1
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Pourhassan J, Sarginson J, Hitzl W, Richter K. Cognitive function in soccer athletes determined by sleep disruption and self-reported health, yet not by decision-reinvestment. Front Neurol 2023; 13:872761. [PMID: 36814538 PMCID: PMC9939841 DOI: 10.3389/fneur.2022.872761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Sleep disruption (SD) increases sympathetic activity and cortisol secretion, and delays cognitive functions such as reaction-time (RT). Sympathetic activity of disturbed sleepers, is similar to those of so-called decision-reinvesters. Decision-reinvestment refers to traits in individuals with greater tendency to ruminate and reinvest in their decisions, with significant decrease in both motor-control and cognitive performance. Decision-making quality is a crucial attribute to athletic performance which relies on RT. Consequently, SD affects pitch-performance negatively, particularly in decision-reinvesters. This observational pilot-study examined the relationship between SD and cognitive function, perceived health, as well as reinvestment strategies. The hypothesis was that athletes with lower SD perceive their health better, report lower stress levels, perform better in cognitive tasks, and show lower tendency for decision-reinvestment. Methods Twenty-one football player recorded their sleep with fit-trackers for 7 nights. Participants self-reported their mental and physical health, decision-reinvestment strategy, sleep behaviour, and perceived stress levels. Athletes then performed a set of cognitive tests to examine memory function (Backwards Corsi), selective attention (STROOP), and cognitive flexibility (Wisconsin Card Sorting Test, WCST). Normality was tested with a Shapiro-Wilk test, and analysed with a Pearson's or Spearman's correlation test. Results Significant correlation appeared between extended sleep-interruptions and Backwards Corsi RT, r = 0.66, p = 0.010, as further in total sleep time and wellbeing r = 0.50, p = 0.029. A negative correlation exist in regard of pain scores and Backwards Corsi scores r = -0.57, p = 0.110. Physical health correlated with error-rates in the WCST, r = 0.69, p ≤ 0.001. Also, reinvestment negatively correlated with physical health, r = -0.80, p ≤ 0.001. Conclusion Wellbeing relies on total sleep-time. Athletes with extended sleep-interruptions are slower in recalling memory, and those with greater reported pain have lower memory scores. Participants who rate physical health greater, have more error-rates in the WCST; indicating that cognitive flexibility is enhanced in individuals with inferior perceived health. However, individuals with lower physical health scores also have greater tendency to ruminate and reinvest in decisions, suggesting interrelation between reinvestment and physical health.
Collapse
Affiliation(s)
- Jasmin Pourhassan
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom,University Clinic for Psychiatry and Psychotherapy, Klinikum Nuernberg, Paracelsus Medical University, Nuremberg, Germany,*Correspondence: Jasmin Pourhassan ✉
| | - Jane Sarginson
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Wolfgang Hitzl
- Department Research and Innovation Management (RIM), Biostatistics and Publication of Clinical Trial Studies, Paracelsus Medical University, Salzburg, Austria,Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria,Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Kneginja Richter
- University Clinic for Psychiatry and Psychotherapy, Klinikum Nuernberg, Paracelsus Medical University, Nuremberg, Germany,Faculty for Social Work, Technical University for Applied Sciences, Nuremberg, Germany,Faculty for Medical Sciences, Goce Delcev University, Stip, North Macedonia,Kneginja Richter ✉
| |
Collapse
|
3
|
Wong SG, Vorakunthada Y, Lee-Iannotti J, Johnson KG. Sleep-related motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:383-397. [PMID: 37562879 DOI: 10.1016/b978-0-323-98818-6.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sleep-related motor disorders include non-rapid-eye movement (NREM) sleep parasomnias, rapid-eye movement (REM), sleep parasomnias including REM sleep behavior disorder (RBD), isolated motor phenomena in sleep, and periodic limb movement disorder. Restless legs syndrome (RLS) occurs while awake but is closely related to sleep and has a circadian pattern. The pontine sublaterodorsal tegmental nucleus has an important role in aligning motor control with sleep states, and dysfunction in this region can explain motor activities including cataplexy and loss of REM atonia seen in REM sleep behavior disorder. This chapter begins with a review of motor control in sleep. The rest of the chapter summarizes the clinical presentation, epidemiology, differential and treatment of NREM, REM, and isolated sleep-related motor disorders as well as restless legs syndrome.
Collapse
Affiliation(s)
- Stephanie G Wong
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Yuttiwat Vorakunthada
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Joyce Lee-Iannotti
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Karin G Johnson
- Department of Neurology, University of Massachusetts Chan School of Medicine-Baystate, Springfield, MA, United States; Institute for Healthcare Delivery and Population Science, University of Massachusetts Chan School of Medicine-Baystate, Springfield, MA, United States.
| |
Collapse
|
4
|
Ralls F, Cutchen L, Grigg-Damberger MM. What Is the Prognostic Significance of Rapid Eye Movement Sleep Without Atonia in a Polysomnogram? J Clin Neurophysiol 2022; 39:346-355. [PMID: 35239559 DOI: 10.1097/wnp.0000000000000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Freud said we are lucky to be paralyzed during sleep, so we cannot act out our dreams. Atonia of skeletal muscles normally present during rapid eye movement sleep prevents us from acting out our dreams. Observing rapid eye movement sleep without atonia in a polysomnogram in older adults first and foremost warrants consideration of rapid eye movement behavior disorder. Seventy-five to 90% of older adults with isolated rapid eye movement behavior disorder will develop a neurodegenerative disease within 15 years, most often a synucleinopathy. Rapid eye movement sleep without atonia in those younger than 50 years is commonly found in individuals with narcolepsy and those taking antidepressant medications.
Collapse
Affiliation(s)
- Frank Ralls
- New Mexico Sleep Labs, Rio Rancho, New Mexico, U.S.A
| | - Lisa Cutchen
- Omni Sleep, Albuquerque, New Mexico, U.S.A.; and
| | | |
Collapse
|
5
|
Gelegen C, Cash D, Ilic K, Sander M, Kim E, Simmons C, Bernanos M, Lama J, Randall K, Brown JT, Kalanj-Bognar S, Cooke S, Ray Chaudhuri K, Ballard C, Francis P, Rosenzweig I. Relevance of sleep and associated structural changes in GBA1 mouse to human rapid eye movement behavior disorder. Sci Rep 2022; 12:7973. [PMID: 35562385 PMCID: PMC9105586 DOI: 10.1038/s41598-022-11516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a REM parasomnia that often predicts the later occurrence of alpha-synucleinopathies. Variants in the gene encoding for the lysosomal enzyme glucocerebrosidase, GBA, strongly increase the risk of RBD. In a GBA1-mouse model recently shown to mimic prodromal stages of α-synucleinopathy, we now demonstrate striking REM and NREM electroencephalographic sleep abnormalities accompanied by distinct structural changes in the more widespread sleep neurocircuitry.
Collapse
Affiliation(s)
- Cigdem Gelegen
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK
- Basic and Clinical Neuroscience, IoPPN, KCL, London, UK
| | - Diana Cash
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK
- BRAIN, Department of Neuroimaging, KCL, London, UK
| | - Katarina Ilic
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Millie Sander
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Eugene Kim
- BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | | | - Joana Lama
- Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, KCL, London, UK
| | | | - Jonathan T Brown
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Samuel Cooke
- Basic and Clinical Neuroscience, IoPPN, KCL, London, UK
| | - K Ray Chaudhuri
- King's College London and Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Paul Francis
- College of Medicine and Health, University of Exeter, Exeter, UK
- Institute of Psychiatry, Psychology and Neuroscience, Wolfson Centre for Age-Related Diseases, Guy's Campus, KCL, London, UK
| | - Ivana Rosenzweig
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.
- Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
6
|
Systematic video-analysis of motor events during REM sleep in idiopathic REM sleep behavior disorder, follow-up and DAT-SPECT. Sleep Med 2021; 83:132-144. [PMID: 33993030 DOI: 10.1016/j.sleep.2021.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/19/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
Abnormal motor manifestations in REM sleep are the most visible feature of idiopathic REM sleep behavior disorder (iRBD), which precedes the overt alpha-synucleinopathy. The aim of this study was to perform a systematic visual analysis of the motor events (ME) captured during video-polysomnography, and clarify their relation to the disease severity. Thirty-four iRBD patients (5 women, 29 men; age 67.7 ± 7.2) with a mean follow-up duration 2.9 ± 1.1 years. and 33 controls (10 women, 23 men; age 61.5 ± 8.2) were examined. The ME captured during REM sleep were classified into four categories, previously defined by Frauscher et al. according to clinical severity: minor/simple jerks, major, complex and violent. An average frequency of 110.8 ± 75.2 ME per hour were identified in iRBD, 7.5 ± 11.6 in the controls (p < 0.001). Of these ME, 68.4% were classified as minor/simple jerks, 9.3% as major, 21.7% as complex and 0.7% as violent. The ME frequency was negatively associated with tracer binding on dopamine transporter single-photon emission computed tomography (DAT-SPECT); the association was stronger for caudate nucleus compared to putamen. During follow-up seven patients (24.1%) phenoconverted, yielding a yearly phenoconversion rate 8.3%. Violent ME were associated with increased hazard ratio for phenoconversion in frequency (p = 0.012) and total duration (p = 0.007). Patients with higher amounts of violent ME had a greater risk of phenoconversion; therefore, their role as a predictor should be considered. Additionally, ME were associated with nigrostriatal degeneration, according to DAT-SPECT. These findings indicate that the degree of the clinical severity of motor manifestations in iRBD reflects the severity of the disease.
Collapse
|
7
|
Whole blood transcriptome analysis using RNA sequencing in individuals with insomnia disorder and good sleepers: a pilot study. Sleep Med 2021; 80:1-8. [PMID: 33530007 DOI: 10.1016/j.sleep.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Insomnia is a highly prevalent condition that is associated with negative health outcomes, yet little is known about the underlying molecular mechanisms. METHOD RNA sequencing was conducted using blood samples from 15 individuals with primary insomnia and 15 age- and gender-matched good sleeper controls. The RNA library was sequenced with 150 base pair paired-ends on the Illumina NovaSeq-6000 platform. Alignment was performed using human reference genome hg38. Differential gene expression analysis was performed using DESeq2 following alignment, using log fold change ±0.50, and had a false discovery rate p-value <0.05. Pathway analysis was performed using Ingenuity Pathway Analysis. RESULTS We found 288 differentially expressed genes in insomnia patients when compared to controls. Upregulated genes included LINC02224 (Long Intergenic Non-Protein Coding RNA 2224), DUX4L9 (Double Homeobox 4 Like 9), and TUSC3 (Tumor Suppressor Candidate 3) and down regulated genes included CTXN2 (Cortexin 2), CSMD1 (CUB And Sushi Multiple Domains 1), and SLC12A1 (Solute Carrier Family 12 Member 1). Ingenuity® Pathway Analysis (IPA) revealed 3 associated networks (score>40) with genes and hubs related to inflammation (nuclear factor-kB), oxidative stress (Mitochondrial complex 1) and ubiquitination. CONCLUSION Differentially expressed genes in this analysis are functionally associated with inflammation and immune response, mitochondrial and metabolic processes. Further research into the transcriptomic changes in insomnia is needed to understand related pathways to the disorder and provide new avenues for diagnostics and therapeutics.
Collapse
|
8
|
Zitser J, During EH, Chiaro G, Miglis MG. Autonomic impairment as a potential biomarker in idiopathic REM-sleep-behavior disorder. Auton Neurosci 2019; 220:102553. [DOI: 10.1016/j.autneu.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
|
9
|
Nepozitek J, Dostalova S, Dusek P, Kemlink D, Prihodova I, Ibarburu Lorenzo y Losada V, Friedrich L, Bezdicek O, Nikolai T, Perinova P, Dall’Antonia I, Dusek P, Ruml M, Ruzicka E, Sonka K. Simultaneous tonic and phasic REM sleep without atonia best predicts early phenoconversion to neurodegenerative disease in idiopathic REM sleep behavior disorder. Sleep 2019; 42:5516479. [DOI: 10.1093/sleep/zsz132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Study Objectives
Rapid eye movement (REM) sleep without atonia (RWA) is the main polysomnographic feature of idiopathic REM sleep behavior disorder (iRBD) and is considered to be a promising biomarker predicting conversion to manifested synucleinopathy. Besides conventionally evaluated tonic, phasic and any RWA, we took into consideration also periods, when phasic and tonic RWA appeared simultaneously and we called this activity “mixed RWA.” The study aimed to evaluate different types of RWA, to reveal the most relevant biomarker to the conversion.
Methods
A total of 55 patients with confirmed iRBD were recruited with mean follow-up duration 2.3 ± 0.7 years. Scoring of RWA was based on Sleep Innsbruck Barcelona rules. Positive phenocoversion was ascertained according to standard diagnostic criteria during follow-up. Receiver operator characteristic analysis was applied to evaluate predictive performance of different RWA types.
Results
A total of nine patients (16%) developed neurodegenerative diseases. Yearly phenoconversion rate was 5.5%. Significantly higher amounts of mixed (p = 0.009), tonic (p = 0.020), and any RWA (p = 0.049) were found in converters. Optimal cutoffs differentiating the prediction were 16.4% (sensitivity 88.9; specificity 69.6) for tonic, 4.4% (sensitivity 88.9; specificity 60.9) for mixed, and 36.8% (sensitivity 77.8; specificity 65.2) for any RWA. With area under the curve (AUC) 0.778, mixed RWA has proven to be the best predictive test followed by tonic (AUC 0.749) and any (AUC 0.710).
Conclusions
Mixed, tonic and any RWA may serve as biomarkers predicting the conversion into neurodegenerative disease in iRBD. The best predictive value lies within mixed RWA, thus it should be considered as standard biomarker.
Collapse
Affiliation(s)
- Jiri Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Veronika Ibarburu Lorenzo y Losada
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Latica Friedrich
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Neurology, Sveti Duh University Hospital, Zagreb, Croatia
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Nikolai
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavla Perinova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Irene Dall’Antonia
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Ruml
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
10
|
The REM sleep circuit and how its impairment leads to REM sleep behavior disorder. Cell Tissue Res 2018; 373:245-266. [DOI: 10.1007/s00441-018-2852-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
|
11
|
Li M, Wang L, Liu JH, Zhan SQ. Relationships between Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: Clinical Assessments, Biomarkers, and Treatment. Chin Med J (Engl) 2018; 131:966-973. [PMID: 29664058 PMCID: PMC5912064 DOI: 10.4103/0366-6999.229886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) is characterized by dream enactment and loss of muscle atonia during rapid eye movement sleep. RBD is closely related to α-synucleinopathies including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Many studies have investigated the markers of imaging and neurophysiological, genetic, cognitive, autonomic function of RBD and their predictive value for neurodegenerative diseases. This report reviewed the progress of these studies and discussed their limitations and future research directions. DATA SOURCES Using the combined keywords: "RBD", "neurodegenerative disease", "Parkinson disease", and "magnetic resonance imaging", the PubMed/MEDLINE literature search was conducted up to January 1, 2018. STUDY SELECTION A total of 150 published articles were initially identified citations. Of the 150 articles, 92 articles were selected after further detailed review. This study referred to all the important English literature in full. RESULTS Single-nucleotide polymorphisms in SCARB2 (rs6812193) and MAPT (rs12185268) were significantly associated with RBD. The olfactory loss, autonomic dysfunction, marked electroencephalogram slowing during both wakefulness and rapid eye movement sleep, and cognitive impairments were potential predictive markers for RBD conversion to neurodegenerative diseases. Traditional structural imaging studies reported relatively inconsistent results, whereas reduced functional connectivity between the left putamen and substantia nigra and dopamine transporter uptake demonstrated by functional imaging techniques were relatively consistent findings. CONCLUSIONS More longitudinal studies should be conducted to evaluate the predictive value of biomarkers of RBD. Moreover, because the glucose and dopamine metabolisms are not specific for assessing cognitive cognition, the molecular metabolism directly related to cognition should be investigated. There is a need for more treatment trials to determine the effectiveness of interventions of RBD on preventing the conversion to neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Li Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiang-Hong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shu-Qin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
12
|
Miguel R, Arnulf I. Phasic activity during non REM sleep. Sleep Med 2017; 29:37-40. [DOI: 10.1016/j.sleep.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
13
|
McDonell KE, Shibao CA, Claassen DO. Clinical Relevance of Orthostatic Hypotension in Neurodegenerative Disease. Curr Neurol Neurosci Rep 2016; 15:78. [PMID: 26486792 DOI: 10.1007/s11910-015-0599-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The autonomic nervous system appears to be uniquely susceptible to degeneration in disorders of α-synuclein pathology. Clinically, autonomic dysfunction in these disorders manifests as neurogenic orthostatic hypotension (nOH), a condition that results in substantial morbidity and mortality. nOH results from pathology affecting either the central autonomic pathways or peripheral autonomic nerve fibers. Determining the localization and pathophysiology of nOH is critical in effectively managing this disorder and selecting appropriate treatment options. In this review, we discuss the pathophysiology of nOH with respect to the various α-synuclein-related neurodegenerative conditions. We highlight the associated clinical features, including gait instability, rapid eye movement behavior disorder, and hyposmia. We also review the current pharmacologic treatment options for nOH. Overall, the goals of therapy are to improve symptoms and prevent syncope and falls. Non-pharmacologic interventions should be introduced first, followed by carefully selected pharmacologic therapies. Treatment decisions should be directed by an understanding of the underlying pathophysiology, as well as the comorbidities and potential contributing factors present in each individual patient.
Collapse
Affiliation(s)
- Katherine E McDonell
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South A-0118, Nashville, TN, 37232-2551, USA.
| | - Cyndya A Shibao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South A-0118, Nashville, TN, 37232-2551, USA
| |
Collapse
|
14
|
Jennum P, Christensen JA, Zoetmulder M. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development. Nat Sci Sleep 2016; 8:107-20. [PMID: 27186147 PMCID: PMC4847600 DOI: 10.2147/nss.s99240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson's disease who experience abnormalities in sleep electroencephalographic frequencies, sleep-wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism.
Collapse
Affiliation(s)
- Poul Jennum
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Ae Christensen
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marielle Zoetmulder
- Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
|
16
|
Frandsen R, Nikolic M, Zoetmulder M, Kempfner L, Jennum P. Analysis of automated quantification of motor activity in REM sleep behaviour disorder. J Sleep Res 2015; 24:583-90. [PMID: 25923472 DOI: 10.1111/jsr.12304] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/24/2015] [Indexed: 12/01/2022]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.
Collapse
Affiliation(s)
- Rune Frandsen
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Denmark
| | - Miki Nikolic
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Denmark
| | - Marielle Zoetmulder
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Denmark
| | - Lykke Kempfner
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Denmark
| | - Poul Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Copenhagen, Denmark.,Faculty of Health Sciences, University of Copenhagen, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
17
|
Barone DA, Ebben MR, Samie A, Mortara D, Krieger AC. Autonomic dysfunction in isolated rapid eye movement sleep without atonia. Clin Neurophysiol 2015; 126:731-5. [DOI: 10.1016/j.clinph.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/12/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
|
18
|
Gill JM, Lee H, Baxter T, Reddy SY, Barr T, Kim HS, Wang D, Mysliwiec V. A Diagnosis of Insomnia Is Associated With Differential Expression of Sleep-Regulating Genes in Military Personnel. Biol Res Nurs 2015; 17:384-92. [PMID: 25767060 DOI: 10.1177/1099800415575343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sleep disturbance is a common and disturbing symptom in military personnel, with many individuals progressing to the development of insomnia, which is characterized by increased arousals, wakefulness after sleep onset, and distorted sleep architecture. The molecular mechanisms underlying insomnia remain elusive, limiting future therapeutic development to address this critical issue. We examined whole gene expression profiles associated with insomnia. We compared subjects with insomnia (n = 25) to controls (n = 13) without insomnia using microarray gene expression profiles obtained from peripheral samples of whole blood obtained from military personnel. Compared to controls, participants with insomnia had differential expression of 44 transcripts from 43 identified genes. Among the identified genes, urotensin 2 was downregulated by more than 6 times in insomnia participants, and the fold-change remained significant after controlling for depression, posttraumatic stress disorder, and medication use. Urotensin 2 is involved in regulation of orexin A and B activity and rapid eye movement during sleep. These findings suggest that differential expression of these sleep-regulating genes contributes to symptoms of insomnia and, specifically, that switching between rapid eye movement and nonrapid eye movement sleep stages underlies insomnia symptoms. Future work to identify therapeutic agents that are able to regulate these pathways may provide novel treatments for insomnia.
Collapse
Affiliation(s)
- Jessica M Gill
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | - Hyunhwa Lee
- School of Nursing, University of Nevada-Las Vegas, Las Vegas, NV, USA
| | | | | | - Taura Barr
- West Virginia University, Morgantown, WV, USA
| | - Hyung-Suk Kim
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | - Dan Wang
- National Institutes of Health, National Institutes of Nursing Research, Bethesda, MD, USA
| | | |
Collapse
|
19
|
Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014; 5:165. [PMID: 25309500 PMCID: PMC4160996 DOI: 10.3389/fneur.2014.00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 01/01/2023] Open
Abstract
Subcortical circuits mediating sleep–wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders (HDs) such as narcolepsy and Kleine–Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep–wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, HDs are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where electroencephalogram demonstrates abnormal function in cortical regions associated with cognitive fluctuations (CFs). Moreover, functional connectivity MRI shows instability of cortical networks in individuals with CFs. We propose that the inability to stabilize neural state due to disruptions in the sleep–wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Linda J Larson-Prior
- Department of Radiology, Washington University School of Medicine , St. Louis, MO , USA ; Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA
| | - Yo-El Ju
- Department of Neurology, Washington University School of Medicine , St. Louis, MO , USA
| | - James E Galvin
- Departments of Neurology, New York University Langone School of Medicine , New York, NY , USA ; Department of Psychiatry, New York University Langone School of Medicine , New York, NY , USA ; Department of Population Health, New York University Langone School of Medicine , New York, NY , USA
| |
Collapse
|
20
|
Guénolé F, Chevrier E, Stip E, Godbout R. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia. Schizophr Res 2014; 155:31-8. [PMID: 24725849 DOI: 10.1016/j.schres.2014.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023]
Abstract
This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms.
Collapse
Affiliation(s)
- Fabian Guénolé
- Sleep laboratory & clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada
| | - Elyse Chevrier
- Sleep laboratory & clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada
| | - Emmanuel Stip
- Research Center, Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Roger Godbout
- Sleep laboratory & clinic, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Centre de recherche, Hôpital Rivière-des-Prairies, Montréal, Québec, Canada; Research Center, Institut universitaire en santé mentale de Montréal, Montréal, Québec, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
21
|
|