1
|
Wang X, Zahoor Khan M, Liu Z, Wang T, Shi X, Ren W, Zhan Y, Wang C. Utilizing mobile digital radiography for detection of thoracolumbar vertebrae traits in live donkeys. Front Vet Sci 2024; 11:1322921. [PMID: 38487711 PMCID: PMC10937342 DOI: 10.3389/fvets.2024.1322921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
It has been well-established that the number of vertebrae is associated with body size and meat productivity. In current study we utilized a digital radiography (DR) technology to detect the number of thoracolumbar vertebrae in live donkeys. For this purpose, we introduced for the first time a groundbreaking device designed by our team for assessing thoracolumbar vertebrae number traits in equids, employing a sample of 1,000 donkeys sourced from five distinct donkey farms. This assessment incorporates a range of crucial body metrics, including body height, length, and various other measurements. Subsequently, our study determined the number of thoracolumbar vertebrae in 112 donkeys, utilizing the DR system. These findings were further validated through post-mortem evaluations conducted by slaughtering the donkeys. Our findings demonstrated a remarkable resemblance between the thoracolumbar vertebrae numbers visualized through the DR system in live donkeys and those obtained via slaughter verification. In conclusion, this research underscores the accuracy and effectiveness of the DR system for the detection of thoracolumbar vertebrae in live donkeys, which might be helpful for assessing the body size and meat productivity. We also recommended the utilization of DR system for counting thoracolumbar vertebrae in other animals in live state and could be a useful addition to livestock business industry for the prediction of body size and meat productivity efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Zhou C, Zhang Y, Ma T, Wu D, Yang Y, Wang D, Li X, Guo S, Yang S, Song Y, Zhang Y, Zuo Y, Cao G. Whole-Genome Resequencing of Ujimqin Sheep Identifies Genes Associated with Vertebral Number. Animals (Basel) 2024; 14:677. [PMID: 38473062 DOI: 10.3390/ani14050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The number of vertebrae is a crucial economic trait that can significantly impact the carcass length and meat production in animals. However, our understanding of the quantitative trait loci (QTLs) and candidate genes associated with the vertebral number in sheep (Ovis aries) remains limited. To identify these candidate genes and QTLs, we collected 73 Ujimqin sheep with increased numbers of vertebrae (T13L7, T14L6, and T14L7) and 23 sheep with normal numbers of vertebrae (T13L6). Through high-throughput genome resequencing, we obtained a total of 24,130,801 effective single-nucleotide polymorphisms (SNPs). By conducting a selective-sweep analysis, we discovered that the most significantly selective region was located on chromosome 7. Within this region, we identified several genes, including VRTN, SYNDIG1L, LTBP2, and ABCD4, known to regulate the spinal development and morphology. Further, a genome-wide association study (GWAS) performed on sheep with increased and normal vertebral numbers confirmed that ABCD4 is a candidate gene for determining the number of vertebrae in sheep. Additionally, the most significant SNP on chromosome 7 was identified as a candidate QTL. Moreover, we detected two missense mutations in the ABCD4 gene; one of these mutations (Chr7: 89393414, C > T) at position 22 leads to the conversion of arginine (Arg) to glutamine (Gln), which is expected to negatively affect the protein's function. Notably, a transcriptome expression profile in mouse embryonic development revealed that ABCD4 is highly expressed during the critical period of vertebral formation (4.5-7.5 days). Our study highlights ABCD4 as a potential major gene influencing the number of vertebrae in Ujimqin sheep, with promising prospects for future genome-assisted breeding improvements in sheep.
Collapse
Affiliation(s)
- Chuanqing Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yue Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Teng Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Dabala Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Daqing Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Xiunan Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Shuchun Guo
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yongli Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| |
Collapse
|
3
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Wang T, Wang X, Liu Z, Shi X, Ren W, Huang B, Liang H, Wang C, Chai W. Genotypes and haplotype combination of DCAF7 gene sequence variants are associated with number of thoracolumbar vertebrae and carcass traits in Dezhou donkey. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tianqi Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Ziwen Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Xiaoyuan Shi
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, People’s Republic of China
| |
Collapse
|
5
|
Liu Z, Wang T, Shi X, Wang X, Ren W, Huang B, Wang C. Identification of LTBP2 gene polymorphisms and their association with thoracolumbar vertebrae number, body size, and carcass traits in Dezhou donkeys. Front Genet 2022; 13:969959. [PMID: 36482906 PMCID: PMC9723334 DOI: 10.3389/fgene.2022.969959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023] Open
Abstract
The number of thoracolumbar vertebrae in Dezhou donkeys varies from 22 to 24 and is associated with body size and carcass traits. In mammals, the latent transforming growth factor beta binding protein 2 (LTBP2) has been found to have some functions in the development of thoracolumbar vertebrae. The relationship between LTBP2 and TLN (the number of thoracolumbar vertebrae) of Dezhou donkeys is yet to be reported. The purposes of this study are as follows: 1) to quantify the effect of thoracolumbar vertebrae number variation of Dezhou donkeys on body size and carcass trait; 2) to study the distribution of single nucleotide variants (SNVs) in the LTBP2 gene of Dezhou donkeys; and 3) to explore whether these SNVs can be used as candidate sites to study the mechanism of Dezhou donkey muti-thoracolumbar vertebrae development. The TLN, body size, and carcass traits of 392 individuals from a Dezhou donkey breed were recorded. All animals were sequenced for LTBP2 using GBTS liquid chip and 16 SNVs were used for further analysis. We then analyzed the relationship between these SNVs with TLN, body size, and carcass traits. The results showed that: 1) c.5547 + 860 C > T, c.5251 + 281 A > C, c.3769 + 40 C > T, and c.2782 + 3975 A > G were complete genetic linkages and significantly associated with thoracic vertebrae number (TN) (p < 0.05) (wild-type homozygotes had more TN than heterozygotes); 2) c.1381 + 768 T > G and c.1381 + 763 G > T were significantly associated with lumber vertebrae number (LN) (p < 0.05); 3) c.1003 + 704 C > T, c.1003 + 651 C > T, c.1003 + 626 A > G, and c.812 + 22526 T > G were significantly associated with chest circumference (CHC), front carcass weight (CWF), after carcass weight (CWA), and carcass weight (CW) (p < 0.05) (wild-type homozygotes were larger than other genotypes in CHC, CWF, CWA, and CW); and 4) the effect of variation is not consistent in c.565 + 11921 A > G, c.565 + 6840 A > G, c.565 + 3453 C > T, and c.494 + 5808 C > T. These results provide useful information that the polymorphism of LTBP2 is significantly associated with TLN, body size, and carcass traits in Dezhou donkeys, which can serve as a molecule marker to improve donkey production performance.
Collapse
|
6
|
Shi X, Li Y, Wang T, Ren W, Huang B, Wang X, Liu Z, Liang H, Kou X, Chen Y, Wang Y, Akhtar F, Wang C. Association of HOXC8 Genetic Polymorphisms with Multi-Vertebral Number and Carcass Weight in Dezhou Donkey. Genes (Basel) 2022; 13:2175. [PMID: 36421849 PMCID: PMC9691153 DOI: 10.3390/genes13112175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 08/09/2023] Open
Abstract
An increase in the number of vertebrae can significantly affect the meat production performance of livestock, thus increasing carcass weight, which is of great importance for livestock production. The homeobox gene C8 (HOXC8) has been identified as an essential candidate gene for regulating vertebral development. However, it has not been researched on the Dezhou donkey. This study aimed to verify the Dezhou donkey HOXC8 gene's polymorphisms and assess their effects on multiple vertebral numbers and carcass weight. In this study, the entire HOXC8 gene of the Dezhou donkey was sequenced, SNPs at the whole gene level were identified, and typing was accomplished utilizing a targeted sequencing genotype detection technique (GBTS). Then, a general linear model was used to perform an association study of HOXC8 gene polymorphism loci, multiple vertebral numbers, and carcass weight for screening candidate markers that can be used for molecular breeding of Dezhou donkeys. These findings revealed that HOXC8 included 12 SNPs, all unique mutant loci. The HOXC8 g.15179224C>T was significantly negatively associated with carcass weight (CW) and lumbar vertebrae length (LL) (p < 0.05). The g.15179674G>A locus was shown to be significantly positively associated with the number of lumbar vertebrae (LN) (p < 0.05). The phylogenetic tree constructed for the Dezhou donkey HOXC8 gene and seven other species revealed that the HOXC8 gene was highly conserved during animal evolution but differed markedly among distantly related animals. The results suggest that HOXC8 is a vital gene affecting multiple vertebral numbers and carcass weight in Dezhou donkeys, and the two loci g.15179224C>T and g.15179674G>A may be potential genetic markers for screening and breeding of new strains of high-quality and high-yielding Dezhou donkeys.
Collapse
|
7
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
8
|
Liu Z, Gao Q, Wang T, Chai W, Zhan Y, Akhtar F, Zhang Z, Li Y, Shi X, Wang C. Multi-Thoracolumbar Variations and NR6A1 Gene Polymorphisms Potentially Associated with Body Size and Carcass Traits of Dezhou Donkey. Animals (Basel) 2022; 12:ani12111349. [PMID: 35681814 PMCID: PMC9179361 DOI: 10.3390/ani12111349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
The number of thoracolumbar vertebrae is a quantitative trait positively correlated with the economic traits of livestock. More thoracolumbar vertebrae individuals could genetically be used to improve the livestock population, as more thoracolumbar vertebrae means a longer carcass, which could bring more meat production. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate gene for effecting the number of vertebrae in livestock. The purposes of this study are as follows: (a) Analyzing the effect of TLN variation on body size and carcass traits of Dezhou donkey; (b) Studying the distribution of seven single nucleotide variants (SNVs) in NR6A1 gene of Dezhou donkey; (c) Exploring the relationship between latent SNVs and TLN, the body size and carcass traits. We examined the thoracic and lumbar vertebrae number and seven SNVs in NR6A1 gene of 455 Dezhou donkeys, and analyzed the relationships between them. Five types of thoracolumbar combinations (T17L5 (individual with 17 thoracic and five lumbar vertebrae) 2.4%, T18L5 75.8%, T19L5 1.1%, T17L6 11.9%, and T18L6 8.8%) of Dezhou donkeys were detected in this study. For one thoracolumbar vertebra added, the body length of Dezhou donkey increases by 3 cm and the carcass weight increases by 6 kg. Seven SNVs (g.18093100G > T, g.18094587G > T, g.18106043G > T, g.18108764G > T, g.18110615T > G, g.18112000C > T and g.18114954T > G) of the NR6A1 gene were found to have a significant association with the TLN, body size and carcass traits of Dezhou donkey (p < 0.05), respectively. For instance, g.18114954C > T is significantly associated with lumber vertebrae number, the total number of thoracolumbar, and carcass weight, and individuals with TT genotype had significantly larger value than CC genotype (p < 0.05). Using these 7SNVs, 16 different haplotypes were estimated. Compared to Hap3Hap3, individuals homozygous for Hap2Hap2 showed significantly longer length in one thoracic spine (STL), the total thoracic vertebrae and one thoracolumbar spine. Our study will not only extend the understanding of genetic variation in the NR6A1 gene of Dezhou donkey, but also provide useful information for marker assisted selection in donkey breeding program.
Collapse
Affiliation(s)
- Ziwen Liu
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Qican Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China;
| | - Tianqi Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Wenqiong Chai
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yandong Zhan
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Faheem Akhtar
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Zhenwei Zhang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yuhua Li
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Xiaoyuan Shi
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Changfa Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
- Correspondence:
| |
Collapse
|
9
|
Li C, Liu K, Dai J, Li X, Liu X, Ni W, Li H, Wang D, Qiao J, Wang Y, Cui Y, Xia X, Hu S. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep. Gene 2022; 809:146020. [PMID: 34656743 DOI: 10.1016/j.gene.2021.146020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
10
|
Mi T, Liu K, Guo T, Li L, Wang Y, Li C, Cui Y, Dai J, Zhang Y, Hu S. Analysis of the eighth intron polymorphism of NR6A1 gene in sheep and its correlation with lumbar spine number. Anim Biotechnol 2021; 34:218-224. [PMID: 34346290 DOI: 10.1080/10495398.2021.1954529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For revealing molecular markers related to the traits of multiple lumbar vertebrae in sheep, we analyze the relationship between NR6A1 gene polymorphism and lumbar vertebrae number traits in Xinjiang Kazakh sheep. Lumbar muscle tissues were collected from 6-lumbar spine (L6) Kazak sheep and 7-lumbar spine (L7) Kazak sheep and the intron-8 of NR6A1 gene was amplified by PCR. The SNP locus was detected by the PCR-SSCP method. One-Way ANOVA and an Independent Chi-square Test is adopted to analyze the genotype association with lumbar spine number variation. There were two SNP loci in the intron-8 of the NR6A1 gene: IVS8-188 and IVS8-281. One-Way ANOVA and Independent Chi-square Test indicated a significant association between IVS8-281 and lumbar spine number. The SNP locus of NR6A1 gene intron 8 (IVS8-281G > A) could play a certain role in the variation of lumbar spine number in Xinjiang Kazakh sheep and demonstrates potential to accelerate the sheep breeding of selection process.
Collapse
Affiliation(s)
- Taotao Mi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Lei Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jihong Dai
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Zhang D, Zhang X, Li F, Liu T, Hu Z, Gao N, Yuan L, Li X, Zhao Y, Zhao L, Zhang Y, Xu D, Song Q, Cheng J, Wang W. Whole-genome resequencing identified candidate genes associated with the number of ribs in Hu sheep. Genomics 2021; 113:2077-2084. [PMID: 33965549 DOI: 10.1016/j.ygeno.2021.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The number of ribs is an important economic trait in the sheep industry when the sheep are raised for mutton. However, in sheep, the genetic mechanisms regulating rib number are poorly understood. In the present study, we aimed to identify important candidate genes that affect the increase in rib number in sheep. Whole-genome resequencing of 36 Hu sheep with an increased number of ribs (R14) and 36 sheep with normal (R13) rib numbers was carried out. Analysis using three methods (fixation index (FST), Fisher's exact test, and Chi-squared test) showed that 219 single nucleotide polymorphism sites overlapped among the results of the three methods, which represented 206 genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the genes were mainly associated with regulation of developmental process, inorganic anion transport, cellular biosynthetic process, tight junction, the oxytocin signaling pathway, and arrhythmogenic right ventricular cardiomyopathy. Four mutations were selected according to the significantly selected genomic regions and important pathways for genotyping and association analysis. The result demonstrated that three synonymous mutations correlated significantly with the rib number. Importantly, we revealed that the CPOX (encoding coproporphyrinogen oxidase), KCNH1 (encoding potassium voltage-gated channel subfamily H member 1), and CPQ (encoding carboxypeptidase Q) genes have a combined effect on rib number in Hu sheep. Our results identified candidate molecular markers for rib number in sheep breeding.
Collapse
Affiliation(s)
- Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fadi Li
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Teng Liu
- Suzhou Zelgen Biopharmaceuticals Co., Ltd., Kunshan, Jiangsu 215300, China
| | - Zhihong Hu
- Changxing Yongsheng Animal Husbandry Co. Ltd., Huzhou, Zhejiang 313100, China
| | - Ning Gao
- Changxing Yongsheng Animal Husbandry Co. Ltd., Huzhou, Zhejiang 313100, China
| | - Lvfeng Yuan
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
12
|
Ishiguro K, Kawashima T, Sato F. The phenotypic morphology of human lumbar plexus roots associated with changes in the thoracolumbar vertebral count and trade-off. Sci Rep 2020; 10:127. [PMID: 31924812 PMCID: PMC6954195 DOI: 10.1038/s41598-019-56709-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated the developmental basis for the human phenotypic morphology of the interaction between the vertebrae and the nerve plexus by evaluating changes in the human lumbar plexus according to various thoracolumbar formulas. The dissection found that the changes in lumbar nerve roots reported by experimental embryology studies to be concomitant with thoracolumbar trade-off, i.e., a change in vertebrae from thoracic to lumbar with no change in the overall thoracolumbar count, were not apparent in humans with the usual 17 or mutant 16 thoracolumbar vertebrae. When vertebral changes in two segments were examined by comparing spines with a reduced thoracolumbar count of 16 to those with an increased count of 18, this tended to show only a single-segment caudal shift of the lumbar plexus. We cannot provide evidence for the phylogenetic difference in the concomitant changes of lumbar nerves and vertebrae, but comparisons between experimental rodents and humans highlighted fewer and shorter lumbar vertebra and more complicated lumbar plexus in humans. Therefore, these multiple differences may contribute to a human phenotypic morphology that is not evident in the concomitant transformation of vertebrae and lumbar nerves reported in experimental rodents.
Collapse
Affiliation(s)
- Kaho Ishiguro
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Tomokazu Kawashima
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan.
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
13
|
Li C, Li M, Li X, Ni W, Xu Y, Yao R, Wei B, Zhang M, Li H, Zhao Y, Liu L, Ullah Y, Jiang Y, Hu S. Whole-Genome Resequencing Reveals Loci Associated With Thoracic Vertebrae Number in Sheep. Front Genet 2019; 10:674. [PMID: 31379930 PMCID: PMC6657399 DOI: 10.3389/fgene.2019.00674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
The number of vertebrae, especially thoracic vertebrae, is an important economic trait that may influence carcass length and meat production in animals. However, the genetic basis of vertebrae number in sheep is still poorly understood. To detect the candidate genes, 400 increased number of thoracic vertebrae (T14L6) and 200 normal (T13L6) Kazakh sheep were collected. We generated and sequenced 60 pools of genomic DNA (each pool prepared by mixing genomic DNA from 10 sheep with the same thoracic traits), with an average depth of coverage of 25.65×. We identified a total of 42,075,402 SNPs and 11 putatively selected genomic regions, including the VRTN gene and the HoxA gene family that regulate vertebral development. The most prominent areas of selective elimination were located in a region of chromosome 7, including VRTN, which regulates spinal development and morphology. Further investigation indicated that the expression level of the VRTN gene during fetal development was significantly higher in sheep with more thoracic vertebrae than in those with a normal number of thoracic vertebrae. A genome-wide comparison between sheep with increased and normal numbers of thoracic vertebrae showed that the VRTN gene is the major selection locus for the number of thoracic vertebrae in sheep and has the potential to be utilized in sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ming Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Bin Wei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yue Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yaseen Ullah
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
14
|
Zhang X, Li C, Li X, Liu Z, Ni W, Cao Y, Yao Y, Islamov E, Wei J, Hou X, Hu S. Association analysis of polymorphism in the NR6A1 gene with the lumbar vertebrae number traits in sheep. Genes Genomics 2019; 41:1165-1171. [DOI: 10.1007/s13258-019-00843-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/20/2019] [Indexed: 11/24/2022]
|
15
|
Zhang X, Li C, Li X, Liu Z, Ni W, Hazi W, Cao Y, Yao Y, Wang D, Hou X, Hu S. Expression profiles of MicroRNAs from multiple lumbar spine in sheep. Gene 2018; 678:105-114. [PMID: 30092341 DOI: 10.1016/j.gene.2018.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/04/2018] [Indexed: 01/02/2023]
Abstract
The formation of the spine is a critical stage of mammalian development. The increase of the number of individual axons affects its performance, especially in meat production. To understand the role of miRNAs in sheep vertebrae development, the purpose of this article is to screen candidate microRNAs (miRNAs) associated with sheep spine development. MicroRNAs (miRNAs) are a rich family of small regulatory RNAs that negatively regulate gene expression at the post-transcriptional level. In this study, we used high-throughput sequencing techniques to analyze the microRNAs (miRNAs) expression profiles of L6 (6 lumbar vertebrae) and L7 (7 lumbar vertebrae) in sheep. A total number of 223 miRNAs were detected in the two libraries, and a total of 150 and 148 conserved miRNAs were obtained in L6 and L7, respectively. A total of 5 miRNAs expression differences in L6 compared to L7 (P < 0.05). Of the five obviously differently expressed miRNAs, four miRNAs were down-regulated in the L6 of sheep, and one was up-regulated. In order to further explore the functions of these miRNAs, we predicted the target genes of these differently expressed miRNAs, and obtained 1298 target genes. At the same time, NDRG2 gene, targeted by novel miR-391, which possible plays an important role in the development of the spine. Linkage-integration analysis method was used to construct the interaction network of spinal-associated miRNA and its hypothesized target. In summary, this study provides valuable resources for the transcriptome of multiple vertebral traits in sheep.
Collapse
Affiliation(s)
- Xiangyu Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhijin Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Wureli Hazi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yang Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|