtained when a vacuum is applied at the permeate side (15 kg/m2h vs. 6.6 kg/m2h for the 80 g/L feed).
Collapse
|
7
|
Abstract
A new crystallization process for sodium bicarbonate (NaHCO3) was studied, proposing the use of osmotic membrane distillation crystallization. Crystallization takes place due to the saturation of the feed solution after water evaporation on the feed side, permeating through the membrane pores to the osmotic side. The process operational parameters, i.e., feed and osmotic velocities, feed concentration, and temperature were studied to determine the optimal operating conditions. Regarding the feed and osmotic velocities, values of 0.038 and 0.0101 m/s, respectively, showed the highest transmembrane flux, i.e., 4.4 × 10−8 m3/m2·s. Moreover, study of the temperature variation illustrated that higher temperatures have a positive effect on the size and purity of the obtained crystals. The purity of the crystals obtained varied from 96.4 to 100% In addition, the flux changed from 2 × 10−8 to 7 × 10−8 m3/m2·s with an increase in temperature from 15 to 40 °C. However, due to heat exchange between the feed and the osmotic solutions, the energy loss in osmotic membrane distillation crystallization is higher at higher temperatures.
Collapse
|
8
|
Tomczak W, Gryta M. The Impact of Operational Parameters on Polypropylene Membrane Performance during the Separation of Oily Saline Wastewaters by the Membrane Distillation Process. MEMBRANES 2022; 12:membranes12040351. [PMID: 35448321 PMCID: PMC9027506 DOI: 10.3390/membranes12040351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023]
Abstract
In the present study, membrane distillation (MD) was applied for the treatment of oily saline wastewaters produced on ships sailing the Baltic Sea. For comparison purposes, experiments were also carried out with model NaCl solutions, the Baltic Seawater and oil in water emulsions. The commercial Accurel PP V8/2 membranes (Membrana GmbH, Germany) were used. In order to investigate the impact of the operational parameters on the process performance, the experiments were conducted under various values of the feed flow velocity (from 0.03 to 0.12 m/s) and the feed temperature (from 323 to 343 K). The obtained results highlight the potential of PP membranes application for a stable and reliable long-term treatment of oily wastewater. It was demonstrated that the permeate flux increased significantly with increasing feed temperature. However, the lower temperature ensured the limited scaling phenomenon during the treatment of oily wastewaters. Likewise, increasing the feed flow velocity was beneficial to the increase in the flux. Moreover, it was found that performing a cyclic rinsing of the module with a 3% HCl solution is an effective method to maintain a satisfactory module performance. The present study sheds light on improving the MD for the treatment of oily wastewaters.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
- Correspondence: (W.T.); (M.G.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
- Correspondence: (W.T.); (M.G.)
| |
Collapse
|
9
|
Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. MEMBRANES 2021; 11:membranes11120988. [PMID: 34940489 PMCID: PMC8708787 DOI: 10.3390/membranes11120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
Application of the membrane distillation (MD) process for the treatment of high-salinity solutions contaminated with oil and surfactants represents an interesting area of research. Therefore, the aim of this study is to investigate the effect of low-concentration surfactants in oil-contaminated high-salinity solutions on the MD process efficiency. For this purpose, hydrophobic capillary polypropylene (PP) membranes were tested during the long-term MD studies. Baltic Sea water and concentrated NaCl solutions were used as a feed. The feed water was contaminated with oil collected from bilge water and sodium dodecyl sulphate (SDS). It has been demonstrated that PP membranes were non-wetted during the separation of pure NaCl solutions over 960 h of the module exploitation. The presence of oil (100–150 mg/L) in concentrated NaCl solutions caused the adsorption of oil on the membranes surface and a decrease in the permeate flux of 30%. In turn, the presence of SDS (1.5–2.5 mg/L) in the oil-contaminated high-salinity solutions slightly accelerated the phenomenon of membrane wetting. The partial pores’ wetting accelerated the internal scaling and affected degradation of the membrane’s structure. Undoubtedly, the results obtained in the present study may have important implications for understanding the effect of low-concentration SDS on MD process efficiency.
Collapse
|
10
|
Thermal Performance of Integrated Direct Contact and Vacuum Membrane Distillation Units. ENERGIES 2021. [DOI: 10.3390/en14217405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An integrated membrane distillation (MD) flowsheet, consisting of direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD) units, was proposed and analysed in terms of thermal performance and water recovery factor, for the first time. The same lab-scale membrane module (40 cm2) was used for carrying out experiments of DCMD and VMD at fixed feed operating conditions (deionised water at 230 L/h and ~40 °C) while working at the permeate side with deionised water at 18 °C and with a vacuum of 20 mbar for the DCMD and the VMD configuration, respectively. Based on experimental data obtained on the single modules, calculations of the permeate production, the specific thermal energy consumption (STEC) and the gained output ratio (GOR) were carried out for both single and integrated units. Moreover, the calculations were also made for a flow sheet consisting of two DCMD units in series, representing the “traditional” way in which more units of the same MD configuration are combined to enhance the water recovery factor. A significant improvement of the thermal performance (lower STEC and higher GOR) was obtained with the integrated DCMD–VMD flowsheet with respect to the DCMD units operating in series. The integration of DCMD with VMD also led to a higher permeate production and productivity/size (PS) ratio, a metric defined to compare plants in terms of the process intensification strategy.
Collapse
|