1
|
Lu M, Zhao Z, Tang Y, Wang Y, Zhang F, Li J, Yang J. A Lewis basic site rich metal-organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C 2H 2/CO 2. Dalton Trans 2025; 54:2812-2818. [PMID: 39807081 DOI: 10.1039/d4dt03411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The physical separation of C2H2 from CO2 on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C2H2/CO2 separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C2H2 nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C2H2 molecules. This material exhibits a good acetylene capacity of 55.31 cm3 g-1 and high C2H2/CO2 selectivity of 7.0 under ambient conditions. We have combined in situ IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C2H2/CO2 mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Mengyue Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yuhao Tang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yating Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
2
|
Mashhadimoslem H, Abdol MA, Karimi P, Zanganeh K, Shafeen A, Elkamel A, Kamkar M. Computational and Machine Learning Methods for CO 2 Capture Using Metal-Organic Frameworks. ACS NANO 2024; 18:23842-23875. [PMID: 39173133 DOI: 10.1021/acsnano.3c13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Machine learning (ML) using data sets of atomic and molecular force fields (FFs) has made significant progress and provided benefits in the fields of chemistry and material science. This work examines the interactions between chemistry and materials computational science at the atomic and molecular scales for metal-organic framework (MOF) adsorbent development toward carbon dioxide (CO2) capture. Herein, a connection will be drawn between atomic forces predicted by ML algorithms and the structures of MOFs for CO2 adsorption. Our study also takes into account the successes of atomic computational screening in the field of materials science, especially quantum ML, and its relationship to ML algorithms that clarify advancements in the area of CO2 adsorption by MOFs. Additionally, we reviewed the processes for supplying data to ML algorithms for algorithm training, including text mining from scientific articles, and MOF's formula processing linked to the chemical properties of MOFs. To create ML algorithms for future research, we recommend that the digitization of scientific records can help efficiently synthesize advanced MOFs. Finally, a future vision for developing pioneer MOF synthesis routes for CO2 capture is presented in this review article.
Collapse
Affiliation(s)
- Hossein Mashhadimoslem
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mohammad Ali Abdol
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Peyman Karimi
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kourosh Zanganeh
- Natural Resources Canada (NRCan), Canmet ENERGY-Ottawa (CE-O), 1 Haanel Dr., Ottawa, ON K1A 1M1 Canada
| | - Ahmed Shafeen
- Natural Resources Canada (NRCan), Canmet ENERGY-Ottawa (CE-O), 1 Haanel Dr., Ottawa, ON K1A 1M1 Canada
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Milad Kamkar
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Chen S, Chung LH, Chen S, Jiang Z, Li N, Hu J, Liao WM, He J. Efficient Lead Removal by Assembly of Bio-Derived Ellagate Framework, Which Enables Electrocatalytic Reduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400978. [PMID: 38593307 DOI: 10.1002/smll.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.
Collapse
Affiliation(s)
- Song Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shaoru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
4
|
Chacón-García AJ, Rojas S, Grape ES, Salles F, Willhammar T, Inge AK, Pérez Y, Horcajada P. SU-101 for the removal of pharmaceutical active compounds by the combination of adsorption/photocatalytic processes. Sci Rep 2024; 14:7882. [PMID: 38570568 PMCID: PMC10991395 DOI: 10.1038/s41598-024-58014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.
Collapse
Affiliation(s)
- Antonio J Chacón-García
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
| | - Sara Rojas
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
- Department of Inorganic Chemistry, University of Granada, 18071, Granada, Spain
| | - Erik Svensson Grape
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, OR, 97403, USA
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
| | | | - Tom Willhammar
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | - Yolanda Pérez
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain.
- COMET-NANO Group, ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain.
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
5
|
Wang W, Wang GD, Zhang B, Li XY, Hou L, Yang QY, Liu B. Discriminatory Gate-Opening Effect in a Flexible Metal-Organic Framework for Inverse CO 2 /C 2 H 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302975. [PMID: 37194973 DOI: 10.1002/smll.202302975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/12/2012] [Indexed: 05/18/2023]
Abstract
Considering the significant application of acetylene (C2 H2 ) in the manufacturing and petrochemical industries, the selective capture of impurity carbon dioxide (CO2 ) is a crucial task and an enduring challenge. Here, a flexible metal-organic framework (Zn-DPNA) accompanied by a conformation change of the Me2 NH2 + ions in the framework is reported. The solvate-free framework provides a stepped adsorption isotherm and large hysteresis for C2 H2 , but type-I adsorption for CO2 . Owing to their uptakes difference before gate-opening pressure, Zn-DPNA demonstrated favorable inverse CO2 /C2 H2 separation. According to molecular simulation, the higher adsorption enthalpy of CO2 (43.1 kJ mol-1 ) is due to strong electrostatic interactions with Me2 NH2 + ions, which lock the hydrogen-bond network and narrow pores. Furthermore, the density contours and electrostatic potential verifies the middle of the cage in the large pore favors C2 H2 and repels CO2 , leading to the expansion of the narrow pore and further diffusion of C2 H2 . These results provide a new strategy that optimizes the desired dynamic behavior for one-step purification of C2 H2 .
Collapse
Affiliation(s)
- Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| |
Collapse
|
6
|
Thermodynamic and kinetic synergetic separation of CO2/C2H2 in an ultramicroporous metal-organic framework. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Cai Y, Yong J, Chen J, Zhou Y, Gao J. Hofmann-type metal-organic frameworks with dual open nickel centers for efficient capture of CO2 from CH4 and N2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|