1
|
Caporale N, Castaldi D, Rigoli MT, Cheroni C, Valenti A, Stucchi S, Lessi M, Bulgheresi D, Trattaro S, Pezzali M, Vitriolo A, Lopez-Tobon A, Bonfanti M, Ricca D, Schmid KT, Heinig M, Theis FJ, Villa CE, Testa G. Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution. Nat Methods 2024:10.1038/s41592-024-02555-5. [PMID: 39653820 DOI: 10.1038/s41592-024-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marco Tullio Rigoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Alessia Valenti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Sarah Stucchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Manuel Lessi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | - Martina Pezzali
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | | | | | - Katharina T Schmid
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | | | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
2
|
Leblond CS, Rolland T, Barthome E, Mougin Z, Fleury M, Ecker C, Bonnot-Briey S, Cliquet F, Tabet AC, Maruani A, Chaumette B, Green J, Delorme R, Bourgeron T. A Genetic Bridge Between Medicine and Neurodiversity for Autism. Annu Rev Genet 2024; 58:487-512. [PMID: 39585908 DOI: 10.1146/annurev-genet-111523-102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.
Collapse
Affiliation(s)
- Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Eli Barthome
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Zakaria Mougin
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Mathis Fleury
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital of the Goethe University, Frankfurt am Main, Germany
| | | | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| | - Anne-Claude Tabet
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Genetics, Cytogenetics Unit, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Boris Chaumette
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Groupe Hospitalier Universitaire-Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France
| | - Jonathan Green
- Division of Psychology and Mental Health, University of Manchester and Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, CNRS UMR3571, Institut Universitaire de France, Université Paris Cité, Paris, France;
| |
Collapse
|
3
|
Rattay K, Robinson LR. Identifying Risk Factors for Attention-Deficit/Hyperactivity Disorder (ADHD): a Public Health Concern and Opportunity. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2024; 25:195-202. [PMID: 38598041 PMCID: PMC11315233 DOI: 10.1007/s11121-024-01667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders with significant individual and societal negative impacts of the disorder continuing into adulthood (Danielson et al. in Journal of Clinical Child and Adolescent Psychology, in press; Landes and London in Journal of Attention Disorders 25:3-13, 2021). Genetic and environmental risk (e.g., modifiable exposures such as prenatal tobacco exposure and child maltreatment) for ADHD is likely multifactorial (Faraone et al. in Neuroscience & Biobehavioral Reviews 128:789-818, 2021). However, the evidence for potentially modifiable contextual risks is spread across studies with different methodologies and ADHD criteria limiting understanding of the relationship between early risk factors and later childhood ADHD. Using common methodology across six meta-analyses (Bitsko et al. in Prevention Science, 2022; Claussen et al. in Prevention Science 1-23, 2022; Dimitrov et al. in Prevention Science, 2023; Maher et al. in Prevention Science, 2023; Robinson, Bitsko et al. in Prevention Science, 2022; So et al. in Prevention Science, 2022) examining 59 risk factors for childhood ADHD, the papers in this special issue use a public health approach to address prior gaps in the literature. This introductory paper provides examples of comprehensive public health approaches focusing on policy, systems, and environmental changes across socio-ecological contexts to improve health and wellbeing through prevention, early intervention, and support across development using findings from these meta-analyses. Together, the findings from these studies and a commentary by an author independent from the risk studies have the potential to minimize risk conditions, prioritize prevention efforts, and improve the long-term health and wellbeing of children and adults with ADHD.
Collapse
Affiliation(s)
- Karyl Rattay
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Lara R Robinson
- Division of Human Development and Disability, National Center on Birth Defects and Developmental Disabilities Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Kelly C, Martin R, Taylor R, Doherty M. Recognising and responding to physical and mental health issues in neurodivergent girls and women. Br J Hosp Med (Lond) 2024; 85:1-12. [PMID: 38708974 DOI: 10.12968/hmed.2023.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
People experience life and interact with others in many ways. The term 'neurodivergence' refers to variations from what is considered typical. Research and education into conditions that cooccur with neurodivergence are essential in shaping clinicians' approaches to people who may present with a wide range of symptoms. Neurodivergence may influence a person's style of communication, learning, attitudes, and behaviour, and they often experience inequity and rejection. This review highlights the huge burden of cooccurring conditions carried by neurodivergent women and girls whose medical issues have largely gone under the radar. We suggest how clinicians might increase their awareness of diagnosis and management of their problems with mutual benefit.
Collapse
Affiliation(s)
- Clive Kelly
- Department of Medicine, James Cook University Hospital, Middlesbrough, UK
| | - Ren Martin
- Autism Support Centre, Healios, Middlesbrough, UK
| | | | - Mary Doherty
- School of Medicine, University College Dublin, Ireland
| |
Collapse
|
5
|
Serpico D. A Wolf in Sheep's Clothing: Idealisations and the aims of polygenic scores. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 102:72-83. [PMID: 37907020 DOI: 10.1016/j.shpsa.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023]
Abstract
Research in pharmacogenomics and precision medicine has recently introduced the concept of Polygenic Scores (PGSs), namely, indexes that aggregate the effects that many genetic variants are predicted to have on individual disease risk. The popularity of PGSs is increasing rapidly, but surprisingly little attention has been paid to the idealisations they make about phenotypic development. Indeed, PGSs rely on quantitative genetics models and methods, which involve considerable theoretical assumptions that have been questioned on various grounds. This comes with epistemological and ethical concerns about the use of PGSs in clinical decision-making. In this paper, I investigate to what extent idealisations in genetics models can impact the data gathering and clinical interpretation of genomics findings, particularly the calculation and predictive accuracy of PGSs. Although idealisations are considered ineliminable components of scientific models, they may be legitimate or not depending on the epistemic aims of a model. I thus analyse how various idealisations have been introduced in classical models and progressively readapted throughout the history of genetic theorising. Notably, this process involved important changes in the epistemic purpose of such idealisations, which raises the question of whether they are legitimate in the context of contemporary genomics.
Collapse
Affiliation(s)
- Davide Serpico
- Department of Economics and Management, University of Trento, Via Vigilio Inama 5, 38122, Trento, Italy; Interdisciplinary Centre for Ethics & Institute of Philosophy, Jagiellonian University, Grodzka 52, 31-044 Kraków, Poland.
| |
Collapse
|
6
|
Yde Ohki CM, Walter NM, Bender A, Rickli M, Ruhstaller S, Walitza S, Grünblatt E. Growth rates of human induced pluripotent stem cells and neural stem cells from attention-deficit hyperactivity disorder patients: a preliminary study. J Neural Transm (Vienna) 2023; 130:243-252. [PMID: 36800023 PMCID: PMC10033475 DOI: 10.1007/s00702-023-02600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental polygenic disorder that affects more than 5% of children and adolescents around the world. Genetic and environmental factors play important roles in ADHD etiology, which leads to a wide range of clinical outcomes and biological phenotypes across the population. Brain maturation delays of a 4-year lag are commonly found in patients, when compared to controls of the same age. Possible differences in cellular growth rates might reflect the clinical observations in ADHD patients. However, the cellular mechanisms are still not elucidated. To test this hypothesis, we analysed the proliferation of induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) derived from male children and adolescents diagnosed with ADHD and with genetic predisposition to it (assessed using polygenic risk scores), as well as their respective matched controls. In the current pilot study, it was noticeable that NSCs from the ADHD group proliferate less than controls, while no differences were seen at the iPSC developmental stage. Our results from two distinct proliferation methods indicate that the functional and structural delays found in patients might be associated with these in vitro phenotypic differences, but start at a distinct neurodevelopmental stage. These findings are the first ones in the field of disease modelling of ADHD and might be crucial to better understand the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Biomedicine PhD Program, University of Zurich, Zurich, Switzerland
| | - Natalie Monet Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Audrey Bender
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michelle Rickli
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sina Ruhstaller
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| |
Collapse
|
7
|
Serpico D, Lynch KE, Porter TM. New historical and philosophical perspectives on quantitative genetics. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2023; 97:29-33. [PMID: 36516522 DOI: 10.1016/j.shpsa.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aim of this virtual special issue is to bring together philosophical and historical perspectives to address long-standing issues in the interpretation, utility, and impacts of quantitative genetics methods and findings. Methodological approaches and the underlying scientific understanding of genetics and heredity have transformed since the field's inception. These advances have brought with them new philosophical issues regarding the interpretation and understanding of quantitative genetic results. The contributions in this issue demonstrate that there is still work to be done integrating old and new methodological and conceptual frameworks. In some cases, new results are interpreted using assumptions based on old concepts and methodologies that need to be explicitly recognised and updated. In other cases, new philosophical tools can be employed to synthesise historical quantitative genetics work with modern methodologies and findings. This introductory article surveys three general themes that have dominated philosophical discussion of quantitative genetics throughout history: (1) how methodologies have changed and transformed our knowledge and interpretations; (2) whether or not quantitative genetics can offer explanations relating to causation and prediction; and (3) the importance of defining the phenotypes under study. We situate the contributions in this virtual special issue within a historical framework addressing these three themes.
Collapse
Affiliation(s)
- Davide Serpico
- Interdisciplinary Centre for Ethics & Institute of Philosophy, Jagiellonian University, Poland.
| | - Kate E Lynch
- Charles Perkins Centre & Department of Philosophy, University of Sydney, Australia
| | | |
Collapse
|
8
|
Doyle N, Bradley E. Disability coaching in a pandemic. JOURNAL OF WORK-APPLIED MANAGEMENT 2022. [DOI: 10.1108/jwam-07-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeAn applied study using convenience data was conducted to compare the experiences of neurodivergent adults undergoing workplace coaching before and during the pandemic.Design/methodology/approachThe naturally occurring opportunity permitted a comparison of face-to-face and remote coaching in three cohorts, pre-pandemic (100% face-to-face), forced-remote (100% remote) and choice (remote or face-to-face; 85% selected remote). A total of 409 participants self-reported performance before and 12 weeks after completing an average of 11 h coaching.FindingsSignificant differences between before and after scores for performance, with large effect sizes, were reported for all three cohorts across six dependent variables: memory, time management, organisational skills, stress management, understanding neurodiversity and concentration. There was no significant difference between the cohorts in terms of the magnitude of the effect. There were significant differences between the cohorts in terms of which topics were chosen as foci for the coaching, with executive functions related topics becoming less popular in the choice cohort.Research limitations/implicationsThe authors abductively reasoned the results to suggest a positive relationship between personalised environments and cognitive demands for this client group. They call for further, theoretically grounded research exploring the role of coaching and environment in understanding the work performance of neurodivergent adults at work.Originality/valueThe study contributes to the emerging knowledge on the different experiences of in-person and video-mediated coaching. The focus on neurodivergent employees, which are heretofore less well researched within the workplace, provides essential data to support practitioners in maximising opportunity for a marginalised group.
Collapse
|
9
|
Spee BTM, Sladky R, Fingerhut J, Laciny A, Kraus C, Carls-Diamante S, Brücke C, Pelowski M, Treven M. Repeating patterns: Predictive processing suggests an aesthetic learning role of the basal ganglia in repetitive stereotyped behaviors. Front Psychol 2022; 13:930293. [PMID: 36160532 PMCID: PMC9497189 DOI: 10.3389/fpsyg.2022.930293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent, unvarying, and seemingly purposeless patterns of action and cognition are part of normal development, but also feature prominently in several neuropsychiatric conditions. Repetitive stereotyped behaviors (RSBs) can be viewed as exaggerated forms of learned habits and frequently correlate with alterations in motor, limbic, and associative basal ganglia circuits. However, it is still unclear how altered basal ganglia feedback signals actually relate to the phenomenological variability of RSBs. Why do behaviorally overlapping phenomena sometimes require different treatment approaches-for example, sensory shielding strategies versus exposure therapy for autism and obsessive-compulsive disorder, respectively? Certain clues may be found in recent models of basal ganglia function that extend well beyond action selection and motivational control, and have implications for sensorimotor integration, prediction, learning under uncertainty, as well as aesthetic learning. In this paper, we systematically compare three exemplary conditions with basal ganglia involvement, obsessive-compulsive disorder, Parkinson's disease, and autism spectrum conditions, to gain a new understanding of RSBs. We integrate clinical observations and neuroanatomical and neurophysiological alterations with accounts employing the predictive processing framework. Based on this review, we suggest that basal ganglia feedback plays a central role in preconditioning cortical networks to anticipate self-generated, movement-related perception. In this way, basal ganglia feedback appears ideally situated to adjust the salience of sensory signals through precision weighting of (external) new sensory information, relative to the precision of (internal) predictions based on prior generated models. Accordingly, behavioral policies may preferentially rely on new data versus existing knowledge, in a spectrum spanning between novelty and stability. RSBs may then represent compensatory or reactive responses, respectively, at the opposite ends of this spectrum. This view places an important role of aesthetic learning on basal ganglia feedback, may account for observed changes in creativity and aesthetic experience in basal ganglia disorders, is empirically testable, and may inform creative art therapies in conditions characterized by stereotyped behaviors.
Collapse
Affiliation(s)
- Blanca T. M. Spee
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Joerg Fingerhut
- Berlin School of Mind and Brain, Department of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Philosophy, Philosophy of Science and Religious Studies, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alice Laciny
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | | | - Christof Brücke
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Matthew Pelowski
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Marco Treven
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Koi P. Demarcation, instantiation, and individual traits: Realist social ontology for mental disorders. PHILOSOPHICAL PSYCHOLOGY 2021. [DOI: 10.1080/09515089.2021.2016674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Polaris Koi
- Philosophy, University of Turku, Turku, Finland
| |
Collapse
|