1
|
Huang J, Li Q, Zhu Y, Wu J, Fan G. Columnar cobalt molybdate spinel rooted on three-dimensional nickel foam as robust catalyst for 4-nitrophenol degradation through peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2025; 266:120579. [PMID: 39662611 DOI: 10.1016/j.envres.2024.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Metal oxides-catalyzed peroxymonosulfate (PMS) activation systems show promise in decomposing organic pollutants, whereas the critical challenges such as catalyst aggregation and metal ion leaching significantly impact the stability and reusability of catalysts and thus limit widespread application. To address these issues, an effective self-supported three-dimensional PMS activator consisted of spinel cobalt molybdate (CoMoO4) and nickel foam (NF) (CoMoO4/NF) is fabricated through hydrothermal and annealing processes. The cooperative redox interaction between Co and Mo metal sites in CoMoO4/NF play a crucial role in efficiently activating PMS to degrade 4-nitrophenol (4-NP). Specifically, the CoMoO4/NF/PMS system achieves a 95% degradation rate for 4-NP within 35 min. Attributing to the unique columnar structure and strong connection between CoMoO4 and NF, the catalyst/PMS system maintains high efficiency after five cycles. Furthermore, the system demonstrates broad applicability for degrading various organic pollutants and resistance to interference from different pH levels, inorganic anions, and humic acid. This study proposes radical/non-radical degradation pathways by identifying active species and investigates the degradation mechanism and toxicity of intermediate products for 4-NP. These findings offer valuable insights for designing and synthesizing self-supported catalysts to eliminate pollutants through PMS activation.
Collapse
Affiliation(s)
- Jieling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Qiulin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yuyue Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jie Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
2
|
Ren G, Zhang J, Wang X, Liu G, Zhou M. A critical review of persulfate-based electrochemical advanced oxidation processes for the degradation of emerging contaminants: From mechanisms and electrode materials to applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173839. [PMID: 38871317 DOI: 10.1016/j.scitotenv.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The persulfate-based electrochemical advanced oxidation processes (PS-EAOPs) exhibit distinctive advantages in the degradation of emerging contaminants (ECs) and have garnered significant attention among researchers, leading to a consistent surge in related research publications over the past decade. Regrettably, there is still a lack of a critical review gaining deep into understanding of ECs degradation by PS-EAOPs. To address the knowledge gaps, in this review, the mechanism of electro-activated PS at the interface of the electrodes (anode, cathode and particle electrodes) is elaborated. The correlation between these electrode materials and the activation mechanism of PS is systematically discussed. The strategies for improving the performance of electrode material that determining the efficiency of PS-EAOPs are also summarized. Then, the applications of PS-EAOPs for the degradation of ECs are described. Finally, the challenges and outlook of PS-EAOPs are discussed. In summary, this review offers valuable guidance for the degradation of ECs by PS-EAOPs.
Collapse
Affiliation(s)
- Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xufei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guanyu Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Zhong Y, Ma S, Chen D, Feng Y, Zhang W, Sun S, Lv G, Zhang W, Zhang JZ, Ding H. Ultrathin BiOCl-OV/CoAl-LDH S-scheme heterojunction for efficient photocatalytic peroxymonosulfate activation to boost Co (IV)=O generation. WATER RESEARCH 2024; 258:121774. [PMID: 38772316 DOI: 10.1016/j.watres.2024.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Sustainable and rapid production of high-valent cobalt-oxo (Co(IV)=O) species for efficiently removing organic pollutants is challenging in permoxymonosulfate (PMS) based advanced-oxidation-processes (AOPs) due to the limitation of the high 3d-orbital electronic occupancy of Co and slow conversion from Co(III) to Co(II). Herein, S-scheme BiOCl-OV/CoAl-LDH heterojunction were constructed by ultrathin BiOCl with the oxygen-vacancy (OV) self-assembled with ultrathin CoAl-LDH. OV promoted the formation of charge transfer channel (Bi-O-Co bonds) at the interface of the heterojunction and reduced electron occupation of the Co 3d-orbital to facilitate the generation of Co(IV)=O in the BiOCl-OV/CoAl-LDH/PMS/Visible-light system. S-scheme heterojunction accelerated the photogenerated electrons to allow rapid conversion of Co(III) to Co(II), promoting the fast two-electron transfer from Co(II) to Co(IV)=O. Consequently, the developed BiOCl-OV/CoAl-LDH/PMS/Visible-light system showed excellent degradation efficiency for most of organic pollutions, and exhibited very high removal capability for the actual industrial wastewater. This study provides a new insight into the evolution of Co(IV)=O and the coordinative mechanism for photocatalysis and PMS activation.
Collapse
Affiliation(s)
- Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China; Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| | - Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Wenyang Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Sijia Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Weibin Zhang
- College of Physics and Electronics Information, Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China.
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
4
|
Pan X, Zhu R, Zhao L, Ma H, Qiu Z, Gong X, Sun M. Peroxymonosulfate activation by iron-cobalt bimetallic phosphide modified nickel foam for efficient dye degradation. ENVIRONMENTAL RESEARCH 2024; 258:119420. [PMID: 38885825 DOI: 10.1016/j.envres.2024.119420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Novel catalysts with multiple active sites and rapid separation are required to effectively activate peroxymonosulfate (PMS) for the removal of organic pollutants from water. Therefore, an integrated catalyst for PMS activation was developed by directly forming Co-Fe Prussian blue analogs on a three-dimensional porous nickel foam (NF), which were subsequently phosphorylated to obtain cobalt-iron bimetallic phosphide (FeCoP@NF). The FeCoP@NF/PMS system efficiently degraded dye wastewater within 20 min. The system exhibited excellent catalytic degradation over a broad pH range and at high dye concentrations due to the presence of unique asymmetrically charged Coa+ and Pb- dual active sites formed by cobalt phosphides within FeCoP@NF. These active sites significantly enhanced the catalytic activity of PMS. The activation mechanism of PMS involves phosphorylation that accelerates electron transfer from FeCoP@NF to PMS, to generate SO4·-, ·OH, O2·-, and 1O2 active species. Three-dimensional FeCoP@NF could be readily recycled and showed good stability for PMS activation. In this study, a highly efficient, stable, and readily recyclable integrated catalyst was developed. This catalyst system effectively resolves the separation and recovery issues associated with conventional powder catalysts and has a wide range of potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Xiaofang Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Ruiying Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Li Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Hong Ma
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Zifeng Qiu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China
| | - Xiaobo Gong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| | - Mingchao Sun
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610066, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610066, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
5
|
Gao Y, Xie F, Bai H, Zeng L, Zhang J, Liu M, Zhu W. A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H 2O 2 generation and its application in electro-Fenton. ENVIRONMENTAL TECHNOLOGY 2024; 45:1669-1682. [PMID: 36408871 DOI: 10.1080/09593330.2022.2150093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Herein, a carbon felt (CF) cathode modified by the acidic oxidised carbon nanotubes (OCNTs) exhibited a high yield of the H2O2 generation in electro-Fenton. Rotating disk electrode (RDE) measurements showed that the selective generation of H2O2 occurred on the CF cathode coated by OCNTs (OCNTs/CF), which was attributed to the high amount of oxygen-containing functional groups in OCNTs. Moreover, the pollutant degradation efficiency could almost reach 100% within 60 min in electro-Fenton with OCNTs/CF as the cathode. Furthermore, the pollutant removal efficiency was kept constant after five consecutive cycles, indicating the high stability of OCNTs/CF cathode. Besides, the hydrophilicity of OCNTs/CF cathode was significantly enhanced owing to the abundant oxygen-contained functional groups on the surface of the OCNTs/CF cathode, which facilitated the mass transfer between the OCNTs/CF cathode and the reactants in the bulk solution. To reveal the possible mechanism in electro-Fenton equipped with the OCNTs/CF cathode, quenching experiments and electron paramagnetic resonance (EPR) investigations were further conducted. This work provided valuable insights into the fabrication of the non-metallic cathode with a high ability towards H2O2 generation in electro-Fenton for efficient pollutant removal.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huiling Bai
- College of literature, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Li Zeng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Song D, Zheng Z, Wang Z, Zhao M, Ding L, Zhang Q, Deng F. Catalytic PMS oxidation universality of CuFe 2O 4/MnO 2 heterojunctions at multiple application scenarios. ENVIRONMENTAL RESEARCH 2024; 243:117828. [PMID: 38048866 DOI: 10.1016/j.envres.2023.117828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
The magnetic CuFe2O4/MnO2 heterojunctions were prepared by hydrothermal method, and the effect of different reaction temperature on the physicochemical properties and catalytic activity was investigated. The CuFe2O4/MnO2 heterojunctions prepared at 100 °C can effectively activate peroxymonosulfate (PMS) at multiple application scenarios for degradation and mineralization of tetracycline, o-nitrophenol and ceftriaxone sodium under indoor light, visible light and dark condition. Additionally, the CuFe2O4/MnO2-PMS system showed high catalytic activity and anti-interference ability for degradation of pharmaceutical pollutants in natural water bodies and industrial wastewater. The TC removal efficiency in Qianhu Lake water, Ganjiang River water and tap water was about 88%, 92% and 89%, respectively. The CuFe2O4/MnO2-PMS system is also effective for actual pharmaceutical wastewater treatment with 77.9% of COD removal efficiency. Interestingly, the reactive species of CuFe2O4/MnO2-PMS system under visible light are different from those in dark condition, and the different catalytic mechanisms at multiple application scenarios were proposed. This work provides new insights into mechanism exploration of heterojunction catalyst for PMS activation.
Collapse
Affiliation(s)
- Di Song
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zixuan Zheng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenzhou Wang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mengyuan Zhao
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lin Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Qian Zhang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Fang Deng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
7
|
Qiu F, Wang L, Li H, Pan Y, Song H, Chen J, Fan Y, Zhang S. Electrochemically enhanced activation of Co 3O 4/TiO 2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. J Colloid Interface Sci 2024; 655:594-610. [PMID: 37956547 DOI: 10.1016/j.jcis.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Advanced oxidation processes (AOPs) can directly degrade and mineralize organic pollutants (OPs) in water by generating reactive oxygen species with strong oxidizing ability. The development of advanced electrode materials with high catalytic performance, low energy consumption, no secondary pollution, and long lifespan has become a challenge that must be addressed in this field. A heterojunction catalyst loaded with Co3O4 on TDNAs (Co3O4/RTDNAs) was designed and constructed by a simple and efficient pyrolysis (Co3O4/TDNAs) and electrochemical reduction. Co3O4 can be uniformly distributed on the inner wall and surface of the TiO2 nanotubes, enhancing the specific surface area while forming a tight conductive interface with TiO2. This facilitates rapid transmission of electrons, thereby assisting Co3O4 in quickly activating PS to form reactive oxygen species. The Ti3+ and Ov generated in Co3O4/RTDNAs can significantly improve the electrocatalytic degradation of OPs. Also, the interface formed by Co3O4 and RTDNAs will effectively suppress Co2+ leakage, thereby reducing the risk of secondary pollution. When the reaction conditions were 1 mM PMS (PDS) and a current density of 5 mA/cm2 in the EA-PMS (PDS)/Co3O4/RTDNA system, 30 mg/L TC can achieve 83.24 % (81.89 %) removal in 120 min, with very low cobalt ion leaching, while the energy consumption was reduced significantly. Therefore, EA-PS/Co3O4/RTDNA system has strong stability and a high potential for treating the OPs in AOPs.
Collapse
Affiliation(s)
- Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yang Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
8
|
Li Z, Zhang W, Liu X, Wang X, Dai H, Chen F, Tang Y, Li J. Iron-Cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation. J Colloid Interface Sci 2023; 652:1878-1888. [PMID: 37688934 DOI: 10.1016/j.jcis.2023.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.
Collapse
Affiliation(s)
- Zihan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xingyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fangyan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
9
|
Zhang H, He Y, He M, Yang Q, Ding G, Mo Y, Liu Z, Gao P. Construction of cubic CaTiO 3 perovskite modified by highly-dispersed cobalt for efficient catalytic degradation of psychoactive pharmaceuticals. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132191. [PMID: 37544175 DOI: 10.1016/j.jhazmat.2023.132191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Sulfate radical mediated advanced oxidation processes (SR-AOPs) have emerged as a promising alternative for emerging contaminants degradation. However, high activity and great stability are commonly difficult to juggle, and the structure-activity correlations are still ambiguous. This study constructed the cubic CaTiO3 perovskite modified by highly-dispersed cobalt for peroxymonosulfate (PMS) activation to improve the specific lattice plane exposure and reduce the metal leaching simultaneously. 98% of amitriptyline (AMT) degradation was achieved within 60 min under the condition of 200 mg/L Co0.1-CTO and 100 mg/L PMS. The results indicated that surface Co2+/Co3+ redox couple and lattice oxygen were responsible for PMS activation, and the evolution of ·OH, SO4·- and 1O2 were revealed. According to density functional theory (DFT) calculations, the highly-dispersed Co on cubic surface effectively captured PMS and promoted electron transfer for the generation of ·OH and SO4·-, while more oxygen atoms exposed on Co0.1-CTO(200) surface facilitated the generation of 1O2. Briefly, this study provides a novel strategy of catalyst synthesis in PMS activation for water treatment.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, 311121, Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Yunyi He
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Mengfan He
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Qiyue Yang
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Guoyi Ding
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yuanshuai Mo
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Panpan Gao
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Xie J, Yang C, Li X, Wu S, Lin Y. Generation and engineering applications of sulfate radicals in environmental remediation. CHEMOSPHERE 2023; 339:139659. [PMID: 37506891 DOI: 10.1016/j.chemosphere.2023.139659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (AOPs) have become promising alternatives in environmental remediation due to the higher redox potential (2.6-3.1 V) and longer half-life period (30-40 μs) of sulfate radicals compared with many other radicals such as hydroxyl radicals (•OH). The generation and mechanisms of SO4•- and the applications of SO4•--AOPs have been examined extensively, while those using sulfite as activation precursor and their comparisons among various activation precursors have rarely reviewed comprehensively. In this article, the latest progresses in SO4•--AOPs were comprehensively reviewed and commented on. First of all, the generation of SO4•- was summarized via the two activation methods using various oxidant precursors, and the generation mechanisms were also presented, which provides a reference for guiding researchers to better select two precursors. Secondly, the reaction mechanisms of SO4•- were reviewed for organic pollutant degradation, and the reactivity was systematically compared between SO4•- and •OH. Thirdly, methods for SO4•- detection were reviewed which include quantitative and qualitative ones, over which current controversies were discussed. Fourthly, the applications of SO4•--AOPs in various environmental remediation were summarized, and the advantages, challenges, and prospects were also commented. At last, future research needs for SO4•--AOPs were also proposed consequently. This review could lead to better understanding and applications of SO4•--AOPs in environmental remediations.
Collapse
Affiliation(s)
- Jun Xie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China.
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
11
|
Bai B, Wang Q, Sun Y, Zhou R, Chen G, Tang Y. Synthesis of Porous MgAl-LDH on a Micelle Template and Its Application for Efficient Treatment of Oilfield Wastewater. Molecules 2023; 28:6638. [PMID: 37764418 PMCID: PMC10535764 DOI: 10.3390/molecules28186638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, a series of porous hierarchical Mg/Al layered double hydroxides (named as LDH, TTAC-MgAl-LDH, CTAC-MgAl-LDH, and OTAC-MgAl-LDH) was synthesized by a simple green hydrothermal method using wormlike micelles formed by salicylic acid and surfactants with different carbon chain lengths (0, 14, 16, and 18) as soft templates. BET, XRD, FTIR, TG, and SEM characterizations were carried out in order to investigate the structure and properties of the prepared materials. The results showed that the porous hierarchical CTAC-MgAl-LDH had a large specific surface area and multiple pore size distributions which could effectively increase the reaction area and allow better absorption capability. Benefiting from the unique architecture, CTAC-MgAl-LDH exhibited a large adsorption capacity for sulfonated lignite (231.70 mg/g) at 25 °C and a pH of 7, which outperformed the traditional LDH (86.05 mg/g), TTAC-MgAl-LDH (108.15 mg/g), and OTAC-MgAl-LDH (110.51 mg/g). The adsorption process of sulfonated lignite followed the pseudo-second-order kinetics model and conformed the Freundlich isotherm model with spontaneous heat absorption, which revealed that electrostatic adsorption and ion exchange were the main mechanisms of action for the adsorption. In addition, CTAC-MgAl-LDH showed a satisfactory long-time stability and its adsorption capacities were still as high as 198.64 mg/g after two adsorption cycles.
Collapse
Affiliation(s)
- Bingbing Bai
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China; (B.B.); (R.Z.); (G.C.)
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University, Xi’an 710065, China
| | - Qingchen Wang
- Changqing Drilling Company of CCDC, Xi’an 710060, China; (Q.W.); (Y.S.)
| | - Yan Sun
- Changqing Drilling Company of CCDC, Xi’an 710060, China; (Q.W.); (Y.S.)
| | - Rui Zhou
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China; (B.B.); (R.Z.); (G.C.)
| | - Gang Chen
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China; (B.B.); (R.Z.); (G.C.)
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University, Xi’an 710065, China
| | - Ying Tang
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi’an Shiyou University, Xi’an 710065, China; (B.B.); (R.Z.); (G.C.)
- Shaanxi University Engineering Research Center of Oil and Gas Field Chemistry, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
12
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
13
|
Qian Z, Qin H, Yan W, Zhou G, Liu C, Zhang Z, Yin J, Li Q, Wang T, Zhang L. Enhancing charge transfer efficiency of cerium-iron oxides via Co regulated oxygen vacancies to boost peroxymonosulfate activation for tetracycline degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Chen W, Li X, Wei X, Liao G, Wang J, Li L. Activation of peroxymonosulfate for degrading ibuprofen via single atom Cu anchored by carbon skeleton and chlorine atom: The radical and non-radical pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160097. [PMID: 36368392 DOI: 10.1016/j.scitotenv.2022.160097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Single atomic Cu catalysts (SACs Cu@C) anchored by carbon skeleton and chlorine atom was synthesized by hydrolyzing Cu-MOFs and then pickled by aqua-regia to remove Cu nanoparticles (NPs Cu). Comparative characterizations revealed that SACs Cu@C was a hierarchically porous nanostructure and Cu dispersed uniformly throughout the carbon skeletons. With less active components, SACs Cu@C behaved better in activating PMS over NPs Cu@C on ibuprofen removal (91.3 % versus 30.2 % in 30 min). Two Cu coordination environments were found by EXAF and DFT calculation, including four-coordinated Cu with 4C atoms and six-coordinated Cu with 4Cu and 2Cl atoms. The obvious interfacial electron delivery between PMS and SACs Cu@C was found, which was enhanced by Cl atom. Cu(I)/Cu(II) redox cycle would donate electron to peroxy bond of PMS for generating OH, SO4- and O2-. But electron transferred in opposite direction when PMS bonded to Cu atom through its terminal oxygen atom in sulfate, which formed 1O2. IBP degradation proceeded through both radical and non-radical route. IBP degradation was inhibited with the presence of TBA, methanol and furfuryl alcohol but accelerated by p-BQ, which could accelerate OH generation. Two degradation pathways were deducted. This study provided a new insight into catalysts designed for PMS activation.
Collapse
Affiliation(s)
- Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Xipeng Wei
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Gaozu Liao
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
15
|
Xie F, Shi Q, Bai H, Liu M, Zhang J, Qi M, Zhang J, Li Z, Zhu W. An anode fabricated by Co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate (PMS) activation. CHEMOSPHERE 2023; 313:137384. [PMID: 36436580 DOI: 10.1016/j.chemosphere.2022.137384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A Co@ZIF-8/CNTs-CF anode for PMS activation was prepared by Co electrodeposition on carbon felt (CF) modified with ZIF-8 and carbon nanotubes (CNTs). The results showed that the fabricated Co@ZIF-8/CNTs-CF anode was an effective peroxymonosulfate (PMS) activator toward tetracycline (TC) removal. Compared with that in reaction system of bare CF anode + PMS, the reaction system of Co@ZIF-8/CNTs-CF anode + PMS exhibited 3.08 times decrease in the activation energy demanded and 4.21 times increase in the reaction rate constant (k), resulting in a kinetic favorable process of PMS activation by the Co@ZIF-8/CNTs-CF anode. The enhanced activation performance of the fabricated anode was ascribed to the high contents of the pyrrolic N and low valence state of Co in the Co@ZIF-8/CNTs-CF anode. Furthermore, the influence factors on the characteristics of transformation among the generated reactive species during the anodic PMS activation process were comprehensively investigated by the quenching experiments and the electron paramagnetic resonance (EPR) tests. The results showed that the SO4•- and reactive oxygen-containing reactive species (O2•- and 1O2) were generated during the activation of PMS by anode and became the major contributors toward TC removal. The production of 1O2 was through the dismutation of O2•-. In addition, the EPR experiments demonstrated that O2•- was generated mainly through the anodic PMS activation but the electrochemically driven molecular oxygen reduction reaction (ORR) process. The fabricated Co@ZIF-8/CNTs-CF anode for PMS activation provided a reference for the wastewater treatment based on the electrochemical advanced oxidation processes (EAOPs).
Collapse
Affiliation(s)
- Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- College of Literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meiyun Qi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
16
|
Zhang C, Liao X, Wang X, Li G. Fabrication of a Co 3O 4 monolithic membrane catalyst as an efficient PMS activator for the removal of methylene blue. NEW J CHEM 2023. [DOI: 10.1039/d2nj06358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
An oxalate-pyrolysis method was proposed for the fabrication of an integral Co3O4 catalyst towards PMS activation to degrade MB.
Collapse
|
17
|
Ren M, Hou J, Ma J, Zhang Y, Liu M, Tan X, Zhao P, Lin A, Cui J. Superior electron utilization of the intermetallic L10‑FePt-dispersed g-C3N4 for high-efficiency activating peroxymonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Biochar supported magnetic ZIF-67 derivatives activated peroxymonosulfate for the degradation of ciprofloxacin: Radical and nonradical pathways. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Xie F, Gao Y, Zhang J, Bai H, Zhang J, Li Z, Zhu W. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|