1
|
Zhao R, Teng X, Yang Y. Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2024; 61:533-540. [PMID: 37642934 DOI: 10.1007/s12035-023-03594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiufei Teng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanchao Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
2
|
Valerio E, Stocchero M, Pirillo P, D'Errico I, Bonadies L, Galderisi A, Giordano G, Baraldi E. Neurosteroid pathway derangement in asphyctic infants treated with hypothermia: an untargeted metabolomic approach. EBioMedicine 2023; 92:104636. [PMID: 37257315 PMCID: PMC10244906 DOI: 10.1016/j.ebiom.2023.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The pathobiological mechanisms associated with perinatal asphyxia and hypoxic-ischemic encephalopathy are complex and poorly understood. The metabolic effects of therapeutic hypothermia have been partially explored. METHODS We conducted a single-center longitudinal study to investigate the metabolic effects of perinatal asphyxia and hypoxic-ischemic encephalopathy on the urinary metabolome of a group of 12 asphyctic infants over time compared to 22 matched healthy newborns, using untargeted metabolomics based on mass spectrometry. FINDINGS Over-representation pathway analysis identified the steroidogenesis pathway as being significantly disrupted, with reduced steroid levels in the first three days of life despite treatment with hypothermia. Comparison with matched healthy newborns showed that the urinary steroid content was lower in asphyctic infants before hypothermia. The lysine degradation and carnitine synthesis pathways were also significantly affected. INTERPRETATION Steroidogenesis is significantly disrupted in asphyctic infants compared to healthy newborns. Given how neurosteroids are involved in neuromodulation and neuroprotection, translational research is warranted on the potential role of neurosteroid-based intervention in asphyctic infants. FUNDING None.
Collapse
Affiliation(s)
- Enrico Valerio
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Matteo Stocchero
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Paola Pirillo
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Ignazio D'Errico
- Department of Neuroradiology, Azienda Ospedale-Università di Padova, Italy
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Alfonso Galderisi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Giuseppe Giordano
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Azienda Ospedale-Università di Padova, Italy; Institute of Pediatric Research "Città Della Speranza", Padova, Italy.
| |
Collapse
|
3
|
Guan Y, Zhou H, Luo B, Hussain S, Xiong L. Research progress of neonatal hypoxic-ischemic encephalopathy in nonhuman primate models. IBRAIN 2023; 9:183-194. [PMID: 37786551 PMCID: PMC10528769 DOI: 10.1002/ibra.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the important complications of neonatal asphyxia, which not only leads to neurological disability but also seriously threatens the life of neonates. Over the years, animal models of HIE have been a research hotspot to find ways to cope with HIE and thereby reduce the risk of neonatal death or disability in moderate-to-severe HIE. By reviewing the literature related to HIE over the years, it was found that nonhuman primates share a high degree of homology with human gross neural anatomy. The basic data on nonhuman primates are not yet complete, so it is urgent to mine and develop new nonhuman primate model data. In recent years, the research on nonhuman primate HIE models has been gradually enriched and the content is more novel. Therefore, the purpose of this review is to further summarize the methods for establishing the nonhuman primate HIE model and to better elucidate the relevance of the nonhuman primate model to humans by observing the behavioral manifestations, neuropathology, and a series of biomarkers of HIE in primates HIE. Finally, the most popular and desirable treatments studied in nonhuman primate models in the past 5 years are summarized.
Collapse
Affiliation(s)
- Yi‐Huan Guan
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Hong‐Su Zhou
- Department of Experimental AnimalsKunming Medical UniversityKunmingChina
| | - Bo‐Yan Luo
- School of PharmacyZunyi Medical UniversityZunyiChina
| | - Sajid Hussain
- NUTECH School of Applied Sciences and HumanitiesNational University of TechnologyIslamabadPakistan
| | - Liu‐Lin Xiong
- School of Pharmacy and Medical Sciences, Faculty of Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Longitudinal perturbations of plasma nuclear magnetic resonance profiles in neonatal encephalopathy. Pediatr Res 2023:10.1038/s41390-023-02464-x. [PMID: 36639516 DOI: 10.1038/s41390-023-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a major cause of mortality and severe neurological disability in the neonatal period and beyond. We hypothesized that the degree of brain injury is reflected in the molecular composition of peripheral blood samples. METHODS A sub-cohort of 28 newborns included in the HYPOTOP trial was studied. Brain injury was assessed by magnetic resonance imaging (MRI) once per patient and neurodevelopment at 24 months of age was evaluated using the Bayley III Scales of Infant and Toddler Development. The nuclear magnetic resonance (NMR) profile of 60 plasma samples collected before, during, and after cooling was recorded. RESULTS In total, 249 molecular features were quantitated in plasma samples from newborns and postnatal age showed to affect detected NMR profiles. Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. The prediction performance of lactate was superior as compared to other clinical and biochemical parameters. CONCLUSIONS This is the first longitudinal study of an ample compound panel recorded by NMR spectroscopy in plasma from NE infants. The serial determination of lactate confirms its solid position as reliable candidate biomarker for predicting the severity of brain injury. IMPACT The use of nuclear magnetic resonance (NMR) spectroscopy enables the simultaneous quantitation of 249 compounds in a small volume (i.e., 100 μL) of plasma. Longitudinal perturbations of plasma NMR profiles were linked to magnetic resonance imaging (MRI) outcomes of infants with neonatal encephalopathy (NE). Lactate, beta-hydroxybutyrate, pyruvate, and three triglyceride biomarkers showed the ability to discern between different degrees of brain injury according to MRI scores. Lactate is a minimally invasive candidate biomarker for early staging of MRI brain injury in NE infants that might be readily implemented in clinical guidelines for NE outcome prediction.
Collapse
|
5
|
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, Madduri S. Diagnostic and Therapeutic Roles of the "Omics" in Hypoxic-Ischemic Encephalopathy in Neonates. Bioengineering (Basel) 2022; 9:498. [PMID: 36290466 PMCID: PMC9598631 DOI: 10.3390/bioengineering9100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Perinatal asphyxia and neonatal encephalopathy remain major causes of neonatal mortality, despite the improved availability of diagnostic and therapeutic tools, contributing to neurological and intellectual disabilities worldwide. An approach using a combination of clinical data, neuroimaging, and biochemical parameters is the current strategy towards the improved diagnosis and prognosis of the outcome in neonatal hypoxic-ischemic encephalopathy (HIE) using bioengineering methods. Traditional biomarkers are of little use in this multifactorial and variable phenotype-presenting clinical condition. Novel systems of biology-based "omics" approaches (genomics, transcriptome proteomics, and metabolomics) may help to identify biomarkers associated with brain and other tissue injuries, predicting the disease severity in HIE. Biomarker studies using omics technologies will likely be a key feature of future neuroprotective treatment methods and will help to assess the successful treatment and long-term efficacy of the intervention. This article reviews the roles of different omics as biomarkers of HIE and outlines the existing knowledge of our current understanding of the clinical use of different omics molecules as novel neonatal brain injury biomarkers, which may lead to improved interventions related to the diagnostic and therapeutic aspects of HIE.
Collapse
Affiliation(s)
- Girish Kumar Rasineni
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | | | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502284, India
| | - Madhurarekha Chinnaboina
- LCMS Division, Tenet Medcorp Pvt. Ltd., 54 Kineta Towers Road No 3, Banjara Hills, Hyderabad 500034, India
| | - Ramesh Konanki
- Department of Pediatric Neurology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Dinesh Kumar Chirla
- Department of Neonatology, Rainbow Children’s Hospital, Hyderabad 500034, India
| | - Srinivas Madduri
- Bioengineering and Regenerative Medicine, Department of Biomedical Engineering, University of Basel, University Hospital Basel, 4001 Basel, Switzerland
- Department of Surgery, Bioengineering and Neuroregeneration, University of Geneva, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Neonatal encephalopathy plasma metabolites are associated with neurodevelopmental outcomes. Pediatr Res 2022; 92:466-473. [PMID: 34621028 PMCID: PMC8986879 DOI: 10.1038/s41390-021-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate mechanisms of injury and recovery in neonatal encephalopathy (NE), we performed targeted metabolomic analysis of plasma using liquid chromatography with tandem mass spectrometry (LC/MS/MS) from healthy term neonates or neonates with NE. METHODS Plasma samples from the NE (n = 45, day of life 0-1) or healthy neonatal (n = 30, ≥36 weeks gestation) cohorts had LC/MS/MS metabolomic profiling with a 193-plex targeted metabolite assay covering >366 metabolic pathways. Metabolite levels were compared to 2-year neurodevelopmental outcomes measured by the Bayley Scales of Infant and Toddler Development III (Bayley-III). RESULTS Out of 193 metabolites, 57 met the pre-defined quality control criteria for analysis. Significant (after false discovery rate correction) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways included aminoacyl-tRNA biosynthesis, arginine biosynthesis, and metabolism of multiple amino acids. Significant disease pathways included seizures. In regression models, histidine and C6 sugar amine were significantly associated with cognitive, motor, and language and betaine with cognitive and motor Bayley-III composite scores. The addition of histidine, C6 sugar amine, and betaine to a Sarnat score-based clinical regression model significantly improved model performance (Akaike information criterion and adjusted r2) for Bayley-III cognitive, motor, and language scores. CONCLUSIONS Plasma metabolites may help to predict neurological outcomes in neonatal brain injury and enhance current clinical predictors. IMPACT Plasma metabolites may help to predict neurological outcomes in NE and supplement current clinical predictors. Current metabolomics research is limited in terms of clinical application and association with long-term outcomes. Our study presents novel associations of plasma metabolites from the first 24 h of life and 2-year neurodevelopmental outcomes for infants with NE. Our metabolomics discovery provides insight into possible disease mechanisms and methods to rescue and/or supplement metabolic pathways involved in NE. Our metabolomics discovery of metabolic pathway supplementations and/or rescue mechanisms may serve as adjunctive therapies for NE.
Collapse
|
7
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
9
|
Menéndez-Valladares P, Sola-Idígora N, Fuerte-Hortigón A, Alonso-Pérez I, Duque-Sánchez C, Domínguez-Mayoral AM, Ybot-González P, Montaner J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev Proteomics 2020; 17:469-481. [PMID: 32877618 DOI: 10.1080/14789450.2020.1807335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Perinatal and pediatric diseases related to neurovascular disorders cause significant problems during life, affecting a population with a long life expectancy. Early diagnosis and assessment of the severity of these diseases are crucial to establish an appropriate neuroprotective treatment. Currently, physical examination, neuroimaging and clinical judgment are the main tools for diagnosis, although these tests have certain limitations. There is growing interest in the potential value of noninvasive biomarkers that can be used to monitor child patients at risk of brain damage, allowing accurate, and reproducible measurements. AREAS COVERED This review describes potential biomarkers for the diagnosis of perinatal neurovascular diseases and discusses the possibilities they open for the classification and treatment of neonatal neurovascular diseases. EXPERT OPINION Although high rates of ischemic and hemorrhagic stroke exist in pediatric populations, most studies have focused on biomarkers of hypoxic-ischemic encephalopathy. Inflammatory and neuronal biomarkers such as S-100B and GFAP, in combination with others yet to be discovered, could be considered as part of multiplex panels to diagnose these diseases and potentially for monitoring response to treatments. Ideally, noninvasive biofluids would be the best source for evaluating these biomarkers in proteomic assays in perinatal patients.
Collapse
Affiliation(s)
| | - Noelia Sola-Idígora
- Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | | | - Irene Alonso-Pérez
- Neuropediatric Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain
| | | | | | - Patricia Ybot-González
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,Neurodevelopment Group, Hospital Universitario Virgen Del Rocio/IBIS/CSIC/US , Sevilla, Spain
| | - Joan Montaner
- Neurology Unit, Hospital Universitario Virgen De Macarena , Sevilla, Spain.,The Neurovascular Research Lab, IBIS/HUVR/CSIC/US , Sevilla, Spain
| |
Collapse
|
10
|
Metabolic Phenotypes of Hypoxic-Ischemic Encephalopathy with Normal vs. Pathologic Magnetic Resonance Imaging Outcomes. Metabolites 2020; 10:metabo10030109. [PMID: 32183365 PMCID: PMC7143850 DOI: 10.3390/metabo10030109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Hypoxic-Ischemic Encephalopathy (HIE) is one of the most relevant contributors to neurological disability in term infants. We hypothesized that clinical outcomes of newborns with (HIE) can be associated with changes at plasma metabolic level enabling the detection of brain injury. Plasma samples of a cohort of 55 asphyxiated infants who evolved to moderate/severe HIE were collected between birth and completion of therapeutic hypothermia (TH). Samples were analyzed employing a quantitative gas chromatography–mass spectrometry method for the determination of lactate and pyruvate and an untargeted liquid chromatography–time-of-flight mass spectrometry method for metabolic fingerprinting. Brain injury was assessed employing magnetic resonance imaging (MRI). A critical assessment of the usefulness of lactate, pyruvate, and pyruvate/lactate for outcome prediction was carried out. Besides, metabolic fingerprinting identified a dynamic perturbation of eleven metabolic pathways, including amino acid and purine metabolism, and the steroid hormone biosynthesis, in newborns with pathologic MRI outcomes. Although data suggest the usefulness of lactate and pyruvate monitoring during 72 h for discerning outcomes, only the steroid hormone biosynthesis pathway was significantly altered in early plasma samples (i.e., before the initiation of TH). This study highlights pathways that might potentially be targeted for biomarker discovery or adjuvant therapies to be combined with TH.
Collapse
|