1
|
Varandas R, Barroso C, Conceição IL, Egas C. Molecular insights into Solanum sisymbriifolium's resistance against Globodera pallida via RNA-seq. BMC PLANT BIOLOGY 2024; 24:1005. [PMID: 39455908 PMCID: PMC11515252 DOI: 10.1186/s12870-024-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND The presence of potato cyst nematodes (PCN) causes a significant risk to potato crops globally, leading to reduced yields and economic losses. While the plant Solanum sisymbriifolium is known for its resistance to PCN and can be used as a trap crop, the molecular mechanisms behind this resistance remain poorly understood. In this study, genes differentially expressed were identified in control and infected plants during the early stages of the S. sisymbriifolium - G. pallida interaction. RESULTS Gene expression profiles were characterized for two S. sisymbriifolium cultivars, Melody and Sis6001, uninfected and infected by G. pallida. The comparative transcriptome analysis revealed a total of 4,087 and 2,043 differentially expressed genes (DEGs) in response to nematode infection in the cultivars Melody and Sis6001, respectively. Gene ontology (GO) enrichment analysis provided insights into the response of the plant to nematode infection, indicating an activation of the plant metabolism, oxidative stress leading to defence mechanism activation, and modification of the plant cell wall. Genes associated with the jasmonic and salicylic acid pathways were also found to be differentially expressed, suggesting their involvement in the plant's defence response. In addition, the analysis of NBS-LRR domain-containing transcripts that play an important role in hypersensitive response and programmed cell death led to the identification of ten transcripts that had no annotations from the databases, with emphasis on TRINITY_DN52667_C1_G1, found to be upregulated in both cultivars. CONCLUSIONS These findings represent an important step towards understanding the molecular basis underlying plant resistance to nematodes and facilitating the development of more effective control strategies against PCN.
Collapse
Affiliation(s)
- Raquel Varandas
- Centre for Functional Ecology-Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal.
| | - Cristina Barroso
- Next Generation Sequencing Unit, Biocant Park, Núcleo 04, Lote 8, Cantanhede, 3060-197, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Pólo I, Coimbra, 3004-504, Portugal
| | - Isabel Luci Conceição
- Centre for Functional Ecology-Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, 3000-456, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, Biocant Park, Núcleo 04, Lote 8, Cantanhede, 3060-197, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Pólo I, Coimbra, 3004-504, Portugal
| |
Collapse
|
2
|
Kumari R, Pandey E, Bushra S, Faizan S, Pandey S. Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. PHYSIOLOGIA PLANTARUM 2024; 176:e14495. [PMID: 39247988 DOI: 10.1111/ppl.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.
Collapse
Affiliation(s)
- Rinkee Kumari
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Ekta Pandey
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Sayyada Bushra
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Ghareeb RY, Jaremko M, Abdelsalam NR, Abdelhamid MMA, El-Argawy E, Ghozlan MH. Biocontrol potential of endophytic fungi against phytopathogenic nematodes on potato (Solanum tuberosum L.). Sci Rep 2024; 14:15547. [PMID: 38969662 PMCID: PMC11229511 DOI: 10.1038/s41598-024-64056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.
Collapse
Affiliation(s)
- Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed M A Abdelhamid
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Eman El-Argawy
- Department of Plant Pathology, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mahmoud H Ghozlan
- Department of Plant Pathology, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Fan Y, He X, Dai J, Yang N, Jiang Q, Xu Z, Tang X, Yu Y, Xiao M. Induced Resistance Mechanism of Bacillus velezensis S3-1 Against Pepper Wilt. Curr Microbiol 2023; 80:367. [PMID: 37819393 DOI: 10.1007/s00284-023-03470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
In recent years, pepper wilt has emerged as a pivotal constraint on pepper yield augmentation. Bacillus velezensis S3-1, with a wide array of hosts, can be used as both a biocontrol agent and biofertilizer. Nonetheless, the precise mechanisms underpinning its employment in combating pepper wilt remain cloaked in ambiguity. In our study, we found that B. velezensis S3-1 could significantly inhibit Fusarium sp. F1T that caused pepper wilt. S3-1 could effectively inhibit both the growth and germination of F1T conidia, leading to a reduction in the spore germination percentage from 83.2 to 37.1% in vitro experiments. Additionally, leaf detachment experiments revealed that the volatile compounds produced by S3-1 could inhibit the spread of pepper leaf spot area. Moreover, we observed a significant decrease in the content of malondialdehyde (MDA) in pepper treated with S3-1, along with a significant increase in the content of soluble protein, polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) in pepper. Furthermore, RT-PCR analysis showed that the expression of the defense genes CaPR 1 and CaPIN II in pepper after treatment with S3-1 was significantly upregulated, suggesting that S3-1 had the potential to induce systemic resistance in pepper, thereby enhancing its disease resistance. Hence, our findings suggest that S3-1 can be a promising biocontrol agent for managing pepper wilt in modern agriculture.
Collapse
Affiliation(s)
- Yongjie Fan
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xingjie He
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Qiuyan Jiang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Xiaorong Tang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Yating Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
5
|
Gohar IMA, Alyamani A, Shafi ME, Mohamed EAE, Ghareeb RY, Desoky EM, Hasan ME, Zaitoun AF, Abdelsalam NR, El-Tarabily KA, Elnahal ASM. A quantitative and qualitative assessment of sugar beet genotype resistance to root-knot nematode, Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2023; 13:966377. [PMID: 36714787 PMCID: PMC9881751 DOI: 10.3389/fpls.2022.966377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Sugar beet productivity is highly constrained by the root-knot nematode (RKN) Meloidogyne incognita. Eight sugar beet genotypes were screened under greenhouse conditions for their susceptibility to M. incognita according to an adapted quantitative scheme for assignment Canto-Saenz's host suitability (resistance) designations (AQSCS). Besides, the degree of susceptibility or tolerance of the examined genotypes was recorded by the modified host-parasite index (MHPI) scale based on yield performance. In addition, single nucleotide polymorphism (SNP) was also determined. Sugar beet genotypes have been classified into four categories for their susceptibility or tolerance according to the AQSCS scale. The first category, the moderately resistant (MR) group implies only one variety named SVH 2015, which did not support nematode reproduction (RF≤1), and had less root damage (GI≈2). Second, the tolerant group (T) involving Lilly and Halawa KWS supported fairly high nematode reproduction (RF>1) with relatively plant damage (GI≤2). Whereas the susceptible (S) category involved four varieties, FARIDA, Lammia KWS, Polat, and Capella, which supported nematode reproduction factor (RF>1) with high plant damage (GI>2). The fourth category refers to the highly susceptible (HYS) varieties such as Natura KWS that showed (RF≤1) and very high plant damage (GI>2). However, the MHPI scale showed that Lammia KWS variety was shifted from the (S) category to the (T) category. Results revealed significant differences among genotypes regarding disease severity, yield production, and quality traits. The SVH 2015 variety exhibited the lowest disease index values concerning population density with 800/250 cm3 soils, RF=2, root damage/gall index (GI=1.8), gall size (GS=2.3), gall area (GA=3.7), damage index (DI=3.4), susceptibility rate (SR=2.4), and MHP index (MHPI=2.5). However, Lammia KWS showed the highest disease index values regarding population density with 8890/250 cm3 soils, RF= 22.2, GI= 4.8, and SR= 14.1. Meanwhile, Natura KWS the highest GS, GA and MHPI with 7.1, 8 and 20.9, respectively. The lowest DI was achieved by Capella (DI= 6) followed by Lammia KWS (DI= 5.9). For yield production, and quality traits, SVH 2015 exhibited the lowest reductions of sugar yields/beet's root with 11.1%. While Natura KWS had the highest reduction with 79.3%, as well as it showed the highest reduction in quality traits; including sucrose, T.S.S, and purity with 65, 27.3, and 51.9%, respectively. The amino acid alignment and prediction of the DNA sequences revealed the presence of five SNPs among all sugar beet verities.
Collapse
Affiliation(s)
- Ibrahim M. A. Gohar
- Sugar Crops Research Institute, Department of Sugar Crops Disease and Pests Research, Agricultural Research Center, Giza, Egypt
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elshaimaa A. E. Mohamed
- Sugar Crops Research Institute, Department of Genetic and Breeding, Agricultural Research Center, Giza, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Elsayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amera F. Zaitoun
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed S. M. Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR, Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.934031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study revealed the possible effects of various levels of silver nanoparticle (AgNP) application on plant diseases and soil microbial diversity. It investigated the comparison between the application of AgNPs and two commercial nanoproducts (Zn and FeNPs) on the rhizobacterial population and Botrytis fabae. Two experiments were conducted. The first studied the influence of 13 AgNP concentration on soil bacterial diversity besides two other commercial nanoparticles, ZnNPs (2,000 ppm) and FeNPs (2,500 ppm), used for comparison and application on onion seedlings. The second experiment was designed to determine the antifungal activity of previous AgNP concentrations (150, 200, 250, 300, 400, and 500 ppm) against B. fabae, tested using commercial fungicide as control. The results obtained from both experiments revealed the positive impact of AgNPs on the microbial community, representing a decrease in both the soil microbial biomass and the growth of brown spot disease, affecting microbial community composition, including bacteria, fungi, and biological varieties. In contrast, the two commercial products displayed lower effects compared to AgNPs. This result clearly showed that the AgNPs strongly inhibited the plant pathogen B. fabae growth and development, decreasing the number of bacteria (cfu/ml) and reducing the rhizosphere. Using AgNPs as an antimicrobial agent in the agricultural domain is recommended.
Collapse
|
7
|
Mosa WFA, Mackled MI, Abdelsalam NR, Behiry SI, Al-Askar AA, Basile A, Abdelkhalek A, Elsharkawy MM, Salem MZM. Impact of Silver Nanoparticles on Lemon Growth Performance: Insecticidal and Antifungal Activities of Essential Oils From Peels and Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:898846. [PMID: 35677237 PMCID: PMC9168914 DOI: 10.3389/fpls.2022.898846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 05/06/2023]
Abstract
Ten-year-old lemon (Citrus limon L. cv. Eureka) was used during the 2019 and 2020 seasons to investigate the effect of AgNPs at control, 5, 7.5, and 10 mg/L as a foliar application on vegetative growth, yield, and fruit quality. The selected trees were subjected to agricultural practices applied in the field during the study. The results indicated that the foliar application of AgNPs positively improved the shoot length, total chlorophyll, flower, and fruit set percentage, fruit yield, physical and chemical characteristics of fruits, and leaf mineral composition from macro and micronutrients compared to control in both seasons. The foliar application of AgNPs at 10 mg/L showed the highest mean values followed by 7.5 and 5 mg/L, respectively, for the previous characteristics. The treated leaves and fruit peels were hydrodistillated to extract the essential oils (EOs), and GC-MS analysis of leaf EOs. The analysis of leaves EOs showed the presence of neral, geranial, neryl acetate, and limonene as the main abundant bioactive compounds. While in peel the main compounds were neral, geranial, neryl acetate, D-limonene, geraniol acetate, linalool, and citronellal. Toxin effect of both EOs from leaves and peels were evaluated on the rice weevils (Sitophilus oryzae) and the results indicated a higher effect of lemon peel EOs than leaves based on mortality percentage and the values of LC50 and LC95 mg/L. Melia azedarach wood samples loaded with the produced lemon EOs were evaluated for their antifungal activity against the molecularly identified fungus, Fusarium solani (acc # OL410542). The reduction in mycelial growth was increased gradually with the applied treatments. The most potent activity was found in lemon leaf EOs, while peel EOs showed the lowest reduction values. The mycelial growth reduction percentages reached 72.96 and 52.59%, by 0.1% leaf and peel EOs, respectively, compared with control.
Collapse
Affiliation(s)
- Walid F. A. Mosa
- Department of Plant Production (Horticulture-Pomology), Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Marwa I. Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Said I. Behiry
- Department of Agricultural Botany, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ahmed Abdelkhalek
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El Arab City, Egypt
| | - Mohsen M. Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Mohamed Z. M. Salem
- Department of Forestry and Wood Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Ibrahim IAE, Yehia WMB, Saleh FH, Lamlom SF, Ghareeb RY, El-Banna AAA, Abdelsalam NR. Impact of Plant Spacing and Nitrogen Rates on Growth Characteristics and Yield Attributes of Egyptian Cotton ( Gossypium barbadense L.). FRONTIERS IN PLANT SCIENCE 2022; 13:916734. [PMID: 35646020 PMCID: PMC9135022 DOI: 10.3389/fpls.2022.916734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
This current study was performed to determine the influences of plant spacing, Nitrogen (N) fertilization rate and their effect, on growth traits, yield, and yield components of cotton (Gossypium barbadense L.) cv. Giza 97 during the 2019 and 2020 seasons. A split plot experiment in three replicates was utilized whereas the cotton seeds were planted at 20, 30, and 40 cm, as main plots and nitrogen at 75, 100, and 125%, was in subplots. The results revealed that the planting spacing at 40 cm significantly (p ≤ 0.01) increased plant height, number of fruiting branches per plant, number of bolls per plant, boll weight (BW), lint percentage (L%), seed cotton yield (SCY), lint cotton yield (LCY), seed index and lint index by 165.68 cm, 20.92, 23.93, 3.75 g, 42.01%, 4.24 ton/ha, 5.16 ton/ha, 12.05, 7.86, respectively, as average in both seasons. The application of N fertilizer rate at 125% caused a maximum increase in growth and yield parameters i.e., plant height (169.08 cm), number of vegetative branches (2.67), number of fruiting branches per plant (20.82), number bolls per fruiting branch (1.39), number of bolls per plant (23.73), boll weight (4.1 g), lint percent (41.9%), seed index (11.8 g), and lint index (8.2), while the plants treated with 100% N rates exhibited highest seed cotton yield (4.3 ton/ha) and lint cotton yield (5.6 ton/ha), as average in both seasons. Combining plant spacing at 40 cm between plants with a 100% N fertilizer rate recorded the highest lint cotton yield (5.67 ton/ha), while the highest seed cotton yield (4.43 and 4.50 ton/ha) was obtained from 125% N fertilizer rate under planting spacing 20 and 40 cm, respectively. Conclusively, a wide density (40 cm) with 125% N is a promising option for improved biomass, cotton growth, yield, physiological traits, and fiber quality.
Collapse
Affiliation(s)
- Ibrahim A. E. Ibrahim
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | | | - Fouad H. Saleh
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Sobhi F. Lamlom
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Aly A. A. El-Banna
- Department of Plant Production, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|