1
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
2
|
Priyanka S, Aakash D, Harish K, Nitin B, Sanjiv K, Arun, Davinder K. Pharmacological potential of (L.) P. Royen (Sapodilla): a narrative review. J TRADIT CHIN MED 2024; 44:403-407. [PMID: 38504547 PMCID: PMC10927406 DOI: 10.19852/j.cnki.jtcm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/21/2024]
Abstract
Herbal medicine is safe and effective in treating various diseases. Traditional herbal medicine plays a tremendous role in treatment of various diseases and accompanying complications, hence herbal medicine requires remarkable attention in further research for the development of numerous active formulations for treatment of health troubles. The plant needs special consideration for development and research of unidentified compound and characterization of novel active molecules that overcome multiple pathological abnormalities. The genus Manilkara contains 135 plants around the world. This overview discusses all the virtues of most important and commonly used plant Manilkara zapota (L.) P. Royen (M. zapota), also known as Sapodilla. M. zapota has various traditional beneficial effects in treatment of various diseases and disorders dating back to prehistoric times and used in ancient traditional system of herbal medicine.
Collapse
Affiliation(s)
- Sharma Priyanka
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Deep Aakash
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Kumar Harish
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Bansal Nitin
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Kumar Sanjiv
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Arun
- 1 Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Kumar Davinder
- 2 Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001, India
| |
Collapse
|
3
|
Rivas-Gastelum MF, Garcia-Amezquita LE, Garcia-Varela R, Sánchez-López AL. Manilkara zapota "chicozapote" as a fruit source of health-beneficial bioactive compounds and its effects on chronic degenerative and infectious diseases, a review. Front Nutr 2023; 10:1194283. [PMID: 37469550 PMCID: PMC10352834 DOI: 10.3389/fnut.2023.1194283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
Manilkara zapota "chicozapote" is an autochthonous evergreen tree from the Southern regions of Mexico, Belize, and Guatemala. Currently, it is widely distributed and extensively grown in Mexico and Southeast Asia. Traditionally, different structures of the plant have been used for medical purposes; seeds have diuretic and purgative properties, aiding in digestive complications and eliminating bladder and kidney stones. Tree bark has antidiarrheal, antipyretic, antibiotic, and astringent properties. Fruits and leaves have been used to treat cold, cough, diarrhea, indigestion, fever, hemorrhages, wounds, and ulcers. Chicozapote fruit is yellow and brown, with an oval shape and rough peel, it is an excellent source of nutrients, such as sugars, proteins, amino acids, and minerals, and is rich in phytochemical components, such as flavonoids, phenolic acids, and tannins. These bioactive compounds exert several biological activities, i.e., as an antioxidant, antidiabetic, antimicrobial, anti-inflammatory, cytotoxic, and anti-arthritic agents, to name a few. These beneficial properties assist in preventing chronic and degenerative diseases, such as cancer, diabetes, neurological, infectious, and cardiovascular diseases. The use of chicozapote is still limited to its fresh form, and its non-edible structures produce a lot of waste. Therefore, an alternative valorizing and preserving strategy is to use the fruit as a raw source to design functional foods and pharmacological products. Here, the nutritional and phytochemical profiles and the current view regarding methodologies and conditions, for the extraction and characterization of its bioactive compounds, are described, and focus is placed on their multiple biological effects and specific functional mechanisms.
Collapse
|
4
|
AlSaffar RM, Rashid S, Ahmad SB, Rehman MU, Hussain I, Parvaiz Ahmad S, Ganaie MA. D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl 4-induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep 2022; 27:92-99. [PMID: 35435141 PMCID: PMC9037211 DOI: 10.1080/13510002.2022.2062947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.
Collapse
Affiliation(s)
- Rana M AlSaffar
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sheikh Parvaiz Ahmad
- Department of Statics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology , College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
5
|
Punia Bangar S, Sharma N, Kaur H, Kaur M, Sandhu KS, Maqsood S, Ozogul F. A review of Sapodilla (Manilkara Zapota) in human nutrition, health, and industrial applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
7
|
Green synthesis of CeO2 NPs using Manilkara zapota fruit peel extract for photocatalytic treatment of pollutants, antimicrobial, and antidiabetic activities. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Unanma HC, Anaduaka EG, Uchendu NO, Ononiwu CP, Ogugua VN. Ananas comosus and Citrus sinensis peels ameliorate CCl4-induced liver injury in Wistar rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e01026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
A New Method for Calculating Calcium Content and Determining Appropriate Calcium Levels in Foods. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Zhu Y, Hu Y, Cheng X, Li Q, Niu Q. Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl 4 rat model. J Mol Histol 2021; 52:491-501. [PMID: 33743102 DOI: 10.1007/s10735-020-09949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a reversible scaring response to chronic liver injury. MicroRNA (miR)-129-5p might regulate fibrosis-related gene expression. This study is performed to decipher, potential of miR-129-5p to influence the progression of hepatic fibrosis in a carbon tetrachloride (CCl4) rat model. Rat hepatic fibrosis was successfully established by subcutaneous injection of 50% CCl4. RT-qPCR revealed that miR-129-5p was poorly expressed and PEG3 was highly expressed in hepatic fibrosis tissues. As reflected by dual-luciferase reporter gene assay, miR-129-5p targeted and reduced the expression of PEG3. Thereafter, miR-129-5p antagomir or short hairpin RNA against paternally expressed gene 3 (PEG3) was adopted for gain- and loss-of-function assay to determine the molecular regulatory mechanism of miR-129-5p. Moreover, we detected the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins and apoptosis-related factors, and made a serological analysis of the rat serum samples. Results showed that upregulated miR-129-5p or downregulated PEG3 led to reduction of the histological changes of liver cirrhosis and lowered the apoptosis rate, via downstream effects on the NF-κB signaling pathway. Thus, the hepatic fibrosis induced by CCl4 can be rescued by upregulated miR-129-5p or downregulated PEG3 expression.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Yingbin Hu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Xianyong Cheng
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Li
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Bincheng District, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|