1
|
Ernstsen C, Obelitz-Ryom K, Kristensen DMB, Olesen J, Christensen SL, Guo S. Mechanisms of GTN-induced migraine: Role of NOS isoforms, sGC and peroxynitrite in a migraine relevant mouse model. Cephalalgia 2024; 44:3331024241277542. [PMID: 39314067 DOI: 10.1177/03331024241277542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Migraine research has highlighted the pivotal role of nitric oxide (NO) in migraine pathophysiology. Nitric oxide donors such as glyceryl trinitrate (GTN) induce migraine attacks in humans, whereas spontaneous migraine attacks can be aborted by inhibiting NO production. The present study aimed to investigate how GTN triggers migraine through its three nitric oxide synthase (NOS) isoforms (neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)) via a suspected feed-forward phenomenon. METHODS Migraine-relevant hypersensitivity was induced by repeated injection of GTN in an in vivo mouse model. Cutaneous tactile sensitivity was assessed using von Frey filaments. Signaling pathways involved in this model were dissected using non-selective and selective NOS inhibitors, knockout mice lacking eNOS or nNOS and their wild-type control mice. Also, we tested a soluble guanylate cyclase inhibitor and a peroxynitrite decomposition catalyst (Ntotal = 312). RESULTS Non-selective NOS inhibition blocked GTN-induced hypersensitivity. This response was partially associated with iNOS, and potentially nNOS and eNOS conjointly. Furthermore, we found that the GTN response was largely dependent on the generation of peroxynitrite and partly soluble guanylate cyclase. CONCLUSIONS Migraine-relevant hypersensitivity induced by GTN is mediated by a possible feed-forward phenomenon of NO driven mainly by iNOS but with contributions from other isoforms. The involvement of peroxynitrite adds to the notion that oxidative stress reactions are also involved.
Collapse
Affiliation(s)
- Charlotte Ernstsen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Karina Obelitz-Ryom
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - David Møbjerg B Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- University Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S, 1085, Rennes, France
| | - Jes Olesen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center (TRACE), Copenhagen University Hospital - Rigshospitalet Glostrup, Copenhagen, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
2
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Wells-Gatnik WD, Wences Chirino TY, Onan FN, Onan D, Martelletti P. Emerging experimental drugs in clinical trials for migraine: observations and key talking points. Expert Opin Investig Drugs 2023; 32:761-771. [PMID: 37672405 DOI: 10.1080/13543784.2023.2254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION There have been significant advances in the treatment of migraine. In response to the clinical success of monoclonal antibodies targeting calcitonin gene-related peptide, there is interest in the clinical trial outcomes of alternative emerging drugs that act on novel targets associated with migraine pathophysiology. As approximately 50% of patients do not respond to CGRP therapies, there is significant value in future drug innovation. Emerging drugs in clinical trials for the treatment of migraine aim to fill this need. AREAS COVERED The emerging drugs that will be discussed in this review include zavegepant, lasmiditan, delta opioid receptor agonists, neuronal nitric oxide synthase inhibitors, monoclonal antibodies targeting pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor, dual orexin receptor antagonists, metabotropic glutamate receptor 5 antagonists, and inducers of ketosis. EXPERT OPINION When considering the preclinical and clinical research related to the emerging drug classes discussed in this review, most therapies are derived from highly supported targets of migraine pathogenesis. Although the individual drugs discussed in this review may be of dubious clinical value, the importance of the therapeutic targets on which they act cannot be understated. Future research is necessary to appropriately target the pathways elucidated by preclinical studies.
Collapse
Affiliation(s)
| | | | | | - Dilara Onan
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Mauchauffée E, Leroy J, Chamcham J, Ejjoummany A, Maurel M, Nauton L, Ramassamy B, Mezghenna K, Boucher JL, Lajoix AD, Hernandez JF. S-Ethyl-Isothiocitrullin-Based Dipeptides and 1,2,4-Oxadiazole Pseudo-Dipeptides: Solid Phase Synthesis and Evaluation as NO Synthase Inhibitors. Molecules 2023; 28:5085. [PMID: 37446746 DOI: 10.3390/molecules28135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
We previously reported dipeptidomimetic compounds as inhibitors of neuronal and/or inducible NO synthases (n/iNOS) with significant selectivity against endothelial NOS (eNOS). They were composed of an S-ethylisothiocitrullin-like moiety linked to an extension through a peptide bond or a 1,2,4-oxadiazole link. Here, we developed two further series where the extension size was increased to establish more favorable interactions in the NOS substrate access channel. The extension was introduced on the solid phase by the reductive alkylation of an amino-piperidine moiety or an aminoethyl segment in the case of dipeptide-like and 1,2,4-oxadiazole compounds, respectively, with various benzaldehydes. Compared to the previous series, more potent inhibitors were identified with IC50 in the micromolar to the submicromolar range, with significant selectivity toward nNOS. As expected, most compounds did not inhibit eNOS, and molecular modeling was carried out to characterize the reasons for the selectivity toward nNOS over eNOS. Spectral studies showed that compounds were interacting at the heme active site. Finally, selected inhibitors were found to inhibit intra-cellular iNOS and nNOS expressed in RAW264.7 and INS-1 cells, respectively.
Collapse
Affiliation(s)
- Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jihanne Chamcham
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Lionel Nauton
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, CNRS, 63178 Aubière, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| |
Collapse
|
5
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Abstract
INTRODUCTION Migraine is a common and disabling neurological disorder. A greater understanding of the pathophysiological mechanisms underlying migraine has led to the availability of specific new drugs targeting calcitonin gene-related peptide (CGRP). The success of the CGRP inhibitors validates research efforts into migraine-specific therapies. AREAS COVERED There are additional promising therapeutic targets that will be covered in this paper, focusing on the pain phase. They include pituitary adenylate cyclase-activating polypeptide (PACAP), the orexinergic system, the nitric oxide signaling pathway specifically neuronal nitric oxide synthase inhibitors (nNOSi), and metabotropic glutamate receptor 5 (mGluR5). EXPERT OPINION Based on currently available research; the targets discussed in this paper are all on equal footing with each other in terms of their potential as effective novel migraine therapies. There is a need for more clinical trials to pinpoint which of these potential drug targets will be effective for migraine preventio.
Collapse
Affiliation(s)
- Oyindamola Ogunlaja
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Nazia Karsan
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Peter Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK.,Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Villar-Martínez MD, Moreno-Ajona D, Chan C, Goadsby PJ. Indomethacin-responsive headaches-A narrative review. Headache 2021; 61:700-714. [PMID: 34105154 DOI: 10.1111/head.14111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Indomethacin is a nonsteroidal anti-inflammatory drug whose mechanism of action in certain types of headache disorders remains unknown. The so-called indomethacin-responsive headache disorders consist of a group of conditions with a very different presentation that have a particularly good response to indomethacin. The response is so distinct as to be used in the definition of two: hemicrania continua and paroxysmal hemicrania. METHODS This is a narrative literature review. PubMed and the Cochrane databases were used for the literature search. RESULTS We review the main pharmacokinetic and pharmacodynamics properties of indomethacin useful for daily practice. The proposed mechanisms of action of indomethacin in the responsive headache disorders, including its effect on cerebral blood flow and intracranial pressure, with special attention to nitrergic mechanisms, are covered. The current evidence for its use in primary headache disorders, such as some trigeminal autonomic cephalalgias, cough, hypnic, exertional or sexual headache, and migraine will be covered, as well as its indication for secondary headaches, such as those of posttraumatic origin. CONCLUSION Increasing understanding of the mechanism(s) of action of indomethacin will enhance our understanding of the complex pathophysiology that might be shared by indomethacin-sensitive headache disorders.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martínez
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Moreno-Ajona
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Chan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Waliszewska-Prosół M, Nowakowska-Kotas M, Chojdak-Łukasiewicz J, Budrewicz S. Migraine and Sleep-An Unexplained Association? Int J Mol Sci 2021; 22:ijms22115539. [PMID: 34073933 PMCID: PMC8197397 DOI: 10.3390/ijms22115539] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/14/2023] Open
Abstract
Migraine and sleep disorders are common chronic diseases in the general population, with significant negative social and economic impacts. The association between both of these phenomena has been observed by clinicians for years and is confirmed by many epidemiological studies. Despite this, the nature of this relationship is still not fully understood. In recent years, there has been rapid progress in understanding the common anatomical structures of and pathogenetic mechanism between sleep and migraine. Based on a literature review, the authors present the current view on this topic as well as ongoing research in this field, with reference to the key points of the biochemical and neurophysiological processes responsible for both these disorders. In the future, a better understanding of these mechanisms will significantly expand the range of treatment options.
Collapse
|
9
|
Dao VTV, Elbatreek MH, Fuchß T, Grädler U, Schmidt HHHW, Shah AM, Wallace A, Knowles R. Nitric Oxide Synthase Inhibitors into the Clinic at Last. Handb Exp Pharmacol 2021; 264:169-204. [PMID: 32797331 DOI: 10.1007/164_2020_382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thomas Fuchß
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Ulrich Grädler
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Alan Wallace
- Health and Life Sciences, Coventry University, Coventry, UK
| | - Richard Knowles
- Knowles Consulting Ltd., The Stevenage Bioscience Catalyst, Stevenage, UK.
| |
Collapse
|
10
|
Ran C, Michalska JM, Fourier C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. Analysis of NOS Gene Polymorphisms in Relation to Cluster Headache and Predisposing Factors in Sweden. Brain Sci 2020; 11:brainsci11010034. [PMID: 33396232 PMCID: PMC7824326 DOI: 10.3390/brainsci11010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Cluster headache is characterized by activation of the autonomic-trigeminal reflex. Nitric oxide can trigger headaches in patients, and nitric oxide signaling is known to be affected in cluster headache. Based on the hypothesis of nitric oxide being involved in cluster headache pathophysiology we investigated nitric oxide synthases as potential candidate genes for cluster headache. We analyzed eight variants in the three forms of nitric oxide synthase (NOS) genes, inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS), and tested for association with cluster headache. Swedish cluster headache patients (n = 542) and controls (n = 581) were genotyped using TaqMan® assays on an Applied Biosystems 7500 qPCR cycler. This is the largest performed genetic study on NOS involvement in cluster headache so far. We found an association between cluster headache and one iNOS haplotype consisting of the minor alleles of rs2297518 and rs2779249 (p = 0.022). In addition, one of the analyzed nNOS variants, rs2682826, was associated with reported triptan use (p = 0.039). Our data suggest that genetic variants in NOS genes do not have a strong influence on cluster headache pathophysiology, but that certain combinations of genetic variants in NOS genes may influence the risk of developing the disorder or triptan use.
Collapse
Affiliation(s)
- Caroline Ran
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
- Correspondence: ; Tel.: +46-(0)8-5248-7051
| | - Julia M. Michalska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Andrea C. Belin
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| |
Collapse
|
11
|
Lu F, Zhang WJ, Zhai S, Sun YW, Chen QJ, Yang XL, Zhang CF, Wang CZ, Yuan CS. Anti-migraine effect of wine-processed Radix scutellariae: Pharmacodynamic verification in nitroglycerin-induced rats and correlation study between compounds dissolution and the fractal dimension. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113131. [PMID: 32730879 DOI: 10.1016/j.jep.2020.113131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/11/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wine-processed Radix scutellariae (RS) is the processed product of RS, which is the dried root of Scutellaria baicalensis Georgi. It is recorded in Chinese traditional formula that wine-processed RS has the effect of anti-migraine, while the effect has not been confirmed and the possible mechanism remains unclear. AIM OF THE STUDY To verify the anti-migraine effect of wine-processed RS in nitroglycerin (NTG)-induced rats and explore the correlation between compounds dissolution and the pore structure based on fractal theory. MATERIALS AND METHODS In the validation of pharmacodynamics, the effects of wine-processed RS on migraines were firstly evaluated by observing the number of head-scratching of rats, then investigated by determining the levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP) and the expression of c-Fos in the brain of NTG-induced rat models using ELISA and immunohistochemical assessments. In the correlation study, the stir-frying time of RS was set to 5 min, 10 min and 15 min. The scanning electron microscope (SEM) and mercury intrusion method were used to explore the pore structure and main parameters of the pore structure including pore size distribution, pore volume, porosity, surface area and fractal dimension. The compounds dissolution of total flavonoids and five major components containing baicalein, baicalin, scutellarin, wogonin and wogonoside was determined by UV-Vis spectrophotometry and HPLC separately. RESULTS The animal experiments had shown that wine-processed RS could significantly reduce the head-scratching times of NTG-induced rat models (p < 0.01) and markedly decrease the levels of NO (p < 0.01), CGRP (p < 0.05) and the expression of c-Fos (p < 0.01) compared with model group. The data indicated that wine-processing would affect the dissolution of compounds by changing the pore structure of RS. The order of positive correlation between pore structure parameters and compounds' dissolution was total surface area > fractal dimension (r > 0) and the order of negative correlation was average pore size > total porosity > total volume (r < 0). Compared with the other sample groups (p < 0.05), the wine-processed RS stir-fried for 10 min had a pore structure which was more favorable for compounds dissolution. CONCLUSIONS Wine-processing could strengthen the anti-migraine effect of RS by changing the pore structure of RS, which is linked to the dissolution of compounds. The RS stir-fried for 10 min may be more effective in treating migraine.
Collapse
Affiliation(s)
- Fang Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China
| | - Wen-Jun Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China
| | - Shuo Zhai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China
| | - Yue-Wen Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China
| | - Qiu-Jing Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, JS, 210009, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Touati-Jallabe Y, Tintillier T, Mauchauffée E, Boucher JL, Leroy J, Ramassamy B, Hamzé A, Mezghenna K, Bouzekrini A, Verna C, Martinez J, Lajoix AD, Hernandez JF. Solid-Phase Synthesis of Substrate-Based Dipeptides and Heterocyclic Pseudo-dipeptides as Potential NO Synthase Inhibitors. ChemMedChem 2020; 15:517-531. [PMID: 32027778 DOI: 10.1002/cmdc.201900659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Indexed: 11/06/2022]
Abstract
More than 160 arginine analogues modified on the C-terminus via either an amide bond or a heterocyclic moiety (1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,4-triazole) were prepared as potential inhibitors of NO synthases (NOS). A methodology involving formation of a thiocitrulline intermediate linked through its side-chain on a solid support followed by modification of its carboxylate group was developed. Finally, the side-chain thiourea group was either let unchanged, S-alkylated (Me, Et) or guanidinylated (Me, Et) to yield respectively after TFA treatment the corresponding thiocitrulline, S-Me/Et-isothiocitrulline and N-Me/Et-arginine substrate analogues. They all were tested against three recombinant NOS isoforms. Several compounds containing a S-Et- or a S-Me-Itc moiety and mainly belonging to both the dipeptide-like and 1,2,4-oxadiazole series were shown to inhibit nNOS and iNOS with IC50 in the 1-50 μM range. Spectral studies confirmed that these new compounds interacted at the heme active site. The more active compounds were found to inhibit intra-cellular iNOS expressed in RAW264.7 and INS-1 cells with similar efficiency than the reference compounds L-NIL and SEIT.
Collapse
Affiliation(s)
- Youness Touati-Jallabe
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Avara Pharmaceutical Services, Boucherville, QC, J4B 7 K8, Canada
| | - Thibault Tintillier
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Asymptote Project Management, 1 rue Edisson, 69500, Bron, France
| | - Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Abdallah Hamzé
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Current address: BioCIS, UMR 8076, CNRS, Université Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Amine Bouzekrini
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Claudia Verna
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| |
Collapse
|
13
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
15
|
Lambru G, Andreou AP, Guglielmetti M, Martelletti P. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs 2018; 23:301-318. [PMID: 30484333 DOI: 10.1080/14728214.2018.1552939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Migraine is a very frequent and disabling neurological disorder. The current treatment options are old, generally poorly tolerated and not migraine-specific, reflecting the low priority of migraine research and highlighting the vast unmet need in its management. Areas covered: Advancement in the understanding of migraine pathophysiological mechanisms and identification of novel potentially meaningful targets have resulted in a multitude of emerging acute and preventive treatments. Here we review the known putative migraine pathophysiological mechanisms in order to understand the rationale of the most promising novel treatments targeting the Calcitonin-Gene-Related Peptide receptor and ligand and the 5 hydroxytryptamine (5-HT)1F receptor. Key findings on the phase II and phase III clinical trials on these treatments will be summarized. Furthermore, a critical analysis on failed trials of potentially meaningful targets such the nitric oxide and the orexinergic pathways will be conducted. Future perspective will be outlined. Expert opinion: The recent approval of Erenumab and Fremanezumab is a major milestone in the therapy of migraine since the approval of triptans. Several more studies are needed to fully understand the clinical potential, long-term safety and cost-effectiveness of these therapies. This paramount achievement should stimulate the development of further research in the migraine field.
Collapse
Affiliation(s)
- Giorgio Lambru
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Anna P Andreou
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Martina Guglielmetti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
16
|
Schytz HW, Hargreaves R, Ashina M. Challenges in developing drugs for primary headaches. Prog Neurobiol 2017; 152:70-88. [DOI: 10.1016/j.pneurobio.2015.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022]
|
17
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1104] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Macone AE, Perloff MD. Triptans and migraine: advances in use, administration, formulation, and development. Expert Opin Pharmacother 2017; 18:387-397. [DOI: 10.1080/14656566.2017.1288721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amanda E. Macone
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Michael D. Perloff
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
Goadsby PJ. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain 2016; 139:2571-2577. [PMID: 27671024 DOI: 10.1093/brain/aww236] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
20
|
Diener HC, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol 2015; 14:1010-22. [PMID: 26376968 DOI: 10.1016/s1474-4422(15)00198-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023]
Abstract
The management of patients with migraine is often unsatisfactory because available acute and preventive therapies are either ineffective or poorly tolerated. The acute treatment of migraine attacks has been limited to the use of analgesics, combinations of analgesics with caffeine, ergotamines, and the triptans. Successful new approaches for the treatment of acute migraine target calcitonin gene-related peptide (CGRP) and serotonin (5-hydroxytryptamine, 5-HT1F) receptors. Other approaches targeting the transient receptor potential vanilloid (TRPV1) receptor, glutamate, GABAA receptors, or a combination of 5-HT1B/1D receptors and neuronal nitric oxide synthesis have been investigated but have not been successful in clinical trials thus far. In migraine prevention, the most promising new approaches are humanised antibodies against CGRP or the CGRP receptor. Non-invasive and invasive neuromodulation approaches also show promise as both acute and preventive therapies, although further studies are needed to define appropriate candidates for these therapies and optimum protocols for their use.
Collapse
Affiliation(s)
- Hans-Christoph Diener
- Department of Neurology and Headache Center, University of Duisburg-Essen, Essen, Germany.
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Dagny Holle
- Department of Neurology and Headache Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
22
|
Validity of conclusions on treatment efficacy: Difficulties in patient recruitment and a large number of drop-outs may lead to bias. Scand J Pain 2013; 4:46-47. [DOI: 10.1016/j.sjpain.2012.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|