1
|
Oh NY, Lee SY, Lee J, Min HJ, Hosseini SS, Patel R, Kim JH. Material Aspects of Thin-Film Composite Membranes for CO 2/N 2 Separation: Metal-Organic Frameworks vs. Graphene Oxides vs. Ionic Liquids. Polymers (Basel) 2024; 16:2998. [PMID: 39518207 PMCID: PMC11548788 DOI: 10.3390/polym16212998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability-selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal-organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge. This review discusses recent advancements in TFC membranes for CO2/N2 separation, focusing on material structure, polymer-additive interaction, interface and separation properties. Specifically, we examine membranes operating under dry conditions to clearly assess the impact of additives on membrane properties and performance. Additionally, we provide a perspective on future research directions for designing high-performance membrane materials.
Collapse
Affiliation(s)
- Na Yeong Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - So Youn Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Jiwon Lee
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hyo Jun Min
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| | - Seyed Saeid Hosseini
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (N.Y.O.); (S.Y.L.)
| |
Collapse
|
2
|
Fan Y, Yu W, Wu A, Shu W, Zhang Y. Recent progress on CO 2 separation membranes. RSC Adv 2024; 14:20714-20734. [PMID: 38952936 PMCID: PMC11215753 DOI: 10.1039/d4ra00444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Presently, excessive carbon dioxide emissions represent a critical environmental challenge. Thus, urgent efforts are required to develop environmentally friendly and low-energy technologies for carbon dioxide treatment. In this case, membrane separation technology stands out as a promising avenue for CO2 separation, with selective membrane materials of high permeability playing a pivotal role in this process. Herein, we categorize CO2 separation membranes into three groups: inorganic membranes, organic membranes, and emerging membranes. Moreover, representative high-performance membranes are introduced and their synthesis methods, gas separation performances, and applications are examined. Furthermore, a brief analysis of the challenges encountered by carbon dioxide separation membrane materials is provided together with a discussion on the future research direction. It is expected that this review will provide some potential insights and guidance for the future development of CO2 separation membranes, which can promote their development.
Collapse
Affiliation(s)
- Yuheng Fan
- College of Chemistry & Environmental Engineering, Yangtze University Jingzhou Hubei 434023 P. R. China
| | - Weichu Yu
- College of Chemistry & Environmental Engineering, Yangtze University Jingzhou Hubei 434023 P. R. China
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields Jingzhou Hubei 434023 P. R. China
| | - Aibin Wu
- College of Chemistry & Environmental Engineering, Yangtze University Jingzhou Hubei 434023 P. R. China
| | - Wenming Shu
- College of Chemistry & Environmental Engineering, Yangtze University Jingzhou Hubei 434023 P. R. China
| | - Ying Zhang
- College of Chemistry & Environmental Engineering, Yangtze University Jingzhou Hubei 434023 P. R. China
| |
Collapse
|
3
|
Guerrero Piña JC, Alpízar D, Murillo P, Carpio-Chaves M, Pereira-Reyes R, Vega-Baudrit J, Villarreal C. Advances in mixed-matrix membranes for biorefining of biogas from anaerobic digestion. Front Chem 2024; 12:1393696. [PMID: 38887701 PMCID: PMC11180831 DOI: 10.3389/fchem.2024.1393696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
This article provides a comprehensive review of the state-of-the-art technology of polymeric mixed-matrix membranes for CO2/CH4 separation that can be applied in medium, small, and domestic biogas systems operating at low pressures (0.2-6 kPa). Critical data from the latest publications of CO2/CH4 separation membranes were analyzed, considering the ratio of CO2/CH4 permeabilities, the CO2 selectivity, the operating pressures at which the membranes were tested, the chemistry of the polymers studied and their gas separation mechanisms. And the different nanomaterials as fillers. The intrinsic microporous polymers (PIMs) were identified as potential candidates for biomethane purification due to their high permeability and selectivity, which are compatible with operation pressures below 1 bar, and as low as 0.2 bar. This scenario contrasts with other polymers that require pressures above 1 bar for operation, with some reaching 20 bar. Furthermore, the combination of PIM with GO in MMMs was found to not influence the permeability significantly, but to contribute to the membrane stability over time, by preventing the structural collapse of the membrane caused by aging. The systematic analysis here presented is a valuable resource for defining the future technological development of CO2/CH4 separation membranes for biogas biorefining.
Collapse
Affiliation(s)
- Jean Carlo Guerrero Piña
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Daniel Alpízar
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Paola Murillo
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Mónica Carpio-Chaves
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Reynaldo Pereira-Reyes
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| | - Claudia Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San José, Costa Rica
| |
Collapse
|
4
|
Yuan T, Sarkisov L. How 2D Nanoflakes Improve Transport in Mixed Matrix Membranes: Insights from a Simple Lattice Model and Dynamic Mean Field Theory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8184-8195. [PMID: 38308600 PMCID: PMC10875652 DOI: 10.1021/acsami.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Mixed matrix membranes (MMMs), incorporating graphene and graphene oxide structural fragments, have emerged as promising materials for challenging gas separation processes. What remains unclear is the actual molecular mechanism responsible for the enhanced permeability and perm-selectivity of these materials. With the fully atomistic models still unable to handle the required time and length scales, here, we employ a simple qualitative model based on the lattice representation of the physical system and dynamic mean field theory. We demonstrate that the performance enhancement results from the flux-regularization impact of the 2D nanoflakes and that this effect sensitively depends on the orientation of the nanoflakes and the properties of the interface between the nanoflakes and the polymer.
Collapse
Affiliation(s)
- Tianmu Yuan
- Department of Chemical Engineering,
Engineering Building A, The University of
Manchester, Manchester M13 9PL, U.K.
| | - Lev Sarkisov
- Department of Chemical Engineering,
Engineering Building A, The University of
Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Tian Z, Li D, Zheng W, Chang Q, Sang Y, Lai F, Wang J, Zhang Y, Liu T, Antonietti M. Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO 2 separation. MATERIALS HORIZONS 2023; 10:3660-3667. [PMID: 37350178 DOI: 10.1039/d3mh00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Membranes with ultrapermeability for CO2 are desired for future large-scale carbon capture projects, because of their excellent separative productivity and economic efficiency. Herein, we demonstrate that a membrane with ultrapermeability for CO2 can be constructed by combining N/O para-doped noble carbons, C2NxO1-x, with high-permeability polymer PIM-1. The optimal PIM-1/C2NxO1-x membranes exhibit superior CO2 permeability (22110 Barrer) with a CO2/N2 selectivity of 15.5, and an unprecedented CO2 permeability of 37272 Barrer can be obtained after a PEG activation treatment, far surpassing the 2008 upper bound. Both broad experiments and molecular dynamics simulations reveal that the numerous ordered polar channels of C2NxO1-x and their excellent compatibility with PIM-1 are responsible for the superior CO2 separation performance of the membrane. Although this is the first study on C2N-type gas separation membranes, the outstanding results indicate that noble carbon building blocks may pave a new avenue to advance high-performance CO2 separation membranes.
Collapse
Affiliation(s)
- Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Dongyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Weigang Zheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Qishuo Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yudong Sang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
6
|
Guo Q, Ghalei B, Qin D, Mizutani D, Joko I, Al-Aziz H, Higashino T, Ito MM, Imahori H, Sivaniah E. Graphene oxide-fullerene nanocomposite laminates for efficient hydrogen purification. Chem Commun (Camb) 2023; 59:10012-10015. [PMID: 37523152 DOI: 10.1039/d3cc02175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Graphene oxide (GO) with its unique two-dimensional structure offers an emerging platform for designing advanced gas separation membranes that allow for highly selective transport of hydrogen molecules. Nevertheless, further tuning of the interlayer spacing of GO laminates and its effect on membrane separation efficiency remains to be explored. Here, positively charged fullerene C60 derivatives are electrostatically bonded to the surface of GO sheets in order to manipulate the interlayer spacing between GO nanolaminates. The as-prepared GO-C60 membranes have a high H2 permeance of 3370 GPU (gas permeance units) and an H2/CO2 selectivity of 59. The gas separation selectivity is almost twice that of flat GO membranes because of the role of fullerene.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Behnam Ghalei
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Detao Qin
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Daizu Mizutani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ikumi Joko
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Habib Al-Aziz
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Masateru M Ito
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Kyoto, 606-8316, Japan
| | - Easan Sivaniah
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Xiao Y, Lei X, Liu Y, Zhang Y, Ma X, Zhang Q. Double-Decker-Shaped Phenyl-Substituted Silsesquioxane (DDSQ)-Based Nanocomposite Polyimide Membranes with Tunable Gas Permeability and Good Aging Resistance. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Gutiérrez-Hernández SV, Pardo F, Foster AB, Gorgojo P, Budd PM, Zarca G, Urtiaga A. Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Liu Q, Yang Z, Liu G, Sun L, Xu R, Zhong J. Functionalized GO Membranes for Efficient Separation of Acid Gases from Natural Gas: A Computational Mechanistic Understanding. MEMBRANES 2022; 12:1155. [PMID: 36422148 PMCID: PMC9693057 DOI: 10.3390/membranes12111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Membrane separation technology is applied in natural gas processing, while a high-performance membrane is highly in demand. This paper considers the bright future of functionalized graphene oxide (GO) membranes in acid gas removal from natural gas. By molecular simulations, the adsorption and diffusion behaviors of several unary gases (N2, CH4, CO2, H2S, and SO2) are explored in the 1,4-phenylenediamine-2-sulfonate (PDASA)-doped GO channels. Molecular insights show that the multilayer adsorption of acid gases evaluates well by the Redlich-Peterson model. A tiny amount of PDASA promotes the solubility coefficient of CO2 and H2S, respectively, up to 4.5 and 5.3 mmol·g-1·kPa-1, nearly 2.5 times higher than those of a pure GO membrane, which is due to the improved binding affinity, great isosteric heat, and hydrogen bonds, while N2 and CH4 only show single-layer adsorption with solubility coefficients lower than 0.002 mmol·g-1·kPa-1, and their weak adsorption is insusceptible to PDASA. Although acid gas diffusivity in GO channels is inhibited below 20 × 10-6 cm2·s-1 by PDASA, the solubility coefficient of acid gases is certainly high enough to ensure their separation efficiency. As a result, the permeabilities (P) of acid gases and their selectivities (α) over CH4 are simultaneously improved (PCO2 = 7265.5 Barrer, αCO2/CH4 = 95.7; P(H2S+CO2) = 42075.1 Barrer, αH2S/CH4 = 243.8), which outperforms most of the ever-reported membranes. This theoretical study gives a mechanistic understanding of acid gas separation and provides a unique design strategy to develop high-performance GO membranes toward efficient natural gas processing.
Collapse
Affiliation(s)
- Quan Liu
- Analytical and Testing Center, School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhonglian Yang
- Analytical and Testing Center, School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing 211816, China
| | - Longlong Sun
- Analytical and Testing Center, School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Rong Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| | - Jing Zhong
- Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Gehu Road, Changzhou 213164, China
| |
Collapse
|
11
|
Mohsenpour S, Guo Z, Almansour F, Holmes SM, Budd PM, Gorgojo P. Porous silica nanosheets in PIM-1 membranes for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Huang Y, Kong Q, Zhang X, Peng H. DMSA-incorporated silsesquioxane-based hybrid polymer for selective adsorption of Pb(II) from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Qiu B, Alberto M, Mohsenpour S, Foster AB, Ding S, Guo Z, Xu S, Holmes SM, Budd PM, Fan X, Gorgojo P. Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|