1
|
Kharnaior P, Tamang JP. Microbiome and metabolome in home-made fermented soybean foods of India revealed by metagenome-assembled genomes and metabolomics. Int J Food Microbiol 2023; 407:110417. [PMID: 37774634 DOI: 10.1016/j.ijfoodmicro.2023.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Grep-chhurpi, peha, peron namsing and peruñyaan are lesser-known home-made fermented soybean foods prepared by the native people of Arunachal Pradesh in India. Present work aims to study the microbiome, their functional annotations, metabolites and recovery of metagenome-assembled genomes (MAGs) in these four fermented soybean foods. Metagenomes revealed the dominance of bacteria (97.80 %) with minor traces of viruses, eukaryotes and archaea. Bacillota is the most abundant phylum with Bacillus subtilis as the abundant species. Metagenome also revealed the abundance of lactic acid bacteria such as Enterococcus casseliflavus, Enterococcus faecium, Mammaliicoccus sciuri and Staphylococcus saprophyticus in all samples. B. subtilis was the major species found in all products. Predictive metabolic pathways showed the abundance of genes associated with metabolisms. Metabolomics analysis revealed both targeted and untargeted metabolites, which suggested their role in flavour development and therapeutic properties. High-quality MAGs, identified as B. subtilis, Enterococcus faecalis, Pediococcus acidilactici and B. velezensis, showed the presence of several biomarkers corresponding to various bio-functional properties. Gene clusters of secondary metabolites (antimicrobial peptides) and CRISPR-Cas systems were detected in all MAGs. This present work also provides key elements related to the cultivability of identified species of MAGs for future use as starter cultures in fermented soybean food product development. Additionally, comparison of microbiome and metabolites of grep-chhurpi, peron namsing and peruñyaan with that of other fermented soybean foods of Asia revealed a distinct difference.
Collapse
Affiliation(s)
- Pynhunlang Kharnaior
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, Sikkim University, Science Building, Tadong 737102, Gangtok, Sikkim, India.
| |
Collapse
|
2
|
Huang B, Wang J, Han X, Gou J, Pei Z, Lu G, Wang J, Zhang C. The relationship between material transformation, microbial community and amino acids and alkaloid metabolites in the mushroom residue-prickly ash seed oil meal composting with biocontrol agent addition. BIORESOURCE TECHNOLOGY 2022; 350:126913. [PMID: 35231600 DOI: 10.1016/j.biortech.2022.126913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of adding biocontrol microbes on metabolites and pathogenic microorganisms during mushroom residue composting and the relationships of metabolite changes with microbes and material transformation. The results showed that the addition of Bacillus subtilis (BS) and Trichoderma harzianum (TH) with mushroom residue promoted the conversion of organic carbon and nitrogen. The abundance of pathogenic microbes was increased in biocontrol microbial treatments. BS or TH treatments increased the levels of amino acids, carbohydrates, and bacteriostatic alkaloid metabolites. Network analysis revealed that the main microorganisms significantly related to alkaloid metabolites were Rhabdanaerobium, Atopostipes, Planifilum and Ureibacillus. The increased bacterial abundance and decreased NO3--N and TOC were closely related to the increases in amino acid and alkaloid metabolites after biocontrol agent treatments. Generally, adding biocontrol microbes is an effective way to increase the levels of antibacterial metabolites, but there is a risk of increasing the abundance of pathogenic microbes.
Collapse
Affiliation(s)
- Bin Huang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Xiaobin Han
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi 563000, PR China
| | - Jianyu Gou
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi 563000, PR China
| | - Zhouyang Pei
- Xuancheng Modern Agricultural Industrial Park, Xuancheng 242099, PR China
| | - Guangmei Lu
- Agricultural and Rural Development Service Center of Changqing District, Jinan 250399, PR China
| | - Jing Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Chengsheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|
3
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Horak I, Jansen van Rensburg PJ, Claassens S. Effect of cultivation media and temperature on metabolite profiles of three nematicidal Bacillus species. NEMATOLOGY 2021. [DOI: 10.1163/15685411-bja10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Globally, root-knot nematode (RKN) infestations cause great financial losses. Although agrochemicals are used to manage these pests, there is increased interest in using biocontrol agents based on natural antagonistic microorganisms, such as Bacillus. These nematicidal bacteria demonstrate antagonism towards RKN through different modes of action, including specialised metabolite production. The aim of this study was to compare metabolite profiles of nematicidal Bacillus species and assess the influence of cultivation conditions on these profiles. Two hyphenated metabolomics platforms, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), were employed to profile and compare metabolite features produced during the cultivation of three nematicidal Bacillus species (Bacillus firmus, B. cereus and B. soli) in complex Luria-Bertani broth (LB) and a simpler minimal broth (MB), at three different temperatures (25, 30 and 37°C). Cultivation in complex LB as opposed to simpler MB resulted in the production of more statistically significant metabolite features. Selected temperatures in this study did not have a significant influence on metabolite profiles. Moreover, media-specific influences outweighed temperature-specific influences on metabolite profiles. Results from this study are a valuable first step in establishing suitable cultivation conditions for the production of Bacillus metabolites of interest.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | | | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
5
|
Tunsagool P, Ploypetch S, Jaresitthikunchai J, Roytrakul S, Choowongkomon K, Rattanasrisomporn J. Efficacy of cyclic lipopeptides obtained from Bacillus subtilis to inhibit the growth of Microsporum canis isolated from cats. Heliyon 2021; 7:e07980. [PMID: 34585007 PMCID: PMC8450251 DOI: 10.1016/j.heliyon.2021.e07980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background and aim Microsporum canis (M. canis) is a dermatophyte fungal pathogen that causes ringworms. Cats are considered to be a dominant reservoir host enabling M. canis transmission to humans. The concerns of dermatophyte resistance were raised among the usage of antifungal drugs to treat the ringworm. This study aimed to evaluate the fungal activity of cyclic lipopeptides (CLPs) obtained from Bacillus subtilis (B. subtilis) as an alternative method for the inhibition of M. canis growth. Materials and methods The culture plate of M. canis from confirmed cats with ringworm infection was provided. The purification of CLP extract, fengycin, iturin A, and surfactin was carried out from B. subtilis by preparative thin-layer chromatography (PTLC) coupled with solid-phase extraction (SPE) methods. Half-maximal effective concentration (EC50) and agar well diffusion assays were performed to determine the efficacy of Bacillus CLP extract, fengycin, iturin A, and surfactin to inhibit the growth of M. canis isolated from cats. Results All purified Bacillus substances displayed antifungal activity to control the growth of M. canis when compared with 80% ethanol (control). EC50 values for CLP extract, fengycin, iturin A, and surfactin were 0.23, 0.05, 0.17, and 0.08 mg/mL, respectively. In agar well diffusion assay, the ability of CLP extract, fengycin, iturin A, and surfactin on fungal inhibition had no statistically significant difference at 24 and 48 h after treatment (p < 0.05). However, CLP extract showed a statistically significant difference on M. canis inhibition at 62.21% followed by surfactin with 59.04% at 72 h after treatment. Conclusion In vitro, Bacillus CLPs revealed an inhibitory effect on M. canis growth which is a zoonotic pathogen that causes ringworms. This study suggests an alternative approach to control the growth of M. canis using substances obtained from B. subtilis as a biomedicine agent with antifungal activity.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
6
|
Zhang C, Zhang F, Wang Y, Shi X, Fan R, Ni L. Ultrasonic and enzymatic pretreatments of Monascus fermentation byproduct for a sustainable production of Bacillus subtilis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3836-3842. [PMID: 33336368 DOI: 10.1002/jsfa.11018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monascus fermentation byproduct (MFB) is a biowaste generated after food colorants are extracted. Using MFB to produce probiotics (Bacillus subtilis) is a sustainable way for the entire production to be used as food or animal feed additives. However, due to the rigidity of the Monascus mycelium cell wall, B. subtilis cannot sufficiently utilize the nutrients in MFB, leading to low biomass production efficiency. We studied the effects of ultrasonic treatment, papain, β-glucanase, and chitosanase, and their combinations on improving the levels of soluble components from MFB. The effects of these treatments on mycelium cell walls were visualized using scanning electron microscopy, and their influence on B. subtilis production was analyzed. RESULTS Ultrasonic treatment increased the soluble components by 210 g kg-1 , including 50 g kg-1 protein and 120 g kg-1 carbohydrates. An enzyme mixture increased the soluble components by 160 g kg-1 , including 30 g kg-1 protein and 90 g kg-1 carbohydrates. The combination of the two methods achieved the highest increase of soluble components (up to 400 g kg-1 ) leading to a maximum B. subtilis production of 1 × 1011 colony-forming unit mL-1 . This yield was about 20 times greater than that using untreated MFB and about eight times greater than treatments using only ultrasonic or enzymatic methods. CONCLUSION The productivity of B. subtilis production using MFB as the sole medium can be greatly improved by ultrasound or enzymes, which cause the release of intercellular components or cell wall components. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Feipeng Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Yang Wang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| | - Xiangzhu Shi
- R & D Department, Fujian Xinminke Biotechnology Development Company, Fuzhou, China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Fujian Center of Excellence for Food Biotechnology, Fuzhou University, Fuzhou, China
| |
Collapse
|
7
|
Asaturova A, Shternshis M, Tsvetkova V, Shpatova T, Maslennikova V, Zhevnova N, Homyak A. Biological control of important fungal diseases of potato and raspberry by two Bacillus velezensis strains. PeerJ 2021; 9:e11578. [PMID: 34178462 PMCID: PMC8210809 DOI: 10.7717/peerj.11578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Stem canker and black scurf caused by Rhizoctonia solani are the important diseases in potato, while spur blight caused by Didymella applanata is a major disease in red raspberry. In Western Siberia, both crops are grown predominantly in small-scale farming that requires maximal usage of biological products for plant protection instead of chemicals. We evaluated two promising Bacillus velezensis strains BZR 336 g and BZR 517 isolated in the south of Russia (45°1′N, 38°59′E) for their biological control potentials against the potato and red raspberry diseases under the more severe weather conditions of Western Siberia (55°1′N, 82°55′ E). We tested two techniques to apply biocontrol agents: (1) coating the seeds (potato tubers) and (2) spraying over the plants (raspberry canes). In each case, we estimated B. velezensis strains on two plant cultivars differed by the disease resistance. The degree of B. velezensis influence on disease incidence and severity depended on the bacterial strain, the protected plant, and its cultivar. We also demonstrated that two B. velezensis strains significantly stimulated plant growth of potato, which contributed to the plant productivity on both cultivars. The BZR 336 g strain affected the potato productivity more than the BZR 517 strain. Under the influence of both bacterial strains, raspberry yield was significantly higher compared to the control on the susceptible cultivar. These findings indicated that two southern B. velezensis strains had proved their efficacy as biological control agents in the control of the serious fungal infection of potato and raspberry plants under the more severe ecological conditions of Western Siberia. For the first time, we demonstrated B. velezensis strains potential for use as biological control agents against R. solani on potato, and against D. applanata on red raspberry.
Collapse
Affiliation(s)
- Anzhela Asaturova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Margarita Shternshis
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Vera Tsvetkova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation.,Novosibirsk State Agrarian University, Novosibirsk, Russian Federation
| | - Tatyana Shpatova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation.,Novosibirsk State Agrarian University, Novosibirsk, Russian Federation
| | | | - Natalya Zhevnova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Anna Homyak
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| |
Collapse
|