1
|
Xu W, Liu Q, Wang B, Zhang N, Qiu R, Yuan Y, Yang M, Wang F, Mei L, Cui G. Arbuscular mycorrhizal fungi communities and promoting the growth of alfalfa in saline ecosystems of northern China. FRONTIERS IN PLANT SCIENCE 2024; 15:1438771. [PMID: 39268000 PMCID: PMC11390447 DOI: 10.3389/fpls.2024.1438771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are universally distributed in soils, including saline soils, and can form mycorrhizal symbiosis with the vast majority of higher plants. This symbiosis can reduce soil salinity and influence plant growth and development by improving nutrient uptake, increasing plant antioxidant enzyme activity, and regulating hormone levels. In this study, rhizosphere soil from eight plants in the Songnen saline-alkaline grassland was used to isolate, characterize, and screen the indigenous advantageous AMF. The promoting effect of AMF on alfalfa (Medicago sativa L.) under salt treatment was also investigated. The findings showed that 40 species of AMF in six genera were identified by high-throughput sequencing. Glomus mosseae (G.m) and Glomus etunicatum (G.e) are the dominant species in saline ecosystems of northern China. Alfalfa inoculated with Glomus mosseae and Glomus etunicatum under different salt concentrations could be infested and form a symbiotic system. The mycorrhizal colonization rate and mycorrhizal dependence of G.m inoculation were significantly higher than those of G.e inoculation. With increasing salt concentration, inoculation increased alfalfa plant height, fresh weight, chlorophyll content, proline (Pro), soluble sugar (SS), soluble protein (SP), peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activity while decreasing the malondialdehyde (MDA) content and superoxide anion production rate. The results highlight that inoculation with G.m and G.e effectively alleviated salinity stress, with G.m inoculation having a significant influence on salt resistance in alfalfa. AMF might play a key role in alfalfa growth and survival under harsh salt conditions.
Collapse
Affiliation(s)
- Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Na Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fengdan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Linlin Mei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, Abouraicha EF, Oufdou K, Meddich A, Baslam M. Signals and Machinery for Mycorrhizae and Cereal and Oilseed Interactions towards Improved Tolerance to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:826. [PMID: 38592805 PMCID: PMC10975020 DOI: 10.3390/plants13060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
In the quest for sustainable agricultural practices, there arises an urgent need for alternative solutions to mineral fertilizers and pesticides, aiming to diminish the environmental footprint of farming. Arbuscular mycorrhizal fungi (AMF) emerge as a promising avenue, bestowing plants with heightened nutrient absorption capabilities while alleviating plant stress. Cereal and oilseed crops benefit from this association in a number of ways, including improved growth fitness, nutrient uptake, and tolerance to environmental stresses. Understanding the molecular mechanisms shaping the impact of AMF on these crops offers encouraging prospects for a more efficient use of these beneficial microorganisms to mitigate climate change-related stressors on plant functioning and productivity. An increased number of studies highlighted the boosting effect of AMF on grain and oil crops' tolerance to (a)biotic stresses while limited ones investigated the molecular aspects orchestrating the different involved mechanisms. This review gives an extensive overview of the different strategies initiated by mycorrhizal cereal and oilseed plants to manage the deleterious effects of environmental stress. We also discuss the molecular drivers and mechanistic concepts to unveil the molecular machinery triggered by AMF to alleviate the tolerance of these crops to stressors.
Collapse
Affiliation(s)
- Aiman Slimani
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Biochemistry, Environment & Agri-Food URAC 36, Department of Biology, Faculty of Science and Techniques—Mohammedia, Hassan II University, Mohammedia 28800, Morocco
| | - Raja Ben-Laouane
- Laboratory of Environment and Health, Department of Biology, Faculty of Science and Techniques, Errachidia 52000, Morocco
| | - Abderrahim Boutasknit
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Multidisciplinary Faculty of Nador, Mohammed First University, Nador 62700, Morocco
| | - Mohamed Anli
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Department of Life, Earth and Environmental Sciences, University of Comoros, Patsy University Center, Moroni 269, Comoros
| | - El Faiza Abouraicha
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Higher Institute of Nursing and Health Techniques (ISPITS), Essaouira 44000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco
| | - Abdelilah Meddich
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Marouane Baslam
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- GrowSmart, Seoul 03129, Republic of Korea
| |
Collapse
|
3
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
5
|
Han S, Cheng Y, Wu G, He X, Zhao G. Enhancing Salt Tolerance in Poplar Seedlings through Arbuscular Mycorrhizal Fungi Symbiosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:233. [PMID: 38256786 PMCID: PMC10820157 DOI: 10.3390/plants13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Poplar (Populus spp.) is a valuable tree species with multiple applications in afforestation. However, its growth in saline areas, including coastal regions, is limited. This study aimed to investigate the physiological mechanisms of arbuscular mycorrhizal fungi (AMF) symbiosis with 84K (P. alba × P. tremula var. glandulosa) poplar under salt stress. We conducted pot experiments using NaCl solutions of 0 mM (control), 100 mM (moderate stress), and 200 mM (severe stress) and evaluated the colonization of AMF and various physiological parameters of plants, including photosynthesis, biomass, antioxidant enzyme activity, nutrients, and ion concentration. Partial least squares path modeling (PLS-PM) was employed to elucidate how AMF can improve salt tolerance in poplar. The results demonstrated that AMF successfully colonized the roots of plants under salt stress, effectively alleviated water loss by increasing the transpiration rate, and significantly enhanced the biomass of poplar seedlings. Mycorrhiza reduced proline and malondialdehyde accumulation while enhancing the activity of antioxidant enzymes, thus improving plasma membrane stability. Additionally, AMF mitigated Na+ accumulation in plants, contributing to the maintenance of a favorable ion balance. These findings highlight the effectiveness of using suitable AMF to improve conditions for economically significant tree species in salt-affected areas, thereby promoting their utilization.
Collapse
Affiliation(s)
- Shuo Han
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Y.C.); (G.W.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Yao Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Y.C.); (G.W.)
| | - Guanqi Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Y.C.); (G.W.)
| | - Xiangwei He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Y.C.); (G.W.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Guozhu Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Y.C.); (G.W.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Chebotar VK, Zaplatkin AN, Chizhevskaya EP, Gancheva MS, Voshol GP, Malfanova NV, Baganova ME, Khomyakov YV, Pishchik VN. Phytohormone Production by the Endophyte Bacillus safensis TS3 Increases Plant Yield and Alleviates Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:75. [PMID: 38202382 PMCID: PMC10780329 DOI: 10.3390/plants13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Endophytic bacteria can be used to overcome the effect of salinity stress and promote plant growth and nutrient uptake. Bacillus safensis colonizes a wide range of habitats due to survival in extreme environments and unique physiological characteristics, such as a high tolerance for salt, heavy metals, and ultraviolet and gamma radiations. The aim of our study was to examine the salt resistance of the endophytic strain TS3 B. safensis and its ability to produce phytohormones and verify its effect on plant yield in field trials and the alleviation of salt stress in pot experiments. We demonstrate that the strain TS3 is capable of producing enzymes and phytohormones such as IAA, ABA and tZ. In pot experiments with radish and oat plants in salinization, the strain TS3 contributed to the partial removal of the negative effect of salinization. The compensatory effect of the strain TS3 on radish plants during salinization was 46.7%, and for oats, it was 108%. We suppose that such a pronounced effect on the plants grown and the salt stress is connected with its ability to produce phytohormones. Genome analysis of the strain TS3 showed the presence of the necessary genes for the synthesis of compounds responsible for the alleviation of the salt stress. Strain B. safensis TS3 can be considered a promising candidate for developing biofertilizer to alleviate salt stress and increase plant yield.
Collapse
Affiliation(s)
- Vladimir K. Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
| | - Alexander N. Zaplatkin
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
| | - Elena P. Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
| | - Maria S. Gancheva
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Gerben P. Voshol
- Institute of Biology Leiden, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (G.P.V.); (N.V.M.)
| | - Natalia V. Malfanova
- Institute of Biology Leiden, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (G.P.V.); (N.V.M.)
| | - Maria E. Baganova
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
| | - Yuriy V. Khomyakov
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia;
| | - Veronika N. Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbel’skogo Shosse 3, Pushkin, 196608 St. Petersburg, Russia; pisemnet-@mail.ru (A.N.Z.); (E.P.C.); (M.S.G.); (M.E.B.); (V.N.P.)
| |
Collapse
|
7
|
Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA. Arbuscular Mycorrhizal Symbiosis: A Strategy for Mitigating the Impacts of Climate Change on Tropical Legume Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:2875. [PMID: 36365329 PMCID: PMC9657156 DOI: 10.3390/plants11212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
Collapse
Affiliation(s)
- Wan Teng Loo
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Acga Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Farghaly FA, Nafady NA, Abdel-Wahab DA. The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress. BMC PLANT BIOLOGY 2022; 22:490. [PMID: 36253754 PMCID: PMC9575269 DOI: 10.1186/s12870-022-03790-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Evaluation of native soil microbes is a realistic way to develop bio-agents for ecological restoration. Soil alkalinity, which has a high pH, is one of the most common concerns in dry and semi-arid climates. Alkaline soils face problems due to poor physical properties, which affect plant growth and crop production. A pot experiment was carried out to investigate the impact of native mycorrhizal fungi (AMF) on the wheat plant (Triticum aestivum L.) under two levels of alkalinity stress -T1 (37 mM NaHCO3), T2 (74 mM NaHCO3) - at two developmental stages (the vegetative and productive stages). RESULTS Alkalinity stress significantly inhibited the germination percentage, plant biomass, photosynthetic pigments, and some nutrients (K, N, and P). Mycorrhizal inoculation improved growth parameters and productivity of wheat-stressed plants. However, lipid peroxidation was significantly lowered in mycorrhizal-inoculated plants compared to non-inoculated plants. Catalase and peroxidase were inhibited in wheat leaves and roots by alkalinity, while mycorrhiza promoted the activity of these enzymes. CONCLUSION The results of this study demonstrated that alkalinity stress had highly negative effects on some growth parameters of the wheat plant, while AMF inoculation attenuated these detrimental effects of alkalinity stress at two stages by reducing the pH and Na concentration and increasing the availability of P and the productivity of wheat in particular crop yield parameters.
Collapse
Affiliation(s)
- Fatma Aly Farghaly
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Nivien Allam Nafady
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Dalia Ahmed Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, New Valley University, El Kharja, Egypt.
| |
Collapse
|
9
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
10
|
Abbaspour H, Pour FSN, Abdel-Wahhab MA. Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1765-1778. [PMID: 34539115 PMCID: PMC8405761 DOI: 10.1007/s12298-021-01043-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/24/2021] [Accepted: 07/29/2021] [Indexed: 05/03/2023]
Abstract
Mycorrhizal symbiosis is generally considered effective in ameliorating plant tolerance to abiotic stress by altering gene expression, and evaluation of genes involved in ion homeostasis and nutrient uptake. This study aimed to use arbuscular mycorrhizal fungus (AMF) to alleviate salinity stress and analyse relevant gene expression in pistachio plants under No/NaCl stress in greenhouse conditions. Arbuscular mycorrhizal symbiosis was used to study the physiological responses, ion distribution and relevant gene expression in pistachio plants under salinity stress. After four months of symbiosis, mycorrhizal root colonization showed a significant reduction in all tested parameters under salt stress treatment compared to non-saline treatment. Salinity affected the morphological traits, and decreased the nutrient content including N, P, Mg and Fe as well as K/Na and Ca/Na ratios, relative water content (RWC), membrane stability index (MSI), and increased the concentration of K, Ca and Na nutrient, glycine betaine, ROS and MDA. Inoculation of seedlings with AMF mitigated the negative effects of salinity on plant growth as indicated by increasing the root colonization, morphological traits, glycine betaine, RWC and MSI. Specifically, under salinity stress, shoot and root dry weight, P and Fe nutrient content, K/Na and Ca/Na ratio of AMF plants were increased by 53.2, 48.6, 71.6, 60.2, 87.5, and 80.1% respectively, in contrast to those of the NMF plants. The contents of Na, O2•- and MDA in AMF plants were significantly decreased by 66.8, 36.8, and 23.1%, respectively at 250 mM NaCl. Moreover, salinity markedly increased SOS1, CCX2 and SKOR genes expression and the inoculation with AMF modulated these genes expression; however, NRT2.4, PHO1 and PIP2.4 gene expressions were increased by salinity and AMF. It could be concluded that inoculation of AMF with Rhizophagus irregularis conferred a larger endurance towards soil salinity in pistachio plants and stimulate the nutrient uptake and ionic homeostasis maintenance, superior RWC and osmoprotection, toxic ion partitioning, maintaining membrane integrity and the ion-relevant genes expression.
Collapse
Affiliation(s)
- Hossein Abbaspour
- Biology Department, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh S. N. Pour
- Biology Department, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|
11
|
Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021; 9:microorganisms9071491. [PMID: 34361927 PMCID: PMC8307984 DOI: 10.3390/microorganisms9071491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Collapse
|
12
|
Abulfaraj AA, Jalal RS. Use of plant growth-promoting bacteria to enhance salinity stress in soybean ( Glycine max L.) plants. Saudi J Biol Sci 2021; 28:3823-3834. [PMID: 34220237 PMCID: PMC8241701 DOI: 10.1016/j.sjbs.2021.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 12/04/2022] Open
Abstract
The effects of three rhizobacterial isolates namely Pseudomonas fluorescens (M1), Pseudomonas putida (M2) and Bacillus subtilis (M3) were examined to enhance growth and chemical components such as chlorophyll and proline of three cultivars of soybean (Glycine max L.) under two levels of salinity stress (S1 = 200 mM and S2 = 400 mM of NaCl salt). Several morphological and physiological parameters were investigated. The highest mean values of final germination percent (FGP) were registered in cultivar Crawford (95%) followed by Giza111 cultivar (93%) in the presence of P. fluorescens, while, FGP of Clark was 85%. Mean germination time was decreased by the application of P. fluorescens or P. putida in both salt stressed and unstressed traits. All growth parameters were significantly decreased by salinity treatments, particularly at S2. A significant increase in stem length and shoot fresh weight was recorded in plants treated with P. fluorescens. This enhancing trend was followed by the application of P. putida then B. subtilis. Chlorophyll contents and plant soluble proteins were decreased, while proline content was increased as compared with control treatment. Results showed that the salt tolerant cultivar, Crawford, may have a better tolerance strategy against oxidative damages by increasing antioxidant enzymes activities under high salinity stress. These results suggest that salt induced oxidative stress in soybean is generally counteracted by enzymatic defense systems stimulated under harsh conditions. Our results showed that inoculation with plant growth-promoting rhizobacterial (PGPR) alleviated the harmful effects of salinity stress on soybean cultivars. The diversity in the phylogenetic relationship and in the level of genetic among cultivars was assessed by SDS-PAGE and RAPD markers. Among the polymorphism bands, only few were found to be useful as positive or negative markers associated with salt stress. The maximum number of bands (17) was recorded in Crawford, while the minimum number of bands (11) was recorded in Clark. Therefore, the ISSR can be used to identify alleles associated with the salt stress in soybean germplasm.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Wang Y, Zhang W, Liu W, Ahammed GJ, Wen W, Guo S, Shu S, Sun J. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC PLANT BIOLOGY 2021; 21:48. [PMID: 33461504 PMCID: PMC7814736 DOI: 10.1186/s12870-020-02817-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated. RESULTS In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and 109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly increased the expression levels of NADP-ME1 and NADP-ME2, as well as the activity of NADP-ME, and enhanced the root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA. CONCLUSIONS These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping substrates by adding AMF as an amendment.
Collapse
Affiliation(s)
- Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenze Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenxu Wen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Response of Soybean to Hydrochar-Based Rhizobium Inoculation in Loamy Sandy Soil. Microorganisms 2020; 8:microorganisms8111674. [PMID: 33126699 PMCID: PMC7693707 DOI: 10.3390/microorganisms8111674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrochar is rich in nutrients and may provide a favorable habitat or shelter for bacterial proliferation and survival. Therefore, in this study, we investigate the efficiency of a hydrochar-based rhizobial inoculant (Bradyrhizobium japonicum) on the symbiotic performance of soybean under both greenhouse and field conditions. There were positive and significant effects of hydrochar-based inoculation on the root and shoot growth of soybean as compared to uninoculated plants grown under irrigated and drought conditions. The drought stress significantly inhibited the symbiotic performance of rhizobia with soybean. Soybean inoculated with hydrochar-based B. japonicum produced twofold more nodules under drought stress conditions as compared to plants inoculated with a commercial preparation/inoculant carrier B. japonicum (HISTICK). The N concentration of inoculated plants with hydrochar-based B. japonicum was by 31% higher than that of un-inoculated plants grown in pots and by 22% for HISTICK. Furthermore, the soybean treated with hydrochar-based B. japonicum showed higher grain yield of 29% under irrigated conditions and 40% higher under rainfed condition compared to un-inoculated plants. In conclusion, the obtained results proved the potential of hydrochar-based B. japonicum inoculant for soybean in terms of increased symbiotic performance and agronomic traits, especially under rainfed conditions.
Collapse
|
15
|
Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12100370] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.
Collapse
|
16
|
Chebaane A, Symanczik S, Oehl F, Azri R, Gargouri M, Mäder P, Mliki A, Fki L. Arbuscular mycorrhizal fungi associated with Phoenix dactylifera L. grown in Tunisian Sahara oases of different salinity levels. Symbiosis 2020. [DOI: 10.1007/s13199-020-00692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Gao P, Wang X, Sang Y, Wang S, Dai D. AM fungi enhance the function of ecological floating bed in the treatment of saline industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16656-16667. [PMID: 32130639 DOI: 10.1007/s11356-020-08229-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Treatment of saline wastewater attracts more and more attention due to its negative effects on the environment in China. Although salt removal from high-saline wastewater is well done in many industry factories, few technologies are available to remove salt from low-saline wastewater (total dissolved solids, TDS < 10,000 mg/L). In this study, ecological floating bed (EFB) enhanced by arbuscular mycorrhizal fungi (AMF) Glomus etunicatum was constructed to remove salt from simulated low-saline wastewater. Results showed that AM formation in Canna indica was not affected by salt stress, and a higher mycorrhizal colonization rate was even observed under salt stress relative to the control treatment. In saline wastewater containing TDS 5000 mg/L, EFB with AM inoculation (AM-EFB) removed 15.9% of TDS, 19.9% of COD, 14.2% of TN, 22.5% of TP, and 11.6-23.0% of salt ions (Na, K, Mg, and Ca) more than EFB without AM inoculation (NM-EFB) in September, and 13.0% of TDS, 15.8% of COD, 17.5% of TN, 16.6% of TP, and 8.60-22.2% of salt ions (Na, K, Mg, and Ca) more than NM-EFB in October respectively. AMF increased plant uptake to Na and the translocation of Na from root to shoot, especially at the initial stage of the experiment. Additionally, EFB function declined when environmental temperature declined independent of AM inoculation, but the presence of AM increased EFB function in the treatment of saline wastewater relative to NM-EFB. This study provides a new strategy for the treatment of low-saline wastewater and the EFB application in a low-temperature environment.
Collapse
Affiliation(s)
- Peng Gao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiao Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Dongwei Dai
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Kushwaha P, Kashyap PL, Bhardwaj AK, Kuppusamy P, Srivastava AK, Tiwari RK. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol 2020; 36:26. [PMID: 31997078 DOI: 10.1007/s11274-020-2804-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Salinity stress is one of the key constraints for sustainable crop production. It has gained immense importance in the backdrop of climate change induced imbalanced terrestrial water budgets. The traditional agronomic approaches and breeding salt-tolerant genotypes have often proved insufficient to alleviate salinity stress. Newer approaches like the use of bacterial endophytes associated with agricultural crops have occupied center place recently, owing to their advantageous role in improving crop growth, health and yield. Research evidences have revealed that bacterial endophytes can promote plant growth by accelerating availability of mineral nutrients, helping in production of phytohormones, siderophores, and enzymes, and also by activating systemic resistance against insect pest and pathogens in plants. These research developments have opened an innovative boulevard in agriculture for capitalizing bacterial endophytes, single species or consortium, to enhance plant salt tolerance capabilities, and ultimately lead to translational refinement of crop-production business under salty environments. This article reviews the latest research progress on the identification and functional characterization of salt tolerant endophytic bacteria and illustrates various mechanisms triggered by them for plant growth promotion under saline environment.
Collapse
Affiliation(s)
- Prity Kushwaha
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, India.
| | - Ajay Kumar Bhardwaj
- ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, 132001, India.
| | - Pandiyan Kuppusamy
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Uttar Pradesh, Mau, 275103, India
| | - Rajesh Kumar Tiwari
- AMITY University, Uttar Pradesh Lucknow Campus, Malhaur, Gomti Nagar Extension, Lucknow, 227105, India
| |
Collapse
|
19
|
Ye L, Zhao X, Bao E, Cao K, Zou Z. Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions Under Salinity-Alkalinity Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:863. [PMID: 31333702 PMCID: PMC6616249 DOI: 10.3389/fpls.2019.00863] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
Salinity-alkalinity stress has caused severe environment problems that negatively impact the growth and development of watermelon (Citrullus lanatus L.). In this study, watermelon seedlings were inoculated with the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae to investigate its effect on watermelon growth and development. The main measurements included morphological traits, elemental and water uptake, the level of reactive oxygen species, antioxidant enzyme and photosynthesis activities, and relative expression levels of stress response genes. Under salinity-alkalinity stresses, watermelon morphological traits, elemental and water uptake were all significantly alleviated after incubation with AMF. Antioxidant abilities of watermelon were significantly improved after incubation with AMF in salinity-alkalinity stresses. Under normal conditions, all photosynthesis related parameters were significantly increased after incubation of AMF. In contrast, they were all significantly reduced under salinity-alkalinity stresses and were all significantly alleviated after incubation of AMF. Salinity-alkalinity stresses impacted the chloroplast structure and AMF significantly alleviated these damages. Under salinity-alkalinity stresses, the relative expression level of RBCL was significantly reduced and was significantly alleviated after AMF treatment. The relative expression level of PPH was significantly increased and was further significantly reduced after AMF treatment. For the relative expression levels of antioxidant response related genes Cu-Zn SOD, CAT, APX, GR, their relative expression levels were significantly increased and were further significantly increased after AMF treatment. Our study demonstrated the beneficial effects of AMF under salinity-alkalinity stresses, which could be implicated in the management of watermelon cultivation under salinity-alkalinity regions.
Collapse
Affiliation(s)
- Lin Ye
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Xia Zhao
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Encai Bao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Cao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
20
|
Ye L, Zhao X, Bao E, Cao K, Zou Z. Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions Under Salinity-Alkalinity Stresses. FRONTIERS IN PLANT SCIENCE 2019. [PMID: 31333702 DOI: 10.3389/fpls.2019.00863.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Salinity-alkalinity stress has caused severe environment problems that negatively impact the growth and development of watermelon (Citrullus lanatus L.). In this study, watermelon seedlings were inoculated with the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae to investigate its effect on watermelon growth and development. The main measurements included morphological traits, elemental and water uptake, the level of reactive oxygen species, antioxidant enzyme and photosynthesis activities, and relative expression levels of stress response genes. Under salinity-alkalinity stresses, watermelon morphological traits, elemental and water uptake were all significantly alleviated after incubation with AMF. Antioxidant abilities of watermelon were significantly improved after incubation with AMF in salinity-alkalinity stresses. Under normal conditions, all photosynthesis related parameters were significantly increased after incubation of AMF. In contrast, they were all significantly reduced under salinity-alkalinity stresses and were all significantly alleviated after incubation of AMF. Salinity-alkalinity stresses impacted the chloroplast structure and AMF significantly alleviated these damages. Under salinity-alkalinity stresses, the relative expression level of RBCL was significantly reduced and was significantly alleviated after AMF treatment. The relative expression level of PPH was significantly increased and was further significantly reduced after AMF treatment. For the relative expression levels of antioxidant response related genes Cu-Zn SOD, CAT, APX, GR, their relative expression levels were significantly increased and were further significantly increased after AMF treatment. Our study demonstrated the beneficial effects of AMF under salinity-alkalinity stresses, which could be implicated in the management of watermelon cultivation under salinity-alkalinity regions.
Collapse
Affiliation(s)
- Lin Ye
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Xia Zhao
- College of Horticulture, Northwest A&F University, Xianyang, China
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Encai Bao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Cao
- Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|