1
|
Wang J, Zhu W, Liu H, Wang W, Yang T. α-FeOOH-Modified Sn/N-Codoped TiO 2 Bifunctional Composites for As(III) Removal through Photocatalytic Oxidation and Simultaneous Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15252-15262. [PMID: 39001853 DOI: 10.1021/acs.langmuir.4c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Photocatalytic oxidation technology is one of the most efficient and green methods to convert highly toxic As(III) into lowly toxic As(V) for arsenic-polluted wastewater. However, the obtained As(V) may be reduced to As(III) again in the environment, causing secondary pollution. In order to resolve these issues, a bifunctional composite consisting of needle-like α-FeOOH-modified Sn/N-codoped TiO2 granules (SNT-FeOOH) has been synthesized. After modifying, the band gap of SNT-FeOOH narrowed from 2.94 eV (SNT) to 2.29 eV. When the composites were applied to As(III) removal, 10 mg of SNT-FeOOH could totally photocatalytically oxidize 40 mL of As(III) solution with a concentration of 10,000 μg/L within 15 min and synchronously achieve complete adsorption of the produced As(V), which is much more efficient than pure Sn/N-codoped TiO2 [21 min for As(III) photocatalytic oxidation and only 20.01% of total arsenic removal efficiency]. Based on the characterizations, α-FeOOH modification plays a significant role in the promoted performances of photocatalytic oxidation and adsorption of SNT-FeOOH, leading to arsenic removal. On one hand, the Fe-O-Ti interfacial chemical interactions formed between α-FeOOH and Sn/N-codoped TiO2 can further boost the separation rate of photogenerated carriers, hence increasing the photocatalytic oxidation efficiency. On the other hand, α-FeOOH surface hydroxyl groups adsorb the generated As(V) by forming Fe-O-As bonds. The SNT-FeOOH bifunctional composites, prepared in this paper, with dual performances of photocatalytic oxidation and adsorption provide a new strategy to achieve arsenic removal from wastewater.
Collapse
Affiliation(s)
- Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wenke Zhu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hanyu Liu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Yang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Malhotra M, Kaur B, Soni V, Patial S, Sharma K, Kumar R, Singh P, Thakur S, Pham PV, Ahamad T, Le QV, Nguyen VH, Raizada P. Fe-based MOFs as promising adsorbents and photocatalysts for re-use water contained arsenic: Strategies and challenges. CHEMOSPHERE 2024; 357:141786. [PMID: 38537716 DOI: 10.1016/j.chemosphere.2024.141786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
Arsenic (As) contaminated water, especially groundwater reservoirs, is a major issue worldwide owing to its hazardous consequences on human health and the global environment issues. Also, irrigating agricultural fields with As-contaminated water not only produces an accumulation of As in the soil but also compromises food safety due to As entering into agricultural products. Hence, there is an urgent need to develop an efficient method for As removal in water. Fe-based MOFs have attained special attention due to their low toxicity, high water stability, better physical and chemical properties, and high abundance of iron. The arsenic species removal by Fe-MOF follows the adsorption and oxidation mechanism where As (III) converts into As (V). Moreover, the adsorption mechanism is facilitated by electrostatic interactions, H-bonding, acid-base interaction, hydrophobic interactions, van der Waals forces, π-π stacking interactions, and coordinative bindings responsible for Fe-O-As bond generation. This review thoroughly recapitulates and analyses recent advancements in the facile synthesis and potential application of Fe-based MOF adsorbents for the elimination of As ions. The most commonly employed hydro/solvothermal, ultrasonic, microwave-assisted, mechanochemical, and electrochemical synthesis for Fe-MOF has been discussed along with their adsorptive and oxidative mechanisms involved in arsenic removal. The effects of factors like pH and coexisting ions have also been discussed. Lastly, the article also proposed the prospects for developing the application of Fe-based MOF in treating As-contaminated water.
Collapse
Affiliation(s)
- Monika Malhotra
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Balvinder Kaur
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Kusum Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Phuong V Pham
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
3
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
4
|
Du C, Lv Y, Yu H, Zhang Y, Zhu H, Dong W, Zou Y, Peng H, Zhou L, Wen X, Cao J, Jiang J. In situ synthesis of oxygen-doped carbon quantum dots embedded in MIL-53(Fe) for efficient degradation of oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26686-26698. [PMID: 38456976 DOI: 10.1007/s11356-024-32729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Introducing carbon quantum dots (CQDs) into photocatalysts is believed to boost the charge transfer rate and reduce charge complexation. Doping heteroatoms such as N, S, or P enable CQDs to have an uplifting electron transfer capability. However, the application of oxygen-doped CQDs to improve the performance of photocatalysts has rarely been reported. Herein, a type of carbon-oxygen quantum dots (COQDs) was in situ embedded into MIL-53(Fe) to aid peroxydisulfate (PDS)-activated degradation of oxytetracycline (OTC) under visible light irradiation. The successful embedding of COQDs was confirmed by XRD, FT-IR, XPS, SEM, and TEM techniques. Photoelectrochemical testing confirmed its better performance. The prepared COQDs1/MIL-53(Fe) showed 88.2% decomposition efficiency of OTC in 60 min, which was 1.45 times higher than that of pure MIL-53(Fe). In addition, the performance of the material was tested at different pH, OTC concentrations, catalyst dosing, and PDS dosing. It was also subjected to cyclic testing to check stability. Moreover, free radical trapping experiments and electron paramagnetic resonance were conducted to explore the possible OTC deterioration mechanism. Our work provides a new idea for the development of MOFs for water treatment and remediation.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China.
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China.
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| |
Collapse
|
5
|
Li X, Zhang G, Jia Y, Zou W, Zhang G, Pan Y, Zhou M. Removal of bisphenol A in a heterogeneous Fenton system via biochar synthesized using different Fe precursors: Properties, effects, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168855. [PMID: 38029993 DOI: 10.1016/j.scitotenv.2023.168855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The reactivity and mechanism of the Fe-doped biochar (FeBC) Fenton reaction are typically influenced by the amount and type of Fe species in materials. This study investigated the effects of different Fe precursors (FeSO4, Fe(NO)3, FeCl2, and FeCl3) used to prepare Fenton catalyst FeBCs (FeSBC, FeNBC, FeC2BC, and FeC3BC) on the physicochemical characteristics, pH resistance, and reactivity for bisphenol A (BPA) removal. In addition to the FeSBC/H2O2 (0.007 min-1) system, FeNBC/H2O2 (1.143 min-1), FeC2BC/H2O2 (0.278 min-1), and FeC3BC/H2O2 (0.556 min-1) completely removed BPA within 20 min under the optimal conditions (FeBCs: 0.1 g/L; H2O2: 1 mM; BPA: 20 mg/L; pH 3). FeBCs/H2O2 systems demonstrated good stability and resistance to inorganic anions and natural organic matter under appropriate initial pH conditions. However, FeC2BC and FeC3BC exhibited better pH applicability than FeNBC. Characterization results indicated that the physicochemical properties of FeBCs were dependent on the Fe precursor, which correlated with the degree of Fe corrosion and the production of distinct reactive oxygen species (ROS). Quenching experiments and electron spin resonance detection results indicated that OH, 1O2, and O2- species were all engaged in BPA removal; the ROS concentrations were significantly influenced by the initial pH and Fe precursor. The results indicate that Fe precursors significantly impact the performance and characteristics of Fe-based biochar materials, which are tailorable to specific applications.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, China.
| | - Gaili Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, China
| | - Yan Jia
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, China
| | - Wei Zou
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, China
| | - Guoqing Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Du C, Lv Y, Cao J, Zhu H, Zhang Y, Zou Y, Peng H, Dong W, Zhou L, Yu G, Yu H, Jiang J. Removal of oxytetracycline from water by S-doped MIL-53(Fe): Synergistic effect of surface adsorption and persulfate activation. ENVIRONMENTAL RESEARCH 2023; 239:116842. [PMID: 37549781 DOI: 10.1016/j.envres.2023.116842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
In this study, a novel catalyst based on MIL-53(Fe) was synthesized and modified through sublimed sulfur (S-MIL-53(Fe)) to induce a synergistic effect of surface adsorption and persulfate activation. The S-doped modification not only increased the surface area but also accelerated the electron transfer process of the iron cycle. The performance of the newly synthesized S-MIL-53(Fe) adsorptive catalyst was evaluated by chemical adsorption and peroxydisulfate (PDS) activated removal of an emerging pollutants, oxytetracycline (OTC). The S-MIL-53(Fe) adsorptive catalyst was able to adsorb 61.7% of OTC after 120 min, and the removal efficiency reached 84.8% within 5 min after PDS dosing. The boosting effect of sulfur on the system was confirmed by characterization analysis and experimental testing. Even after 7 cycles, the removal efficiency of S-MIL-53(Fe) (69.0%) for OTC remained superior to that of pure MIL-53(Fe) (25.1%). Additionally, the adsorption kinetics and adsorption isotherm model of the material were investigated. The possible OTC degrading process was proposed based on radical quenching and electron paramagnetic resonance (EPR). This study provides a feasible way to fabricate an S-doped MIL-53(Fe) adsorptive catalyst for the remediation of antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China.
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| |
Collapse
|
7
|
Wang X, Yan F, Chen Y, Bai X, Fu Y. Localized electron-accepted yellow-emission carbon dots encapsulated in UiO-66 for efficient visible-light driven photocatalytic activity. CHEMOSPHERE 2023; 343:140250. [PMID: 37741371 DOI: 10.1016/j.chemosphere.2023.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Metal organic frameworks (MOFs) possess a large surface area, inherent porosity and high crystallinity. Nevertheless, they lack electron acceptors, which limit the exploitation of their photocatalytic properties. Carbon dots (CDs) known for excellent optical properties can serve as localized electron acceptors. As a novel hybrid nanomaterial, the structure of CDs@MOFs effectively facilitates charge separation and carrier transfer, bring about a marked improvement of photocatalytic activity. In this study, yellow-emission carbon dots (YCDs) were encapsulated within zirconium-based metal organic framework (UiO-66) via a dynamic adsorption method. Compared with blue carbon dots (BCDs), the YCDs@UiO-66 exhibited superior degradation performance. It demonstrates that incorporation of YCDs broadens the UV absorption range of UiO-66, thereby enhancing light utilization. The degradation efficiency of YCDs@UiO-66 was 92.6%, whereas UiO-66 alone achieved only 63.1%. Notably, the results of the radical quenching experiment and electron paramagnetic resonance (EPR) revealed that h+ and •O2- played a prominent role in the photodegradation of tetracycline hydrochloride (TCH). This study highlights that the introducing YCDs in MOFs-mediated photocatalytic reactions is a viable strategy to improve catalytic efficiency.
Collapse
Affiliation(s)
- Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Ying Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Xinyi Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
8
|
Yang X, Wang C, Zhou B, Cheng S. Characterization of an Iron-Copper Bimetallic Metal-Organic Framework for Adsorption of Methyl Orange in Aqueous Solution. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:9985984. [PMID: 37663128 PMCID: PMC10471454 DOI: 10.1155/2023/9985984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Abstract
Iron-based organic frame material MIL-53 (Fe) was synthesized by the hydrothermal method with Cu2+ incorporated to obtain bimetallic composite MIL-53 (Fe, Cu). The structure and morphology of the material were characterized by SEM, XRD, BET, FTIR, XPS, and zeta potential. The adsorption performance of MIL-53 (Fe, Cu) on methyl orange was tested under a variety of conditions, including the effects of pH and material dosage, by the static adsorption test. The results show that under the condition of pH = 7, a temperature of 30°C, and an adsorbent dosage of 20 mg, the removal rate of MIL-53 (Fe, Cu) for methyl orange can reach more than 96% within 4 h, and the maximum adsorption capacity after fitting by the thermodynamic model can reach 294.43 mg/g, showing the excellent adsorption performance of MIL-53 (Fe, Cu) on methyl orange. In addition, by exploring the adsorption mechanism of MIL-53 (Fe, Cu) on methyl orange, it is found that the adsorption of MIL-53 (Fe, Cu) on methyl orange depends on chemical adsorption, as evidenced by combining Fe3+ and Cu2+ in the material with methyl orange molecules to form complexes to achieve adsorption. While the specific surface area of the material had no obvious effect on adsorption, the effects of pH, temperature, and concentration were explored. At a pH of 6.5, greater adsorption occurred at higher temperatures, as determined by thermodynamic model fitting, as well as with higher initial methyl orange molecule concentration.
Collapse
Affiliation(s)
- Xiuzhen Yang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Changye Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Bin Zhou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Shuangchan Cheng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| |
Collapse
|
9
|
Mahamallik P, Swain R. A mini-review on arsenic remediation techniques from water and future trends. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3108-3123. [PMID: 37387434 PMCID: wst_2023_190 DOI: 10.2166/wst.2023.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Arsenic contamination is a severe issue because of its toxicity and related health risks. This review article presents an overview of the sources, health hazards, and treatment options for arsenic pollution. Conventional approaches to achieving the permitted level of 10 ppb set by the WHO, such as chemical oxidation, biological oxidation, and coagulation-flocculation, are ineffective and time-consuming. The paper analyses the advantages and disadvantages of various advanced treatment technologies, including membrane filtration, ion exchange, advanced oxidation, phytoremediation, and adsorption. This paper summarized the effectiveness of hybrid arsenic remediation techniques in removing arsenic and its operating conditions. This study is a helpful tool for putting remediation strategies into practice. This article describes arsenic pollution's damaging effects on human health, underscoring the necessity for careful treatment. The article addresses numerous treatment technologies, each with advantages and disadvantages preventing widespread use. Due to these limitations, deciding the best technique for arsenic remediation is difficult. As a result, hybrid treatment systems are urgently needed, with photocatalysis-adsorption being the most popular approach. The relevance of adaptable, user-friendly, low-maintenance hybrid technologies that are versatile, easy to use, and provide affordable arsenic removal options, especially for poor populations, is highlighted by prospects.
Collapse
Affiliation(s)
- Prateeksha Mahamallik
- Department of Civil Engineering, National Institute of Technology, Rourkela 769008, India E-mail:
| | - Ratnakar Swain
- Department of Civil Engineering, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
10
|
Wang J, Li Z, Zhu Q, Wang C, Tang X. Review on arsenic environment behaviors in aqueous solution and soil. CHEMOSPHERE 2023; 333:138869. [PMID: 37156290 DOI: 10.1016/j.chemosphere.2023.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Arsenic pollution in environment has always been an important environmental problem that has attracted wide attention in recent years. Adsorption is one of the main methods of treatment for arsenic in the aqueous solution and soil because of the advantages of high efficiency, low cost and wide application. Firstly, this report summarizes the commonly and widely used adsorbent materials such as metal-organic frameworks, layered bimetallic hydroxides, chitosan, biochar and their derivatives. The adsorption effects and mechanisms of these materials are further discussed, and the application prospects of these adsorbents are considered. Meanwhile, the gaps and deficiencies in the study of adsorption mechanism was pointed out. Then, this study comprehensively evaluated the effects of various factors on arsenic transport, including (i) the effects of pH and redox potential on the existing form of As; (ii) complexation mechanism of dissolved organic matter and As; (iii) factors affecting the plant enrichment of As. Finally, the latest scientific researches on microbial remediation of arsenic and the mechanisms were summarized. The review finally enlightens the subsequent development of more efficient and practical adsorption material.
Collapse
Affiliation(s)
- Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
11
|
Yan C, Wang X, Xia S, Zhao J. Mechanistic insights into the removal of As(III) and As(V) by iron modified carbon based materials with the aid of machine learning. CHEMOSPHERE 2023; 321:138125. [PMID: 36781000 DOI: 10.1016/j.chemosphere.2023.138125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The machine learning (ML) technique was used to examine the effects of different microscopic material features on the ability of iron modified carbon-based materials (Fe-CBMs) to remove As(V) and As(III). The findings showed that specific CBMs and Fe-CBMs features (such as surface functionality) from sophisticated microscopic and spectroscopic techniques led to models that were more accurate than those constructed using more basic information, such as bulk elemental composition and surface area (the root-mean-square error fell by 44.7% for As(V) and 56.9% for As(III), respectively). The high non-polar carbon (NPC) content of CBMs and Fe-CBMs had a detrimental influence on As(V) and As(III) removal capability, whereas surface oxygen-containing functional groups (SOFGs) contents on CBMs and Fe-CBMs played an essential role in arsenic removal based on ML approaches. The relative importance of CO was greater by 77.8% and 40.6% than that of C-O on the elimination of As(V) and As(III), respectively. The accurate ML models are helpful for the future design of Fe-CBMs and the relative importance and partial dependence plot analysis can direct the use of Fe-CBMs for arsenic removal in a sensible manner under different application situations.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
12
|
Wang Z, Jin X, Yan L, Yang Y, Liu X. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Mikrochim Acta 2022; 190:28. [PMID: 36520192 DOI: 10.1007/s00604-022-05597-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xudong Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
13
|
Zhao J, Wang Y, Zhang J, Yue Y, Liu Q, Qian G. Accessibility control of Cu sites to enhance adsorption capacity of ultra-low-concentration methyl mercaptan. CHEMOSPHERE 2022; 305:135511. [PMID: 35777537 DOI: 10.1016/j.chemosphere.2022.135511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Methyl mercaptan (MM) is a typical malodorous gas and low-concentration MM makes human uncomfortable. Adsorption is applied in industry to remove MM. However, adsorptive-site agglomeration results in that adsorbent is not fully utilized. In this work, pore size and unsaturated-site amount of Cu-based metal-organic frameworks (MOFs) were regulated by using different ligands to increase adsorptive-site accessibility for MM. As a result, when Cu2+ sites were imbedded in MOFs network, these sites were inaccessible for MM; when Cu2+ sites were occupied by none-network organics, these sites were accessible for MM after simple activation; when Cu2+ sites were occupied by water, these sites were the most effective for MM removal among above site species. Furthermore, with the increase of bonding sites in ligands, channel pore size of MOFs was increased. Both pore size and unsaturated-site amount were important to MM removal. When above MOFs were used in purification of ultra-low-concentration MM, the regulated MOFs with a big pore size (11 and 5 Å) and water-occupied sites showed a best removal capacity of 160.3 mg g-1. The main result of this work is in favor of understanding structure-efficiency relationship in MOFs. This work also helps to develop effective adsorbents for ultra-low-concentration pollutants.
Collapse
Affiliation(s)
- Jiachun Zhao
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Yixin Wang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China.
| | - Yang Yue
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China.
| | - Qiang Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| |
Collapse
|
14
|
High-performance BiVO 4 photoanodes cocatalyzed with bilayer metal-organic frameworks for photoelectrochemical application. J Colloid Interface Sci 2022; 619:257-266. [PMID: 35397459 DOI: 10.1016/j.jcis.2022.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
In this work, we modified a BiVO4 photoanode with bilayer Fe-MOF and Ni-MOF as cocatalysts for the first time and obtained a highly efficient BiVO4 composite photoanode whose photocurrent density was increased by 2.7 times. The optimized BiVO4/Fe-MOF/Ni-MOF photoanode demonstrated a photocurrent density of 1.80 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode (RHE). The onset potential of the BiVO4/Fe-MOF/Ni-MOF photoanode markedly decreased from 0.9 V to 0.69 V in comparison with the pure BiVO4 photoanode. It is speculated that Fe-MOF and Ni-MOF led to more reactive oxygen evolution sites and that the bilayer cocatalysts synergistically promoted the separation of photogenerated electron-hole pairs, which may be the influencing factor for the photoelectrochemical performance of the BiVO4/Fe-MOF/Ni-MOF photoanode being distinctively enhanced. Thus, this work sheds some interesting new light on the construction of a high-efficiency photoanode for photoelectrochemical applications.
Collapse
|
15
|
Liu F, Pan T, Ren X, Bao W, Wang J, Hu J. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|