1
|
Zeger VR, Thapa B, Shamsaei D, DeLair JF, Taylor TL, Anderson JL. Ionic Liquids in Analytical Chemistry: Fundamentals, Technological Advances, and Future Outlook. Anal Chem 2025; 97:4793-4818. [PMID: 40018979 PMCID: PMC11912132 DOI: 10.1021/acs.analchem.5c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
|
2
|
Ma X, Zhang C. Clindamycin phosphate-based deep eutectic solvent as a chiral selector for enantioseparation of amino alcohol drugs in nonaqueous capillary electrophoresis. J Chromatogr A 2024; 1736:465388. [PMID: 39326379 DOI: 10.1016/j.chroma.2024.465388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Clindamycin phosphate (CP) exhibits good enantioselectivity for many basic drugs, but its separation effect for most amino alcohol drugs is not satisfactory. In this work, a deep eutectic solvent (DES) chiral selector based on CP was prepared for the first time and utilized as a single chiral selector in nonaqueous capillary electrophoresis (NACE) to separate twelve amino alcohol drugs. Compared with unmodified CP, the separations of model drugs in the DES chiral selector system were significantly improved. Most amino alcohol drugs could be completely separated, and the peak shapes were good. In addition, we used infrared spectroscopy and nuclear magnetic resonance method to study the specific separation mechanism and explored the reasons why DES chiral selector has better enantioselectivity. This work is the first to directly modify antibiotic chiral selector into DES, indicating a direction for us to develop novel chiral recognition materials.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China.
| | - Chengchen Zhang
- Department of Geriatrics, Nantong First People's Hospital and Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Nantong, 226001 PR China
| |
Collapse
|
3
|
Ding S, Xu Y, Xue S, Liu S, Meng H, Zhang Q. Deep eutectic solvents as a green alternative to organic solvents for β-cyclodextrin pseudo-stationary phase in capillary electrophoresis. Talanta 2024; 275:126126. [PMID: 38678923 DOI: 10.1016/j.talanta.2024.126126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
β-cyclodextrin (β-CD), as an important pseudo-stationary phase (PSP) in capillary electrophoresis (CE), frequently confronts challenges stemming from its limited water solubility, particularly when high concentrations are required for resolving complex analytes. Traditionally, researchers often resort to the use of (toxic) organic solvents to enhance the solubility of β-CD, establishing non-aqueous capillary electrophoresis (NACE) for specific separations. However, such practices are hazardous to health and run counter to the principles of green analytical chemistry. In this study, we demonstrate a deep eutectic solvent (DES), Proline:Urea (PU), as a promising alternative to conventional organic solvents for β-CD-based CE separations. The DES exhibits a solubility of up to 30% for β-CD, a significant improvement compared to the 1.8% solubility in the aqueous phase. Utilizing this DES-type separation medium, we achieved simultaneous baseline separation of a complex analyte composed of eight structurally similar naphthoic acid derivatives. Furthermore, we conducted a systematic comparison of β-CD's performance in aqueous CE buffers, organic solvents, and DESs, highlighting the superiority of this novel and environmentally friendly CE separation medium.
Collapse
Affiliation(s)
- Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haoxiang Meng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Luo Y, Deng X, Zhang Y, Sun G, Yan Z. Enantioselective liquid-liquid extraction of 2-cyclohexylmandelic acid enantiomers using chiral ionic liquids. Chirality 2024; 36:e23682. [PMID: 38807280 DOI: 10.1002/chir.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Obtaining optically pure compounds in an eco-friendly and cost-efficient manner plays an important role in human health and pharmaceutical industry. Racemic separation using multistage stereoselective liquid-liquid extraction has become one of the most practical and effective approach to access homochiral enantiomers. Currently, chiral ionic liquids (CILs) with structural designability have become a promising chiral additive and enable them as adjustable candidates for racemic separation. Herein, a high-effective stereoselective liquid-liquid extraction process composed of imidazolium cations and amino acid-derived anions as the chiral additive was established for racemic 2-cyclohexylmandelic acid (CHMA) separation. We have systematically investigated the choice of organic solvent, concentration of CIL, extraction temperature, and the pH of aqueous phase. For three-stage stereoselective extraction, the maximum enantiomeric excess (e.e.) for CHMA was reached up to 40.6%. Furthermore, the mechanism of steric effect and stereoselective capacity between the CILs and racemic CHMA was discussed and simulated. We envision that the work will facilitate the development of CILs in multistage liquid-liquid extraction and promote the large-scale production of optically pure enantiomers.
Collapse
Affiliation(s)
- Yachun Luo
- Department of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoyu Deng
- Department of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yan Zhang
- Department of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhihong Yan
- Department of pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Ma X, Wang Q, Cai L, Xiao M. Evaluation of deep eutectic solvents chiral selectors based on lactobionic acid in capillary electrophoresis. Anal Bioanal Chem 2024; 416:1417-1425. [PMID: 38240794 DOI: 10.1007/s00216-024-05138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 07/13/2024]
Abstract
Recently, deep eutectic solvents (DESs) have attracted considerable interest in analytical chemistry. This work described the enantioseparations of twenty amino alcohol drugs with several DESs based on lactobionic acid (LA) as the sole chiral selector in capillary electrophoresis (CE) firstly. Compared to the single LA system and the ionic liquid/LA synergistic system, the DES system exhibited considerably improved separations. The influences of some key parameters on separations were investigated in detail. This work also experimentally demonstrated that the carboxyl group was indispensable in the process of chiral recognition. The mechanisms of the improvements of DESs on enantioseparations were studied via ultraviolet spectroscopy. Furthermore, the proposed method was used to determine the enantiomeric purity of propranolol hydrochloride successfully. This is the first time that chiral DESs were utilized as the sole chiral selectors in CE, and this strategy has opened up a new prospect for the use of DESs in enantioseparation.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
7
|
Ding S, Xu Y, Xue S, Li A, Zhang Q. Capillary electrophoresis separations with deep eutectic solvents as greener separation media: A proof-of-concept study. J Chromatogr A 2024; 1716:464644. [PMID: 38237289 DOI: 10.1016/j.chroma.2024.464644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Capillary electrophoresis (CE) has conventionally been classified into aqueous and non-aqueous categories based on the types of buffer solvents employed. Traditionally, non-aqueous CE has always been associated with the use of organic solvents, which are considered hazardous to health and environmentally detrimental. In this work, we introduce deep eutectic solvents (DESs) as CE separation media for the first time, presenting a novel and environmentally friendly approach to CE separations. The DES employed consists of proline and urea (Proline:Urea, PU), both of which are naturally occurring compounds that are readily available, cost-effective, and environmentally benign. Various fundamental aspects of the DES-type CE media were investigated, including thermal property, viscosity, electroconductivity, Joule heating effect, and compatibility with detectors. A simulated complex mixture of ten naphthalene-based compounds with varied charges and sizes was separated using the DES-based medium in capillary zone electrophoresis (CZE) mode. Moreover, we also established a DES-based micellar electrokinetic chromatography (MEKC) system utilizing Tween-20 as the surfactant. Six structurally similar naphthalene derivatives (isomers) that couldn't be resolved by CZE were effectively separated due to their strong hydrophobic interaction with Tween-20 micelles within the DES medium. Given that DESs are "designer" solvents with highly tunable properties and environmentally friendly characteristics, this study demonstrates the potential of employing DESs as an alternative to organic solvents for greener CE separations.
Collapse
Affiliation(s)
- Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
8
|
García-Cansino L, Boltes K, Marina ML, García MÁ. Enantioseparation and ecotoxicity evaluation of ibrutinib by Electrokinetic Chromatography using single and dual systems. Talanta 2023; 265:124783. [PMID: 37348354 DOI: 10.1016/j.talanta.2023.124783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
In this work, two chiral methods enabling the separation of ibrutinib enantiomers were developed by Electrokinetic Chromatography. A cyclodextrin (CD) or a mixture of the CD and a chiral ionic liquid (CIL) was used as chiral selector. Using the single CD system, seven neutral and six anionic CDs were tested in a formate buffer at pH 3.0 working in positive and negative polarity, respectively. The use of sulfated-γ-CD (S-γ-CD) and negative polarity originated the best results considering analysis time and enantioresolution. The optimization of the experimental conditions allowed obtaining the separation of ibrutinib enantiomers in an analysis time of 4.2 min with an enantioresolution value of 1.5. The effect of the addition of fifteen CILs on the enantioresolution was evaluated showing that both analysis time and enantioresolution were generally increased. A mixture of S-γ-CD and [TMA][L-Lys] was selected which provided the separation of ibrutinib enantiomers in 8.1 min with an enantioresolution value of 3.3 under the same experimental conditions as in the case of using the single CD system. The enantiomeric impurity (S-ibrutinib) was the first-migrating isomer when using the single CD and the combined CD/CIL systems, as corresponds to the most desirable situation. Both chiral methods allowed the detection of the enantiomeric impurity up to a 0.1% as established by the International Council on Harmonization. After establishing the analytical characteristics of both chiral methodologies developed, they were applied to the enantiomeric determination of ibrutinib in a pharmaceutical formulation for hospital use marketed as pure enantiomer (R-ibrutinib) and to evaluate the stability and ecotoxicity of racemic ibrutinib and R-ibrutinib on Daphnia magna. The developed methodologies enabled, for the first time, the rapid chiral quantitation of ibrutinib in abiotic and biotic matrices.
Collapse
Affiliation(s)
- Laura García-Cansino
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Karina Boltes
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; IMDEA Water Institute, Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. Del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. Del Río, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
9
|
Xu Y, Li A, Xue S, Ding S, Zhang Q. Chiral separation by capillary electrokinetic chromatography with hydrophobic deep eutectic solvents as pseudo-stationary phases. Talanta 2023; 260:124556. [PMID: 37121143 DOI: 10.1016/j.talanta.2023.124556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
This study demonstrated for the first time that hydrophobic deep eutectic solvents (HDESs) can be used in capillary electrophoresis (CE) for chiral separations. We found that the an HDES methyltrioctylammonium chloride:octanoic acid (N8881Cl:OctA) can exist in the form of nano-sized microdroplets in CE background electrolyte solutions, and show hydrophobic effects as a new type of pseudo-stationary phase (PSP) during CE separation. When used in combination with various cyclodextrin (CD)-type chiral selectors, the presence of N8881Cl:OctA significantly improved the enantioresolutions of several model drugs. Moreover, the migration time of the enantiomers can also be reduced when an anionic CD (e.g., carboxymethyl-β-cyclodextrin (CM-β-CD)) was used. Critical factors influencing the chiral separations were systematically investigated including the HDES concentration, hydrogen-bond acceptor (HBA)/hydrogen-bond donor (HBD) ratio, CD concentration, buffer pH, and applied voltage, etc. An insight into chiral recognition mechanism with HDES is provided for reference. A comparison of the chiral CE performance of HDESs with traditional surfactants was also performed to demonstrate their superiority as a new type of PSP.
Collapse
Affiliation(s)
- Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
10
|
Li A, Xue S, Xu Y, Ding S, Wen D, Zhang Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal Chim Acta 2023; 1239:340693. [PMID: 36628761 DOI: 10.1016/j.aca.2022.340693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A critical challenge in using deep eutectic solvents (DESs) in capillary electrophoresis (CE) is to develop separation systems in which a DES can really work as a single entity. To achieve this, the authors recently demonstrated a novel strategy that takes advantage of the aqueous dispersibility of hydrophobic DESs (or more accurately hydrophobic eutectic solvents (HESs)). However, the previous work was limited only to the separation of achiral analytes, e.g., analogues, homologues, and isomers. The present study was designed as a follow-up study in order to explore the feasibility of employing HES-type pseudo-stationary phases (PSPs) in CE for chiral separations. By using carboxymethyl-β-cyclodextrin (CM-β-CD) as a model chiral selector, we provide the first evidence that there is a potential synergistic effect between HESs and traditional chiral selectors. Specifically, the combined use of HES (-)-menthol:octanoic acid and CM-β-CD allowed excellent enantioseparations of several basic drugs which were not able to be resolved in the single CM-β-CD system. The enantioresolutions were significantly improved while the migration times of the enantiomers were also shortened due to the hydrophobic mechanism of the HES-type PSP. Critical factors influencing the novel chiral CE system were systematically investigated. Since HESs are considered as "designer" solvents with highly tunable properties, this study demonstrates the potential of employing HESs (or HDES)-type PSPs in CE for chiral separations.
Collapse
Affiliation(s)
- Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Di Wen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
11
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
The role of deep eutectic solvents in chiral capillary electrokinetic chromatography: A comparative study based on α-cyclodextrin chiral selector. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Hydrophobic deep eutectic solvents as pseudo-stationary phases in capillary electrokinetic chromatography: An explorative study. Anal Chim Acta 2022; 1213:339936. [DOI: 10.1016/j.aca.2022.339936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
|
15
|
Ángeles García M, Jiménez-Jiménez S, Marina ML. STEREOSELECTIVE SEPARATION OF DIMETHENAMID BY CYCLODEXTRIN ELECTROKINETIC CHROMATOGRAPHY USING DEEP EUTECTIC SOLVENTS. J Chromatogr A 2022; 1673:463114. [DOI: 10.1016/j.chroma.2022.463114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
|
16
|
Effect of ionic liquids and deep eutectic solvents on the enantiomeric separation of clopidogrel by cyclodextrin-electrokinetic chromatography. Quantitative analysis in pharmaceutical formulations using tetrabutylammonium l-aspartic acid combined with carboxymethyl-γ-cyclodextrin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Sun X, Niu B, Zhang Q, Chen Q. MIL-53-based homochiral metal–organic framework as a stationary phase for open-tubular capillary electrochromatography. J Pharm Anal 2021; 12:509-516. [PMID: 35811623 PMCID: PMC9257441 DOI: 10.1016/j.jpha.2021.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xiaodong Sun
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Corresponding author.
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| |
Collapse
|