1
|
Song D, Zheng Z, Wang Z, Zhao M, Ding L, Zhang Q, Deng F. Catalytic PMS oxidation universality of CuFe 2O 4/MnO 2 heterojunctions at multiple application scenarios. ENVIRONMENTAL RESEARCH 2024; 243:117828. [PMID: 38048866 DOI: 10.1016/j.envres.2023.117828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
The magnetic CuFe2O4/MnO2 heterojunctions were prepared by hydrothermal method, and the effect of different reaction temperature on the physicochemical properties and catalytic activity was investigated. The CuFe2O4/MnO2 heterojunctions prepared at 100 °C can effectively activate peroxymonosulfate (PMS) at multiple application scenarios for degradation and mineralization of tetracycline, o-nitrophenol and ceftriaxone sodium under indoor light, visible light and dark condition. Additionally, the CuFe2O4/MnO2-PMS system showed high catalytic activity and anti-interference ability for degradation of pharmaceutical pollutants in natural water bodies and industrial wastewater. The TC removal efficiency in Qianhu Lake water, Ganjiang River water and tap water was about 88%, 92% and 89%, respectively. The CuFe2O4/MnO2-PMS system is also effective for actual pharmaceutical wastewater treatment with 77.9% of COD removal efficiency. Interestingly, the reactive species of CuFe2O4/MnO2-PMS system under visible light are different from those in dark condition, and the different catalytic mechanisms at multiple application scenarios were proposed. This work provides new insights into mechanism exploration of heterojunction catalyst for PMS activation.
Collapse
Affiliation(s)
- Di Song
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zixuan Zheng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenzhou Wang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mengyuan Zhao
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Qian Zhang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Fang Deng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
2
|
Wu Y, Fang X, Shen X, Yu X, Xia C, Xu L, Zhang Y, Gan L. Synergetic effect of photocatalytic oxidation plus catalytic oxidation on the performance of coconut shell fiber biochar decorated α-MnO 2 under visible light towards BPA degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118911. [PMID: 37657294 DOI: 10.1016/j.jenvman.2023.118911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Photocatalytic technology is regarded as a promising approach for fast degradation of refractory organic pollutant in water. However, the performance of the photocatalyst can be restricted by the variation of water matrix conditions. Herein, coconut shell fiber was pyrolyzed to biochar (CSB800) and incorporated with α-MnO2 to degrade bisphenol A (BPA) in water under visible light irradiation. The prepared α-MnO2/CSB800 composites demonstrated high efficacy in degrading BPA. Specifically, 0.01 mM of BPA could be completely degraded by 0.1 g/L of MnO2/CSB800 within 45 min. It was found that the incident light could effectively trigger the separation of electron and hole in α-MnO2. The electron and hole were afterwards converted to hydroxyl radical (●OH), superoxide radical (●O2-) and non-radical singlet oxygen (1O2), which subsequently initiated the photocatalytic degradation of BPA. Additionally, α-MnO2/CSB800 could simultaneously participate the oxidative degradation pathway of BPA with its high oxidation-reduction potential. The introduction of CSB800 led to higher BPA degradation efficiency since CSB800 could accelerate the charge carrier transferring rate during BPA degradation process via either pathway. The co-existence of both photocatalytic and oxidative degradation synergy enables α-MnO2/CSB800/visible light system with high catalytic performance stability towards various water matrices. This study proposes an effective strategy to prepare easy-available photocatalysts with high and stable performance towards for addressing organic pollution issues in water.
Collapse
Affiliation(s)
- Ying Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Xingyu Fang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyan Yu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Xie J, Pan X, Jiang C, Zhao L, Gong X, Liu Y. Enhanced conversion of superoxide radical to singlet oxygen in peroxymonosulfate activation by metal-organic frameworks derived heteroatoms dual-doped porous carbon catalyst. ENVIRONMENTAL RESEARCH 2023; 236:116745. [PMID: 37500040 DOI: 10.1016/j.envres.2023.116745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The activation of persulfate technology using carbon-based materials doped with heteroatoms has been extensively researched for the elimination of refractory pollutants in wastewater. In this study, metal-organic frameworks were utilized as precursors to synthesize P, N dual-doped carbon material (PNC), which was employed to activate peroxymonosulfate (PMS) for the degradation of tetracycline hydrochloride (TCH). The results demonstrated a 90.2% removal efficiency of total organic carbon within 60 min. The significant increase of surface defects on the nitrogen self-doped porous carbon materials anchored with phosphorus promoted the conversion of superoxide radical to singlet oxygen during PMS activation, which was identified as the key active species of PNC/PMS system. Additionally, the enhanced direct electron transfer also facilitated the degradation of TCH. Consequently, TCH was successfully degraded into nontoxic and harmless inorganic small molecules. The findings of this research provide valuable insights into improving the performance of heteroatom-doped carbon materials for pollutant degradation by activating PMS and transforming the non-radical pathway. The results highlight the potential of metal-organic frameworks derived heteroatoms dual-doped porous carbon catalysts for the development of advanced treatment technologies in wastewater treatment.
Collapse
Affiliation(s)
- Jinling Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaofang Pan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Chenming Jiang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Li Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| | - Yong Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Special Waste Water Treatment of Sichuan Province Higher Education System, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China
| |
Collapse
|
4
|
Li J, Shi Q, Sun M, Liu J, Zhao R, Chen J, Wang X, Liu Y, Gong W, Liu P, Chen K. Peroxymonosulfate Activation by Facile Fabrication of α-MnO 2 for Rhodamine B Degradation: Reaction Kinetics and Mechanism. Molecules 2023; 28:molecules28114388. [PMID: 37298863 DOI: 10.3390/molecules28114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The persulfate-based advanced oxidation process has been an effective method for refractory organic pollutants' degradation in aqueous phase. Herein, α-MnO2 with nanowire morphology was facially fabricated via a one-step hydrothermal method and successfully activated peroxymonosulfate (PMS) for Rhodamine B (RhB) degradation. Influencing factors, including the hydrothermal parameter, PMS concentration, α-MnO2 dosage, RhB concentration, initial pH, and anions, were systematically investigated. The corresponding reaction kinetics were further fitted by the pseudo-first-order kinetic. The RhB degradation mechanism via α-MnO2 activating PMS was proposed according to a series of quenching experiments and the UV-vis scanning spectrum. Results showed that α-MnO2 could effectively activate PMS to degrade RhB and has good repeatability. The catalytic RhB degradation reaction was accelerated by increasing the catalyst dosage and the PMS concentration. The effective RhB degradation performance can be attributed to the high content of surface hydroxyl groups and the greater reducibility of α-MnO2, and the contribution of different ROS (reactive oxygen species) was 1O2 > O2·- > SO4·- > ·OH.
Collapse
Affiliation(s)
- Juexiu Li
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qixu Shi
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Maiqi Sun
- International Education College, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinming Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Rui Zhao
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jianjing Chen
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xiangfei Wang
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Weijin Gong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Kongyao Chen
- Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
5
|
Zhang H, Xiong R, Peng S, Xu D, Ke J. Highly Active Manganese Oxide from Electrolytic Manganese Anode Slime for Efficient Removal of Antibiotics Induced by Dissociation of Peroxymonosulfate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101600. [PMID: 37242016 DOI: 10.3390/nano13101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
In this paper, high-activity manganese oxide was prepared from electrolytic manganese anode slime to realize the efficient removal of antibiotics. The effects of sulfuric acid concentration, ethanol dosage, liquid-solid ratio, leaching temperature and leaching time on the leaching of manganese from electrolytic manganese anode slime were systematically studied. Under the optimal conditions, the leaching rate of manganese reached 88.74%. In addition, a Mn3O4 catalyst was synthesized and used to activate hydrogen persulfate (PMS) to degrade tetracycline hydrochloride (TCH). The synthesized Mn3O4 was characterized by XRD, XPS, Raman, SEM and HRTEM. As a result, the prepared Mn3O4 is spherical, with high purity and crystallinity. The catalytic activity of Mn3O4 for PMS to degrade TCH was increased to 82.11%. In addition, after four cycles, the performance remained at 78.5%, showing excellent stability and recyclability. In addition, O2- and 1O2 are the main active species in the degradation reaction. The activity of Mn3O4 is attributed to it containing Mn(II) and Mn(III) at the same time, which can quickly realize the transformation of high-valence and low-valence manganese, promote the transfer of electrons and realize the degradation of organic pollutants.
Collapse
Affiliation(s)
- He Zhang
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ruixue Xiong
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shijie Peng
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Desheng Xu
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jun Ke
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
6
|
Zhao J, Xiao P. Synergistic and sustainable activation of peroxymonosulfate by nanoscale MWCNTs-CuFe2O4 as a magnetic heterogeneous catalyst for the efficient removal of levofloxacin. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Cheng L, Bai J, Wei M, Zhao S, Xu A, Li X. Carbon ink modified α-MnO2 as a peroxymonosulfate activator for enhanced degradation of organic pollutants via a direct electron transfer process. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Liu X, Chen C, Chen P, Wang L. Ultrafast degradation of SMX and TC by CoSiO x activated peroxymonosulfate: efficiency and mechanism. RSC Adv 2023; 13:3103-3111. [PMID: 36756404 PMCID: PMC9854247 DOI: 10.1039/d2ra06865f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
To address the concern about residual antibiotics in effluent of sewage treatment plants, cobalt silicate (CoSiO x ) was prepared by hydrothermal method and employed as an activator of peroxymonosulfate (PMS) for the rapid degradation of antibiotics. Taking sulfamethoxazole (SMX) and tetracycline (TC) as representatives of antibiotics, the effects of operation parameters (CoSiO x and PMS dosage) and water quality parameters (temperature, solution pH, bicarbonate, chloride, and natural organic matter) on degradation of target pollutants by a CoSiO x activated PMS process (CoSiO x /PMS) were investigated. The mechanism involved in the interaction of CoSiO x and PMS was also elucidated. The results indicated that CoSiO x /PMS can degrade SMX and TC at fast pseudo-first-order rate constants (0.47 and 0.56 min-1 respectively) under optimal conditions. Increasing the dosage of PMS and CoSiO x appropriately was beneficial to the degradation of antibiotics. Chloride, bicarbonate, and HA showed negative effects on the degradation process due to their free radical-scavenging ability and were ranked as chloride < bicarbonate < HA. Abundant [triple bond, length as m-dash]Co-OHs and oxygen vacancies on the surface of CoSiO x contributed to its excellent activation capability towards PMS. The radical scavenging experiments indicated that target pollutant degradation mainly resulted from the attack of sulfate radicals (43.0% contribution) and hydroxyl radicals (52.9% contribution). The practicality of CoSiO x /PMS was verified by continuous flow test. This study provides a cheap, highly efficient, and feasible advanced depollution method based on CoSiO x .
Collapse
Affiliation(s)
- Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University Hangzhou 310058 China
- Ocean College, Zhejiang University Hangzhou 310058 China
| | - Chen Chen
- Ocean College, Zhejiang University Hangzhou 310058 China
| | - Peng Chen
- Ocean College, Zhejiang University Hangzhou 310058 China
| | - Lili Wang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University Hangzhou 310058 China
- Environmental Engineering, Jiyang College of Zhejiang A & F University Zhuji 311800 China
| |
Collapse
|
10
|
Hassani A, Scaria J, Ghanbari F, Nidheesh PV. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. ENVIRONMENTAL RESEARCH 2023; 217:114789. [PMID: 36375505 DOI: 10.1016/j.envres.2022.114789] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Jaimy Scaria
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
11
|
Zhang X, Liu W, Zhou Y, Li Y, Yang Y, Gou J, Shang J, Cheng X. Photo-assisted bismuth ferrite/manganese dioxide/nickel foam composites activating PMS for degradation of enrofloxacin in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Xu C, Liu Q, Wei M, Guo S, Fang Y, Ni Z, Yang X, Zhang S, Qiu R. Co@CoO encapsulated with N-doped carbon nanotubes activated peroxymonosulfate for efficient purification of organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Özcan S, Yıldırım D, Çıldıroğlu HÖ, Polat M, Hamaloğlu KÖ, Tosun RB, Kip Ç, Tuncel A. Monodisperse-porous Mn 5O 8 microspheres as an efficient catalyst for fast degradation of organic pollutants via peroxymonosulfate activation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodisperse-porous Mn5O8 microspheres with multiple oxidation states were used as a highly stable, efficient heterogeneous catalyst for the fast degradation of organic pollutants via peroxymonosulfate activation.
Collapse
Affiliation(s)
- Sinem Özcan
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | - Duygu Yıldırım
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | | | - Mustafa Polat
- Department of Physics Engineering, Hacettepe University, Ankara, Turkey
| | | | | | - Çiğdem Kip
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|