1
|
Longo F, Di Gaudio F, Attanzio A, Marretta L, Luparello C, Indelicato S, Bongiorno D, Barone G, Tesoriere L, Giardina IC, Abruscato G, Perlotti M, Hornsby LB, Arizza V, Vazzana M, Marrone F, Vizzini A, Martino C, Savoca D, Queiroz V, Fabbrizio A, Mauro M. Bioactive Molecules from the Exoskeleton of Procambarus clarkii: Reducing Capacity, Radical Scavenger, and Antitumor and Anti-Inflammatory Activities. Biomolecules 2024; 14:1635. [PMID: 39766342 PMCID: PMC11726989 DOI: 10.3390/biom14121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
This study evaluates, for the first time, the reducing capacity, radical scavenger activity, and in vitro antitumor and anti-inflammatory effects of chitosan, astaxanthin, and bio-phenols extracted from the exoskeleton of Sicilian Procambarus clarkii, the most widespread species of invasive crayfish in the Mediterranean region. Among the extracted compounds, astaxanthin exhibited the highest antioxidant activity in all assays. Chitosan and polyphenols demonstrated reducing and radical scavenging activity; chitosan showed significant ferric ion reducing capacity in the FRAP test, while bio-phenolic compounds displayed notable radical scavenging activity in the DPPH and ABTS assays. Both astaxanthin and polyphenols showed dose-dependent cytotoxicity on two different cancer cell lines, with IC50 values of 1.45 µg/mL (phenolic extract) and 4.28 µg/mL (astaxanthin extract) for HepG2 cells and 2.45 µg/mL (phenolic extract) and 4.57 µg/mL (astaxanthin extract) for CaCo-2 cells. The bio-phenolic extract also showed potential anti-inflammatory effects in vitro by inhibiting nitric oxide production in inflamed RAW 264.7 macrophages, reducing the treated/control NO ratio to 77% and 74% at concentrations of 1.25 and 1.5 μg/mL, respectively. These results suggest that P. clarkii exoskeletons could be a valuable source of bioactive molecules for biomedical, pharmaceutical, and nutraceutical application while contributing to the sustainable management of this invasive species.
Collapse
Affiliation(s)
- Francesco Longo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Francesca Di Gaudio
- Department PROMISE, University of Palermo, Piazza delle Cliniche, 2, 90127 Palermo, Italy;
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Laura Marretta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Giulia Abruscato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Manuela Perlotti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Lucie Branwen Hornsby
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Federico Marrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Aiti Vizzini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | - Antonio Fabbrizio
- Department of Theoretical and Applied Sciences (DiSTA), University e Campus, 22060 Novedrate, Italy;
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| |
Collapse
|
2
|
Isa MT, Abdulkarim AY, Bello A, Bello TK, Adamu Y. Synthesis and characterization of chitosan for medical applications: A review. J Biomater Appl 2024; 38:1036-1057. [PMID: 38553786 DOI: 10.1177/08853282241243010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Chitosan has gained considerable recognition within the field of medical applications due to its exceptional biocompatibility and diverse range of properties. Nevertheless, prior reviews have primarily focused on its applications, offering limited insights into its source materials. Hence, there arises a compelling need for a comprehensive review that encompasses the entire chitin and chitosan life cycle: from the source of chitin and chitosan, extraction methods, and specific medical applications, to the various techniques employed in evaluating chitosan's properties. This all-encompassing review delves into the critical aspects of chitin and chitosan extraction, with a strong emphasis on the utilization of natural raw materials. It elucidates the various sources of these raw materials, highlighting their abundance and accessibility. Furthermore, a meticulous examination of extraction methods reveals the prevalent use of hydrochloric acid (HCl) in the demineralization process, alongside citric, formic, and phosphoric acids. Based on current review information, these acids constitute a substantial 69.2% of utilization, surpassing other mentioned acids. Of notable importance, the review underscores the essential parameters for medical-grade chitosan. It advocates for a degree of deacetylation (DDA) falling within the range of 85%-95%, minimal protein content <1%, ash content <2%, and moisture content <10%. In conclusion, these crucial factors contribute to the understanding of Chitosan's production for medical applications, paving the way for advancements in biomedical research and development.
Collapse
Affiliation(s)
| | | | - Abdullahi Bello
- Bioresources Development Unit, National Biotechnology Research and Development Agency, Abuja, Nigeria
- Bioproduction Department, Bioresources Development Centre, Ilorin, Nigeria
| | | | - Yusuf Adamu
- Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
3
|
Elizalde-Cárdenas A, Ribas-Aparicio RM, Rodríguez-Martínez A, Leyva-Gómez G, Ríos-Castañeda C, González-Torres M. Advances in chitosan and chitosan derivatives for biomedical applications in tissue engineering: An updated review. Int J Biol Macromol 2024; 262:129999. [PMID: 38331080 DOI: 10.1016/j.ijbiomac.2024.129999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
In recent years, chitosan (CS) has received much attention as a functional biopolymer for various applications, especially in the biomedical field. It is a natural polysaccharide created by the chemical deacetylation of chitin (CT) that is nontoxic, biocompatible, and biodegradable. This natural polymer is difficult to process; however, chemical modification of the CS backbone allows improved use of functional derivatives. CS and its derivatives are used to prepare hydrogels, membranes, scaffolds, fibers, foams, and sponges, primarily for regenerative medicine. Tissue engineering (TE), currently one of the fastest-growing fields in the life sciences, primarily aims to restore or replace lost or damaged organs and tissues using supports that, combined with cells and biomolecules, generate new tissue. In this sense, the growing interest in the application of biomaterials based on CS and some of its derivatives is justifiable. This review aims to summarize the most important recent advances in developing biomaterials based on CS and its derivatives and to study their synthesis, characterization, and applications in the biomedical field, especially in the TE area.
Collapse
Affiliation(s)
- Alejandro Elizalde-Cárdenas
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Aurora Rodríguez-Martínez
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Camilo Ríos-Castañeda
- Dirección de investigación, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico
| | - Maykel González-Torres
- Conahcyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Ciudad de México 14389, Mexico.
| |
Collapse
|
4
|
Iber BT, Torsabo D, Chik C, Wahab F, Abdullah S, Abu Hassan H, Kasan N. A study on the effects of interfering with the conventional sequential protocol for chemical isolation and characterization of chitosan from biowaste of giant freshwater prawn Macrobrachium rosenbergii. Heliyon 2023; 9:e13970. [PMID: 36915541 PMCID: PMC10006476 DOI: 10.1016/j.heliyon.2023.e13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Unless better measures are put in place to address the environmental and social impacts emanating from the huge waste generated from sea food processing industries; 'tragedy of the commons' is inevitable. Needless to re-emphasise the enormous contributions of aquaculture as the perfect substitute to capture fisheries which has been proven unsustainable. Be that as it may, the huge amount of bio-waste produced could be transformed into useful products such as chitin and chitosan with far reaching applications. Chitin and chitosan have been consistently processed from many sources following the traditional chemical sequence of Demineralization (DM), Deproteinization (DP), Decolouration (DC) and Deacetylation (DA). In this study, this method was re-ordered, resulting to 4 sequences of chemical processes. HCl, NaOH, ethanol (97%) and NaOH (50%) were used for DM, DP, DC and DA respectively. The results of this study showed that better chitin (23.99 ± 0.61%) and chitosan (15.17 ± 1.69%) yields were obtained from sequence four (SQ4) following the order of DC-DM-DP-DA. In addition, physicochemical properties such as DDA (80.67 ± 2.52%) and solubility (66.43 ± 2.61%) were significantly higher (p ≤ 0.05) in SQ4 thereby making the obtained product suitable for use as coagulant and flocculant in wastewater treatment. Results of FTIR, XRD and SEM of the study proved that the resultant product exhibited the characteristic nature of chitosan with porous and fibril nature. In the analysis of the physical properties of chitosan obtained from bio-waste of Macrobrachium rosenbergii, the high Carr's index (CI) and low bulk as well as tapped densities were an indication that the chitosan produced in this study had poor flowability and compressibility, thereby making it unfit for application in pharmaceutical industries.
Collapse
Affiliation(s)
- Benedict Terkula Iber
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University, (Formally Federal University of Agriculture, Makurdi), P.M.B.2373, Makurdi, Benue State, Nigeria
| | - Donald Torsabo
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University, (Formally Federal University of Agriculture, Makurdi), P.M.B.2373, Makurdi, Benue State, Nigeria
| | - Che Chik
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Fachrul Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Siti Abdullah
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Hassimi Abu Hassan
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Nor Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Impact of Green Chitosan Nanoparticles Fabricated from Shrimp Processing Waste as a Source of Nano Nitrogen Fertilizers on the Yield Quantity and Quality of Wheat (Triticum aestivum L.) Cultivars. Molecules 2022; 27:molecules27175640. [PMID: 36080408 PMCID: PMC9457985 DOI: 10.3390/molecules27175640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Waste from crustaceans has adverse effects on the environment. In this respect, shrimp waste was valorized for producing chitosan nanoparticles as a source for eco-friendly nano-nitrogen fertilizer. The application of nano-nitrogen fertilizers is a valuable alternative approach in agriculture due to its potential for reducing the application of mineral nitrogen fertilizers and increasing yield quality and quantity, thereby helping to reduce the worldwide food shortage. Chitosan nanoparticles were foliar sprayed at three volumes (0, 7, and 14 L/ha) and compared with mineral nitrogen fertilizer (M-N) sprayed at three volumes (0, 120, and 240 kg N/ha) and their combination on two wheat cultivars (Misr-1 and Gemaiza-11) during two consecutive seasons (2019/2020 and 2020/2021) in order to evaluate the agronomic response. The synthesized chitosan nanoparticles displayed characteristic bands of both Nan-N and urea/chitosan from 500–4000 cm−1. They are stable and have a huge surface area of 73.21 m2 g−1. The results revealed significant differences among wheat cultivars, fertilization applications, individual or combined, and their interactions for yield-contributing traits. Foliar application of nano-nitrogen fertilizer at 14 L/ha combined with mineral fertilizer at 240 kg/ha significantly increased total chlorophyll content by 41 and 31% compared to control; concerning plant height, the two cultivars recorded the tallest plants (86.2 and 86.5 cm) compared to control. On the other hand, the heaviest 1000-grain weight (55.8 and 57.4 g) was recorded with treatment of 120 kg Mn-N and 14 L Nan-N/ha compared to the control (47.6 and 45.5 g). The Misr-1 cultivar achieved the highest values for grain yield and nitrogen (1.30 and 1.91 mg/L) and potassium (9.87 and 9.81 mg/L) in the two studied seasons when foliarly sprayed with the combination of 120 kg Mn-N/ha + 14 L Nan-N/ha compared to the Gemaiza-11 cultivar. It can be concluded that Misr-1 exhibited higher levels of total chlorophyll content, spike length, 100-grain weight, grain yield in kg/ha, and nitrogen and potassium. However, Gemaiza-11 displayed higher biomass and straw yield values, plant height, and sodium concentration values. It could be economically recommended to use the application of 120 kg Mn-N/ha + 14 L Nan-N/ha on the Misr-1 cultivar to achieve the highest crop yield.
Collapse
|
6
|
Bai Z, Li P, Fu H, Chen P, Feng X, Hu X, Song X, Chen L. Fluorescence and electrochemical integrated dual-signal sensor for the detection of iron ions in water based on an ITO substrate. Analyst 2022; 147:4489-4499. [DOI: 10.1039/d2an01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent and electrochemical dual-signal sensor has been fabricated for the visual and sensitive detection of Fe3+ in water.
Collapse
Affiliation(s)
- Zhenyu Bai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Ping Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Peicai Chen
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Xiaoyang Feng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Xueping Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Xingliang Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|