1
|
Alattar M, Govind A, Mainali S. Artificial Intelligence Models for the Automation of Standard Diagnostics in Sleep Medicine-A Systematic Review. Bioengineering (Basel) 2024; 11:206. [PMID: 38534480 DOI: 10.3390/bioengineering11030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Sleep disorders, prevalent in the general population, present significant health challenges. The current diagnostic approach, based on a manual analysis of overnight polysomnograms (PSGs), is costly and time-consuming. Artificial intelligence has emerged as a promising tool in this context, offering a more accessible and personalized approach to diagnosis, particularly beneficial for under-served populations. This is a systematic review of AI-based models for sleep disorder diagnostics that were trained, validated, and tested on diverse clinical datasets. An extensive search of PubMed and IEEE databases yielded 2114 articles, but only 18 met our stringent selection criteria, underscoring the scarcity of thoroughly validated AI models in sleep medicine. The findings emphasize the necessity of a rigorous validation of AI models on multimodal clinical data, a step crucial for their integration into clinical practice. This would be in line with the American Academy of Sleep Medicine's support of AI research.
Collapse
Affiliation(s)
- Maha Alattar
- Division of Adult Neurology, Sleep Medicine, Vascular Neurology, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alok Govind
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Shraddha Mainali
- Division of Vascular Neurology and Neurocritical Care, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Abstract
Automatic polysomnography analysis can be leveraged to shorten scoring times, reduce associated costs, and ultimately improve the overall diagnosis of sleep disorders. Multiple and diverse strategies have been attempted for implementation of this technology at scale in the routine workflow of sleep centers. The field, however, is complex and presents unsolved challenges in a number of areas. Recent developments in computer science and artificial intelligence are nevertheless closing the gap. Technological advances are also opening new pathways for expanding our current understanding of the domain and its analysis.
Collapse
Affiliation(s)
- Diego Alvarez-Estevez
- Center for Information and Communications Technology Research (CITIC), Universidade da Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
3
|
Zahid AN, Jennum P, Mignot E, Sorensen HBD. MSED: A Multi-Modal Sleep Event Detection Model for Clinical Sleep Analysis. IEEE Trans Biomed Eng 2023; 70:2508-2518. [PMID: 37028083 DOI: 10.1109/tbme.2023.3252368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Clinical sleep analysis require manual analysis of sleep patterns for correct diagnosis of sleep disorders. However, several studies have shown significant variability in manual scoring of clinically relevant discrete sleep events, such as arousals, leg movements, and sleep disordered breathing (apneas and hypopneas). We investigated whether an automatic method could be used for event detection and if a model trained on all events (joint model) performed better than corresponding event-specific models (single-event models). We trained a deep neural network event detection model on 1653 individual recordings and tested the optimized model on 1000 separate hold-out recordings. F1 scores for the optimized joint detection model were 0.70, 0.63, and 0.62 for arousals, leg movements, and sleep disordered breathing, respectively, compared to 0.65, 0.61, and 0.60 for the optimized single-event models. Index values computed from detected events correlated positively with manual annotations (r2 = 0.73, r2 = 0.77, r2 = 0.78, respectively). We furthermore quantified model accuracy based on temporal difference metrics, which improved overall by using the joint model compared to single-event models. Our automatic model jointly detects arousals, leg movements and sleep disordered breathing events with high correlation with human annotations. Finally, we benchmark against previous state-of-the-art multi-event detection models and found an overall increase in F1 score with our proposed model despite a 97.5% reduction in model size.
Collapse
|
4
|
Alvarez-Estevez D, Rijsman RM. Computer-assisted analysis of polysomnographic recordings improves inter-scorer associated agreement and scoring times. PLoS One 2022; 17:e0275530. [PMID: 36174095 PMCID: PMC9522290 DOI: 10.1371/journal.pone.0275530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
STUDY OBJECTIVES To investigate inter-scorer agreement and scoring time differences associated with visual and computer-assisted analysis of polysomnographic (PSG) recordings. METHODS A group of 12 expert scorers reviewed 5 PSGs that were independently selected in the context of each of the following tasks: (i) sleep staging, (ii) scoring of leg movements, (iii) detection of respiratory (apneic-related) events, and (iv) of electroencephalographic (EEG) arousals. All scorers independently reviewed the same recordings, hence resulting in 20 scoring exercises per scorer from an equal amount of different subjects. The procedure was repeated, separately, using the classical visual manual approach and a computer-assisted (semi-automatic) procedure. Resulting inter-scorer agreement and scoring times were examined and compared among the two methods. RESULTS Computer-assisted sleep scoring showed a consistent and statistically relevant effect toward less time required for the completion of each of the PSG scoring tasks. Gain factors ranged from 1.26 (EEG arousals) to 2.41 (leg movements). Inter-scorer kappa agreement was also consistently increased with the use of supervised semi-automatic scoring. Specifically, agreement increased from Κ = 0.76 to K = 0.80 (sleep stages), Κ = 0.72 to K = 0.91 (leg movements), Κ = 0.55 to K = 0.66 (respiratory events), and Κ = 0.58 to Κ = 0.65 (EEG arousals). Inter-scorer agreement on the examined set of diagnostic indices did also show a trend toward higher Interclass Correlation Coefficient scores when using the semi-automatic scoring approach. CONCLUSIONS Computer-assisted analysis can improve inter-scorer agreement and scoring times associated with the review of PSG studies resulting in higher efficiency and overall quality in the diagnosis sleep disorders.
Collapse
Affiliation(s)
- Diego Alvarez-Estevez
- Center for Information and Communications Technology Research (CITIC), Universidade da Coruña, A Coruña, Spain
| | - Roselyne M. Rijsman
- Sleep Center and Clinical Neurophysiology Department, Haaglanden Medisch Centrum, The Hague, The Netherlands
| |
Collapse
|
5
|
Deep Learning for Automatic Detection of Periodic Limb Movement Disorder Based on Electrocardiogram Signals. Diagnostics (Basel) 2022; 12:diagnostics12092149. [PMID: 36140550 PMCID: PMC9497702 DOI: 10.3390/diagnostics12092149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, a deep learning model (deepPLM) is shown to automatically detect periodic limb movement syndrome (PLMS) based on electrocardiogram (ECG) signals. The designed deepPLM model consists of four 1D convolutional layers, two long short-term memory units, and a fully connected layer. The Osteoporotic Fractures in Men sleep (MrOS) study dataset was used to construct the model, including training, validating, and testing the model. A single-lead ECG signal of the polysomnographic recording was used for each of the 52 subjects (26 controls and 26 patients) in the MrOS dataset. The ECG signal was normalized and segmented (10 s duration), and it was divided into a training set (66,560 episodes), a validation set (16,640 episodes), and a test set (20,800 episodes). The performance evaluation of the deepPLM model resulted in an F1-score of 92.0%, a precision score of 90.0%, and a recall score of 93.0% for the control set, and 92.0%, 93.0%, and 90.0%, respectively, for the patient set. The results demonstrate the possibility of automatic PLMS detection in patients by using the deepPLM model based on a single-lead ECG. This could be an alternative method for PLMS screening and a helpful tool for home healthcare services for the elderly population.
Collapse
|
6
|
Abstract
Periodic leg movements during sleep (PLMS) are a frequent finding in nocturnal sleep registrations that include tibialis anterior electromyographic signals. Different PLMS scoring rules exist and can have a major impact on PLMS frequency, which tends to be underappreciated. There is no consistent evidence that frequent PLMS are a causal risk factor for clinically significant outcomes. Several critical open questions are identified that need to be addressed, including but not limited to the consideration of the full range of all sleep-related leg movement activity.
Collapse
Affiliation(s)
- Stephany Fulda
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Via Tesserete 46, Lugano 6900, Switzerland.
| |
Collapse
|
7
|
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. JOURNAL OF BIG DATA 2021; 8:53. [PMID: 33816053 PMCID: PMC8010506 DOI: 10.1186/s40537-021-00444-8] [Citation(s) in RCA: 889] [Impact Index Per Article: 222.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.
Collapse
Affiliation(s)
- Laith Alzubaidi
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000 Australia
- AlNidhal Campus, University of Information Technology & Communications, Baghdad, 10001 Iraq
| | - Jinglan Zhang
- School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Amjad J. Humaidi
- Control and Systems Engineering Department, University of Technology, Baghdad, 10001 Iraq
| | - Ayad Al-Dujaili
- Electrical Engineering Technical College, Middle Technical University, Baghdad, 10001 Iraq
| | - Ye Duan
- Faculty of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Omran Al-Shamma
- AlNidhal Campus, University of Information Technology & Communications, Baghdad, 10001 Iraq
| | - J. Santamaría
- Department of Computer Science, University of Jaén, 23071 Jaén, Spain
| | - Mohammed A. Fadhel
- College of Computer Science and Information Technology, University of Sumer, Thi Qar, 64005 Iraq
| | - Muthana Al-Amidie
- Faculty of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Laith Farhan
- School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD UK
| |
Collapse
|
8
|
Olesen AN, Jennum P, Mignot E, Sorensen HBD. Deep transfer learning for improving single-EEG arousal detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:99-103. [PMID: 33017940 DOI: 10.1109/embc44109.2020.9176723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.
Collapse
|