1
|
Binnemans K, Jones PT. Methanesulfonic acid (MSA) in clean processes and applications: a tutorial review. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:8583-8614. [PMID: 39081497 PMCID: PMC11284624 DOI: 10.1039/d4gc02031f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
This Tutorial Review acquaints chemists and metallurgists with the properties and industrial applications of methanesulfonic acid (MSA, CH3SO3H). Over the past quarter-century, MSA has garnered increasing interest as a reagent for green chemistry due to its strong acidity, while circumventing many of the challenges associated with handling concentrated sulfuric acid, hydrochloric acid, or nitric acid. Concentrated MSA is a non-oxidizing reagent, exhibiting high chemical stability against redox reactions and hydrolysis, as well as high thermal stability and limited corrosivity towards construction materials. It is colorless, odorless, and possesses a very low vapor pressure. MSA combines commendable biodegradability with low toxicity. It is extensively utilized as a Brønsted acid catalyst for esterification or alkylation reactions, and is employed in biodiesel production. The high solubility of its metal salts, the high electrical conductivity of its concentrated solutions, coupled with the high electrochemical stability of MSA and its anion, make MSA-based electrolytes beneficial in electrochemical applications. Examples include the electrodeposition of tin-lead solder for electronic applications and the high-speed plating of tin on steel plate for food cans. MSA-based electrolytes are used in redox flow batteries (RFBs). MSA offers a much safer and environmentally friendlier alternative to electrolytes based on fluoroboric or fluorosilicic acid. A novel application area is as a strong acid in extractive metallurgy, where it may contribute to the development of circular hydrometallurgy. MSA is being explored in lithium-ion battery recycling flowsheets, as well as in other applications in the field of metal recovery and refining. However, this review is not solely about the advantages of MSA for green chemistry or clean technologies, as there are also some potential drawbacks. Apart from its higher price compared to regular strong acids, MSA has only minor advantages for applications where sulfuric acid performs well. Since methanesulfonate biodegrades into sulfate, the same emission restrictions as for sulfate should be considered. In conclusion, MSA is the acid of choice for applications where metal sulfates cannot be used due to poor solubility or where concentrated sulfuric acid is too reactive towards organics.
Collapse
Affiliation(s)
- Koen Binnemans
- KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Heverlee Belgium
| | - Peter Tom Jones
- KU Leuven, Department of Materials Engineering Kasteelpark Arenberg 44 bus 2450 B-3001 Heverlee Belgium
| |
Collapse
|
2
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Hedwig S, Yagmurlu B, Peters EM, Misev V, Hengevoss D, Dittrich C, Forsberg K, Constable EC, Lenz M. From Trace to Pure: Pilot-Scale Scandium Recovery from TiO 2 Acid Waste. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:5883-5894. [PMID: 37091124 PMCID: PMC10114082 DOI: 10.1021/acssuschemeng.2c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Scandium (Sc), declared a critical raw material in the European Union (EU), could face further supply issues as the EU depends almost entirely on imports from China, Russia, and Ukraine. In this study, a tandem nanofiltration-solvent extraction procedure for Sc recovery from titania (TiO2) acid waste was piloted and then augmented by antisolvent crystallization. The new process, comprising advanced filtration (hydroxide precipitation, micro-, ultra-, and nanofiltration), solvent extraction, and antisolvent crystallization, was assessed in relation to material and energy inputs and benchmarked on ScF3 production. From ∼1 m3 of European acid waste containing traces of Sc (81 mg L-1), ∼13 g of Sc (43% yield, nine stages) was recovered as (NH4)3ScF6 with a purity of approximately 95%, demonstrating the technical feasibility of the approach. The production costs per kilogram of ScF3 were lower than reported market prices, which underscores a competitive process at scale. Although a few technical bottlenecks (e.g., S/L separation and electricity consumption) need to be overcome, combining advanced filtration with solvent extraction and antisolvent crystallization promises a future supply of this critical raw material from European secondary sources.
Collapse
Affiliation(s)
- Sebastian Hedwig
- FHNW,
Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Bengi Yagmurlu
- TU
Clausthal, Institute of Mineral and Waste Processing, Recycling and
Circular Economy Systems, Walter-Nernst-Str. 9, 38678 Clausthal-Zellerfeld, Germany
| | | | - Victor Misev
- FHNW,
Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Dirk Hengevoss
- FHNW,
Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | | | - Kerstin Forsberg
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, 100-44 Stockholm, Sweden
| | - Edwin C. Constable
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Markus Lenz
- FHNW,
Institute for Ecopreneurship, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, 6700 AA Wageningen, The Netherlands
- . Tel: +41 61 228 5686
| |
Collapse
|
4
|
Xie C, Xiao Y, He C, Liu WS, Tang YT, Wang S, van der Ent A, Morel JL, Simonnot MO, Qiu RL. Selective recovery of rare earth elements and value-added chemicals from the Dicranopteris linearis bio-ore produced by agromining using green fractionation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130253. [PMID: 36327843 DOI: 10.1016/j.jhazmat.2022.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.
Collapse
Affiliation(s)
- Candie Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Wen-Shen Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ye-Tao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Improving separation efficiency of crystallization by ultrasound-accelerated nucleation: The role of solute diffusion and solvation effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Antisolvent Precipitation for Metal Recovery from Citric Acid Solution in Recycling of NMC Cathode Materials. METALS 2022. [DOI: 10.3390/met12040607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Lithium-ion batteries (LIBs) are widely used everywhere today, and their recycling is very important. This paper addresses the recovery of metals from NMC111 (LiNi1/3Mn1/3Co1/3O2) cathodic materials by leaching followed by antisolvent precipitation. Ultrasound-assisted leaching of the cathodic material was performed in 1.5 mol L−1 citric acid at 50 °C and at a solid-to-liquid ratio of 20 g/L. Nickel(II), manganese(II) and cobalt(II) were precipitated from the leach liquor as citrates at 25 °C by adding an antisolvent (acetone or ethanol). No lithium(I) precipitation occurred under the experimental conditions, allowing for lithium separation. The precipitation efficiencies of manganese(II), cobalt(II) and nickel(II) decreased according to the order Mn > Co > Ni. The precipitation efficiency increased when a greater volume of antisolvent to the leachate was used. A smaller volume of acetone than ethanol was needed to reach the same precipitation efficiency in accordance with the difference in the dielectric constants of ethanol and acetone and their associated solubility constants. After adding two volumes of acetone into one volume of the leach liquor, 99.7% manganese, 97.0% cobalt and 86.9% nickel were recovered after 120 h, leaving lithium in the liquid phase. The metal citrates were converted into metal oxides by calcination at 900 °C.
Collapse
|