1
|
Mo Y, Zhang X. Insights into the mechanism of multiple Cu-doped CoFe 2O 4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B. J Environ Sci (China) 2024; 137:382-394. [PMID: 37980024 DOI: 10.1016/j.jes.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 11/20/2023]
Abstract
The multiple metal catalyst as a promising nanomaterial has shown excellent activity in the peroxymonosulfate (PMS) activation for pollutant degradation. However, the role of special sites and in-depth understanding of the PMS activation mechanism are not fully studied. In this study, a Cu-doped CoFe2O4 nanocatalyst (0.5CCF) was synthesized by a sol-gel and calcination method, and used for PMS activation to remove Rhodamine B (RhB). The results showed that the Cu doping obviously enhanced the catalytic performance of CoFe2O4, with 99.70% of RhB removed by 0.5CCF while 74.91% in the CoFe2O4 within 15 min. Based on the X-ray photoelectron spectroscopy and electrochemical analysis, this could be ascribed to the more low valence of Co and Fe species generated on the 0.5CCF and faster electron transfers occurred in the 0.5CCF due to the Cu doping. In addition, Cu doping could provide more reaction sites for the 0.5CCF to activate PMS for RhB removal. The metal species and the surface hydroxyl were the reaction sites of PMS activation, and the surface hydroxyl played an important role in surface-bound reactive species generation. During the PMS activation, the Cu not only activated PMS to produce reactive oxygen species (ROS), but also regenerated Co2+ and Fe2+ to accelerate the PMS activation. The non-radical of 1O2 was the main ROS with a 99.35% of contribution rate, and the SO5•- self-reaction was its major source. This study provides a new insight to enhance the PMS activation performance of multiple metal catalysts by Cu doping in wastewater treatment.
Collapse
Affiliation(s)
- Yuanmin Mo
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| | - Xiaoping Zhang
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| |
Collapse
|
2
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
3
|
Zhou S, Luo X, Zhang Y, Liu Y, Wang X, Hao X, Zhang Y, Wang D, Gu P, Liu G. Post-cationic modification of a porphyrin-based conjugated microporous polymer for enhanced removal performance of bisphenol A. Chem Commun (Camb) 2023; 59:14399-14402. [PMID: 37974497 DOI: 10.1039/d3cc05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A porphyrin-based conjugated microporous polymer photocatalyst named LDPO-2 was synthesized by a post-modification approach, which improved its hydrophilicity and visible light absorption ability. LDPO-2 achieved >99.5% removal efficiency for bisphenol A (BPA, 10 ppm) within 12 min of exposure to visible light, and the photocatalytic mechanism and potential degradation pathways were well investigated. LDPO-2 also exhibited impressive removal efficiency against BPA analogues, proving its practical applications in real-water treatment scenarios.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yuxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Key Laboratory of Organic Synthesis of Jiangsu Province, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Meng F, Wang Y, Cao Q. Synergistic enhancement of redox pairs and functional groups for the removal of phenolic organic pollutants by activated PMS using silica-composited biochar: Mechanism and environmental toxicity assessment. CHEMOSPHERE 2023; 337:139441. [PMID: 37422218 DOI: 10.1016/j.chemosphere.2023.139441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In present work, a novel catalyst of cobalt supported on silica-composited biochar (Co@ACFA-BC) derived from fly ash and agricultural waste was synthesized. A series of characterizations confirmed that Co3O4 and Al/Si-O compounds were successfully embedded on the surface of biochar, which triggered superior catalytic activity for PMS activation towards phenol degradation. Particularly, the Co@ACFA-BC/PMS system could completely degrade phenol in the wide pH range, and was almost unaffected by environmental factors including humic acid (HA), H2PO4-, HCO3-, Cl-, and NO3-. Further quenching experiment and EPR analysis proved that both radical (SO4·-, ·OH, O2·-) and non-radical (1O2) pathways were involved in the catalytic reaction system, and the excellent PMS activation was attributed to the electron pair cycling of Co2+/Co3+ and the active sites provided by Si-O-O and Si/Al-O bonds on the catalyst surface. Meanwhile, the carbon shell effectively inhibited the leaching of metal ions, enabling the Co@ACFA-BC catalyst to maintain excellent catalytic activity after four cycles. Finally, biological acute toxicity assay demonstrated that the toxicity of phenol could be significantly reduced after being treated by Co@ACFA-BC/PMS. Overall, this work provides a promising strategy for solid waste valorization and a feasible methodology for green and efficient treatment of refractory organic pollutants in water environment.
Collapse
Affiliation(s)
- Fanyue Meng
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Design Institute 5, Shanghai, 200092, China
| | - Yanming Wang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Design Institute 5, Shanghai, 200092, China.
| | - Qi Cao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
5
|
Gong Y, Shen J, Shen L, Zhao S, Wu Y, Zhou Y, Cui L, Kang J, Chen Z. Whose Oxygen Atom Is Transferred to the Products? A Case Study of Peracetic Acid Activation via Complexed Mn II for Organic Contaminant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6723-6732. [PMID: 37043741 DOI: 10.1021/acs.est.2c09611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Identifying reactive species in advanced oxidation process (AOP) is an essential and intriguing topic that is also challenging and requires continuous efforts. In this study, we exploited a novel AOP technology involving peracetic acid (PAA) activation mediated by a MnII-nitrilotriacetic acid (NTA) complex, which outperformed iron- and cobalt-based PAA activation processes for rapidly degrading phenolic and aniline contaminants from water. The proposed MnII/NTA/PAA system exhibited non-radical oxidation features and could stoichiometrically oxidize sulfoxide probes to the corresponding sulfone products. More importantly, we traced the origin of O atoms from the sulfone products by 18O isotope-tracing experiments and found that PAA was the only oxygen-donor, which is different from the oxidation process mediated by high-valence manganese-oxo intermediates. According to the results of theoretical calculations, we proposed that NTA could tune the coordination circumstance of the MnII center to elongate the O-O bond of the complexed PAA. Additionally, the NTA-MnII-PAA* molecular cluster presented a lower energy gap than the MnII-PAA complex, indicating that the MnII-peroxy complex was more reactive in the presence of NTA. Thus, the NTA-MnII-PAA* complex exhibited a stronger oxidation potential than PAA, which could rapidly oxidize organic contaminants from water. Further, we generalized our findings to the CoII/PAA oxidation process and highlighted that the CoII-PAA* complex might be the overlooked reactive cobalt species. The significance of this work lies in discovering that sometimes the metal-peroxy complex could directly oxidize the contaminants without the further generation of high-valence metal-oxo intermediates and/or radical species through interspecies oxygen and/or electron transfer.
Collapse
Affiliation(s)
- Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Linlu Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yanchi Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lei Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
6
|
Zhu J, Wang S, Yang Z, Pan B. Robust polystyrene resin-supported nano-CoFe 2O 4 mediated peroxymonosulfate activation for efficient oxidation of 1-hydroxyethane 1,1-diphosphonic acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130281. [PMID: 36334573 DOI: 10.1016/j.jhazmat.2022.130281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanosized spinel cobalt ferrite (CoFe2O4) shows high performance in peroxymonosulfate (PMS) activation for decontamination in water, but is yet challenged by the easily leached Co(II) with high toxicity. Herein, macroporous polystyrene resin is used as the support to improve the stability of CoFe2O4 nanoparticles during PMS activation. CoFe2O4@S201 exerted high catalytic activity toward PMS activation for oxidation of 1-hydroxyethane 1,1-diphosphonic acid (HEDP), with the apparent rate normalized by Co content 38.2 times higher than that of the unsupported CoFe2O4. Meanwhile, one order of magnitude lower Co leaching (< 2.1 μg L-1) was detected during the catalytic oxidation. The Co(II)-PMS complex was the primary oxidant responsible for the oxidation of HEDP. The catalytic durability and stability of CoFe2O4@S201 for degradation of HEDP in actual wastewater were systematically evaluated in both batch and continuous-flow mode. It is found that the organic resin, which is often considered to be intolerant to oxidation, is rather stable during the non-radical process. The total cobalt leaching of the fresh CoFe2O4@S201 cannot be ignored in the 100-h continuous-flow run. In contrast, much lower cobalt leaching and slightly higher oxidation efficiency were observed for the regenerated CoFe2O4@S201, which might be due to the removal of unreactive and unstable Co sites on the surface in the first trial. The findings shed light on the potential of organic supports for improving the stability and activity of nanosized CoFe2O4 and other nano-catalysts toward practical application.
Collapse
Affiliation(s)
- Jinglin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Li J, Zhong D, Chen Y, Li K, Ma W, Zhang S, Zhang J, Sun A, Xie H. Copper-based Ruddlesden-Popper perovskite oxides activated hydrogen peroxide for coal pyrolysis wastewater (CPW) degradation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114591. [PMID: 36272586 DOI: 10.1016/j.envres.2022.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Coal pyrolysis wastewater (CPW) contained all kinds of toxic and harmful components, which would seriously threaten the natural environment and human health. However, the traditional advanced oxidation processes frequently failed to remove phenolic substances. An A2BO4-type perovskite (La2CuO4) was successfully synthesized through sol-gel process and first applied in the treatment of CPW. More than 90% of 3, 5-dimethylphenol (DMP) was removed within 200 min at neutral conditions. Moreover, La2CuO4 also displayed excellent catalytic activity and stability in the actual CPW treatment process. Results demonstrated that DMP was removed through the attack of ∙OH, ∙O2- and 1O2 in La2CuO4/H2O2 system. The La2CuO4 were more favorable for H2O2 activation and have a lower adsorption energy than LaFeO3. XPS of fresh and spent La2CuO4 illustrated that the decomposition of hydrogen peroxide (H2O2) was mainly due to the redox cycle between surface copper and oxygen species. Moreover, the possible degradation pathway of DMP was deduced by identifying degradation products and analyzing density functional theory (DFT) calculations. This research provided a novel strategy for the development of perovskite-based catalytic materials on the treatment of practical CPW.
Collapse
Affiliation(s)
- Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineer Research Center of Urban Water Resources, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiru Chen
- Quanzhoushi Water Co., Ltd, Quanzhou, 362000, China
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineer Research Center of Urban Water Resources, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aoshuang Sun
- Huahui Engineering Design Group Co., Ltd, Shaoxing, 312000, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310003, China
| |
Collapse
|
8
|
Wang X, Chen Y. ZnIn2S4/CoFe2O4 p-n junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Li Y, Qi J, Shen Y, Shen J, Li L, Kang J, Yan P, Wang B, Zhu X, Zhao S, Chen Z. Activation of peroxymonosulfate by palygorskite-mediated cobalt-copper-ferrite nanoparticles for bisphenol S degradation: Influencing factors, pathways and toxicity evaluation. CHEMOSPHERE 2022; 308:136264. [PMID: 36064014 DOI: 10.1016/j.chemosphere.2022.136264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation process is considered a potential technology for water treatment. Here, palygorskite (PAL)-mediated cobalt-copper-ferrite nanoparticles (16%-CoCu0.4Fe1·6O4@PAL, donated as 16%-CCFO@PAL) were employed for PMS activation to remove bisphenol S (BPS). BPS degradation was greater than 99% under the optimal conditions within 25 min, on which the effects of various influencing factors were explored. The adsorption dissociation energy of PMS over 16%-CCFO@PAL was -6.27 eV, which was lower than that of the Cu-free catalyst (-6.15 eV), demonstrating the excellent catalytic ability of 16%-CCFO@PAL. The efficient catalytic ability of 16%-CCFO@PAL was also verified in real water samples. The oxidation intermediates were identified and their generations were systematically analyzed by DFT calculations. The possible degradation pathways of BPS were proposed and the toxicity of products was predicted. BPS affected the normal development of zebrafish embryos and the levels of sex hormone in adult male zebrafish, and was harmful to the tissues, such as testis, liver, and intestine of zebrafish. The 16%-CCFO@PAL/PMS process can effectively reduce the toxicity of BPS-polluted water. This study paves the way for the real application of 16%-CCFO@PAL/PMS oxidation process and provides a new perspective for the evaluation of water toxicity.
Collapse
Affiliation(s)
- Yabin Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yang Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Li Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinwei Zhu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
10
|
Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2,4-dichlorophenoxyacetic acid in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zuo J, Wang B, Kang J, Yan P, Shen J, Wang S, Fu D, Zhu X, She T, Zhao S, Chen Z. Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
S-scheme heterojunction g-C3N4/Ag/AgNCO for efficient tetracycline removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Li Y, Qi J, Shen J, Wang B, Kang J, Yan P, Cheng Y, Li L, Shen L, Chen Z. Non-radical dominated degradation of bisphenol S by peroxymonosulfate activation under high salinity condition: Overlooked HOCl, formation of intermediates, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128968. [PMID: 35487000 DOI: 10.1016/j.jhazmat.2022.128968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Extensive studies revealed that Cl- could inhibit the removal of targeted pollutants under low Cl- conditions in the peroxymonosulfate (PMS) system. However, the enhanced effect of Cl- has always been overlooked under high Cl- conditions. Here, we find that high concentration of Cl- played a critical role in bisphenol S (BPS) degradation by activating PMS using 16%-CoFe2O4@PAL (16%-CFO@PAL). The removal of BPS was sharply enhanced after introducing 0.5 and 1.0 M Cl-, and the corresponding kobs increased to 0.922 min-1 and 1.103 min-1, which was 6-fold and 7-fold higher than the control (0.144 min-1), respectively. HOCl was demonstrated as the dominant species for removing BPS in 16%-CFO@PAL/PMS system under high Cl- circumstances. The typical chlorinated BPS intermediates were identified, which showed higher eco-toxicity than BPS. The chlorinated byproducts along with their toxicity could be effectively eliminated after 30 min. The possible formation mechanism of chlorinated products was further revealed by theoretical calculations. Toxicity assessment experiments showed that BPS significantly affected hormone levels of zebrafish and showed toxicity on the testis and liver of zebrafish, which could be reduced using 16%-CFO@PAL/PMS system. This study attracts attention to the overlooked HOCl in PMS-based processes under high salinity conditions.
Collapse
Affiliation(s)
- Yabin Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Binyuan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yizhen Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Li Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Linlu Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
14
|
Degradation of Ibuprofen by the Electro/Fe3+/Peroxydisulfate Process: Reactive Kinetics, Degradation Products and Mechanism. Catalysts 2022. [DOI: 10.3390/catal12030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, is one of the most widely used and frequently detected pharmaceuticals and personal care products in water bodies. This study examined the IBU degradation in aquatic solutions via ferric ion activated peroxydisulfate (PDS) coupled with electro-oxidation (EC/Fe3+/PDS). The degradation mechanisms involved three synergistic reactions in the EC/Fe3+/PDS system, including: (1) the electro-oxidation; (2) SO4•− generated from the activation of PDS by ferrous ions formed via cathodic reduction; (3) SO4•− generated from the electron transfer reaction. The radical scavenging experiments indicated that SO4•− and •OH dominated the oxidation process. The effects of the applied current density, PDS concentration, Fe3+ dosage, initial IBU concentration and initial pH as well as inorganic anions and humic acid on the degradation efficiency, were studied, and the degradation process of IBU followed the pseudo-first-order kinetic model. About 99.37% of IBU was removed in 60 min ((Fe3+ concentration) = 2.0 mM, (PDS concentration) = 12 mM, (initial IBU concentration) = 30 mg/L, current density = 15 mA/cm2, initial pH = 3). Finally, seven intermediate compounds were identified and probable IBU degradation pathways in the EC/Fe3+/PDS system were speculated.
Collapse
|