1
|
Mohammed H, Karhib MM, Al-Fahad KSJ, Atef AM, Eskandrani A, Darwish AAE, Sary AA, Elwakil BH, Bakr BA, Eldrieny AM. Newly synthesized chitosan nanoparticles loaded with caffeine/moringa leaf extracts Halt Her2, BRCA1, and BRCA2 expressions. Sci Rep 2024; 14:18118. [PMID: 39103402 PMCID: PMC11300450 DOI: 10.1038/s41598-024-67599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Breast cancer is among the highest morbidity and mortality rates in women around the world. In the present investigation we aimed to synthesis novel nanosystem combining two naturally important anticancer agents with different mechanism of action namely Moringa oleifera and caffeine. Firstly, chemical analysis of Moringa oleifera extract and caffeine was done by gas chromatography-mass spectroscopy (GC-MS) in order to assess the main chemical compounds present and correlate between them and the possible anticancer effect. The novel nanosystem was characterized through dynamic light scattering techniques which revealed the stability and homogeneity of the prepared M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles, while FTIR and transmission electron microscope (TEM) proved the shape and the successful incorporation of M. oleifera leaves extract/Caffeine onto the nanochitosan carrier. Our initial step was to assess the anticancer effect in vitro in cancer cell line MCF-7 which proved the significant enhanced effect of M. oleifera leaves extract/Caffeine nanosystem compared to M. oleifera leaves extract or caffeine loaded nanoparticles. Further studies were conducted in vivo namely tumor biomarkers, tumor volume, bioluminescence imaging, molecular and histopathological investigations. The present study proved the potent anticancer effect of the synthesized M. oleifera leaves extract/Caffeine loaded chitosan nanoparticles. Mo/Caf/CsNPs exhibited a large number of apoptotic cells within the tumor mass while the adipose tissue regeneration was higher compared to the positive control. The prepared nanoparticles downregulated the expression of Her2, BRCA1 and BRCA2 while mTOR expression was upregulated. The aforementioned data demonstrated the successful synergistic impact of Moringa and caffeine in decreasing the carcinoma grade.
Collapse
Affiliation(s)
- Hanaa Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | | | - Atef Mohamed Atef
- Faculty of Medical Applied Science, Irbid National University, Irbid, Jordan
| | - Areej Eskandrani
- College of Science, Taibah University, 30002, Madinah, Kingdom of Saudi Arabia
| | - Amira Abd-Elfattah Darwish
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Ahmed Abdallah Sary
- Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria, 21526, Egypt
| | - Bassma H Elwakil
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt.
| | - Basant A Bakr
- Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Ahmed M Eldrieny
- Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21526, Egypt
| |
Collapse
|
2
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
3
|
Keshwania P, Kaur N, Chauhan J, Sharma G, Afzal O, Alfawaz Altamimi AS, Almalki WH. Superficial Dermatophytosis across the World's Populations: Potential Benefits from Nanocarrier-Based Therapies and Rising Challenges. ACS OMEGA 2023; 8:31575-31599. [PMID: 37692246 PMCID: PMC10483660 DOI: 10.1021/acsomega.3c01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
The most prevalent infection in the world is dermatophytosis, which is a major issue with high recurrence and can affect the entire body including the skin, hair, and nails. The major goal of this Review is to acquire knowledge about cutting-edge approaches for treating dermatophytosis efficiently by adding antifungals to formulations based on nanocarriers in order to overcome the shortcomings of standard treatment methods. Updates on nanosystems and research developments on animal and clinical investigations are also presented. Along with the currently licensed formulations, the investigation also emphasizes novel therapies and existing therapeutic alternatives that can be used to control dermatophytosis. The Review also summarizes recent developments on the prevalence, management approaches, and disadvantages of standard dosage types. There are a number of therapeutic strategies for the treatment of dermatophytosis that have good clinical cure rates but also drawbacks such as antifungal drug resistance and unfavorable side effects. To improve therapeutic activity and get around the drawbacks of the traditional therapy approaches for dermatophytosis, efforts have been described in recent years to combine several antifungal drugs into new carriers. These formulations have been successful in providing improved antifungal activity, longer drug retention, improved effectiveness, higher skin penetration, and sustained drug release.
Collapse
Affiliation(s)
- Puja Keshwania
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Narinder Kaur
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Jyoti Chauhan
- Department
of Microbiology, Maharishi Markandeshwar
Institute of Medical Sciences and Research, Mullana, Ambala, Haryana 133207, India
| | - Gajanand Sharma
- University
Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Waleed H. Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21961, Saudi Arabia
| |
Collapse
|
4
|
Arshad R, Razlansari M, Maryam Hosseinikhah S, Tiwari Pandey A, Ajalli N, Ezra Manicum AL, Thorat N, Rahdar A, Zhu Y, Tabish TA. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov Today 2023; 28:103673. [PMID: 37331691 DOI: 10.1016/j.drudis.2023.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa.
| | - Nanasaheb Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
5
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
6
|
Ellboudy NM, Elwakil BH, Shaaban MM, Olama ZA. Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities. Molecules 2023; 28:molecules28114492. [PMID: 37298980 DOI: 10.3390/molecules28114492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Despite recent scientific advances, the global load of bacterial disease remains high and has been established against a backdrop of increasing antimicrobial resistance. Therefore, there is a pressing need for highly effective and natural antibacterial agents. In the present work, the antibiofilm effect provided by essential oils was evaluated. Of these, cinnamon oil extract showed potent antibacterial and antibiofilm activities against Staphylococcus aureus at an MBEC of 75.0 µg/mL. It was revealed that benzyl alcohol, 2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were the major components of the tested cinnamon oil extract. In addition, the interaction between the cinnamon oil and colistin showed a synergistic effect against S. aureus. Cinnamon oil that had been combined with colistin was encapsulated by liposomes to enhance the essential oil's chemical stability, demonstrating a particle size of 91.67 nm, a PDI of 0.143, a zeta potential of -0.129 mV, and an MBEC of 50.0 µg/mL against Staphylococcus aureus. Scanning electron microscopy was employed to observe the morphological changes in the Staphylococcus aureus biofilm that was treated with the encapsulated cinnamon oil extract/colistin. As a natural and safe option, cinnamon oil exhibited satisfactory antibacterial and antibiofilm performance. The application of liposomes further improved the stability of the antibacterial agents and extended the essential oil release profile.
Collapse
Affiliation(s)
- Neveen M Ellboudy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21568, Egypt
| | - Zakia A Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
7
|
Hemmingsen LM, Panzacchi V, Kangu LM, Giordani B, Luppi B, Škalko-Basnet N. Lecithin and Chitosan as Building Blocks in Anti- Candida Clotrimazole Nanoparticles. Pharmaceuticals (Basel) 2023; 16:790. [PMID: 37375738 DOI: 10.3390/ph16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The main focus when considering treatment of non-healing and infected wounds is tied to the microbial, particularly bacterial, burden within the wound bed. However, as fungal contributions in these microbial communities become more recognized, the focus needs to be broadened, and the remaining participants in the complex wound microbiome need to be addressed in the development of new treatment strategies. In this study, lecithin/chitosan nanoparticles loaded with clotrimazole were tailored to eradicate one of the most abundant fungi in the wound environment, namely C. albicans. Moreover, this investigation was extended to the building blocks and their organization within the delivery system. In the evaluation of the novel nanoparticles, their compatibility with keratinocytes was confirmed. Furthermore, these biocompatible, biodegradable, and non-toxic carriers comprising clotrimazole (~189 nm, 24 mV) were evaluated for their antifungal activity through both disk diffusion and microdilution methods. It was found that the activity of clotrimazole was fully preserved upon its incorporation into this smart delivery system. These results indicate both that the novel carriers for clotrimazole could serve as a therapeutic alternative in the treatment of fungi-infected wounds and that the building blocks and their organization affect the performance of nanoparticles.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Virginia Panzacchi
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Lloyd Mbugua Kangu
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Nataša Škalko-Basnet
- Department of Pharmacy, University of Tromsø-The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
9
|
Halabi AA, Elwakil BH, Hagar M, Olama ZA. Date Fruit ( Phoenix dactylifera L.) Cultivar Extracts: Nanoparticle Synthesis, Antimicrobial and Antioxidant Activities. Molecules 2022; 27:molecules27165165. [PMID: 36014407 PMCID: PMC9415038 DOI: 10.3390/molecules27165165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
The pharmaceutical research sector’s inability to produce new drugs has made it difficult to keep up with the rate at which microbial resistance is developing. Recently, nanotechnology and its combinations with natural products have been the saviors against multidrug resistant bacteria. In the present investigation, different Egyptian and Saudi date cultivars were extracted and then phytochemically analyzed and tested for possible antimicrobial activities against multidrug resistant (MDR) microbes. The results revealed that extract of the flesh of fresh “Hayany” fruit (Egyptian date) showed the highest antimicrobial activity, with high levels of phenolic, flavonoid, and tannin concentrations (538.578 µg/mL, 28.481 µg/mL, and 20.888 µg/mL, respectively) and high scavenging activity, with an IC50 reaching 10.16 µg/mL. The highest synergistic activity was found between fresh “Hayany” fruit extract and amikacin. Novel nano-fresh fruit of “Hayany” date extract was synthesized using a ball-milling technique. The vesicle size was 21.6 nm, while the PDI and zeta potential were 0.32 and +38.4 mV, respectively. The inhibition zone diameters of nano-fresh fruit of “Hayany” date extract/amikacin reached 38 mm and 34 mm, with complete microbial eradication after 9 h and 6 h, against Candida albicans and Staphylococcus aureus, respectively. In conclusion, date fruit extract could be used as a candidate bioactive compound in the fight against infectious diseases.
Collapse
Affiliation(s)
- Abdulghani Ashraf Halabi
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21321, Egypt
- Correspondence:
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Zakia A. Olama
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
10
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|