1
|
Wilson CS, Petersen JL, Brito LF, Freking BA, Nilson SM, Taylor JB, Murphy TW, Lewis RM. Assessment of genetic diversity and population structure of U.S. Polypay sheep from breed origins to future genomic selection. Front Genet 2024; 15:1436990. [PMID: 39161421 PMCID: PMC11330798 DOI: 10.3389/fgene.2024.1436990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Knowledge of past and present genetic diversity within a breed is critical for the design and optimization of breeding programs as well as the development of strategies for the conservation of genetic resources. The Polypay sheep breed was developed at the U.S. Sheep Experiment Station (USSES) in 1968 with the goal of improving productivity in Western U.S. range flocks. It has since flourished in the more intensively managed production systems throughout the U.S. The genetic diversity of the breed has yet to be documented. Therefore, the primary objective of this study was to perform a comprehensive evaluation of the genetic diversity and population structure of U.S. Polypay sheep using both pedigree- and genomic-based methods. Pedigree data from 193 Polypay flocks participating in the National Sheep Improvement Program (NSIP) were combined with pedigree records from USSES (n = 162,997), tracing back to the breed's origin. A subset of these pedigreed sheep from 32 flocks born from 2011 to 2023 were genotyped with the GGP Ovine 50K BeadChip containing 51,867 single nucleotide polymorphisms (SNPs). Four subgroups were used for the pedigree-based analyses: 1) the current generation of animals born in 2020-2022 (n = 20,701), 2) the current generation with a minimum of four generations of known ancestors (n = 12,685), 3) only genotyped animals (n = 1,856), and 4) the sires of the current generation (n = 509). Pedigree-based inbreeding for the full population was 2.2%, with a rate of inbreeding of 0.22% per generation. Pedigree-based inbreeding, Wright's inbreeding, and genomic inbreeding based on runs of homozygosity were 2.9%, 1.3%, and 5.1%, respectively, for the genotyped population. The effective population size ranged from 41 to 249 for the pedigree-based methods and 118 for the genomic-based estimate. Expected and observed heterozygosity levels were 0.409 and 0.403, respectively. Population substructure was evident based on the fixation index (FST), principal component analysis, and model-based population structure. These analyses provided evidence of differentiation from the foundation flock (USSES). Overall, the Polypay breed exhibited substantial genetic diversity and the presence of a population substructure that provides a basis for the implementation of genomic selection in the breed.
Collapse
Affiliation(s)
- Carrie S. Wilson
- USDA, ARS, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID, United States
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Brad A. Freking
- USDA, ARS, Livestock Bio-Systems Research Unit, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Sara M. Nilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - J. Bret Taylor
- USDA, ARS, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID, United States
| | - Thomas W. Murphy
- USDA, ARS, Livestock Bio-Systems Research Unit, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Ronald M. Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
2
|
Nilson SM, Burke JM, Murdoch BM, Morgan JLM, Lewis RM. Pedigree diversity and implications for genetic selection of Katahdin sheep. J Anim Breed Genet 2024; 141:304-316. [PMID: 38108572 DOI: 10.1111/jbg.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.
Collapse
Affiliation(s)
- Sara M Nilson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, Arkansas, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | | | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Wilson CS, Taylor JB, Lewis RM, Notter DR. Genetic impact of external Targhee sires at the U.S. Sheep Experiment Station: a case study of introgression. Transl Anim Sci 2024; 8:txae044. [PMID: 38585169 PMCID: PMC10999158 DOI: 10.1093/tas/txae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Sheep breeders requested that the U.S. Sheep Experiment Station (USSES) to participate in national genetic evaluation through the National Sheep Improvement Program (NSIP). The reasons included the need for (1) a comparison of the productivity of industry and United States Department of Agriculture (USDA) lines, (2) transparency of USDA flocks, (3) genetic ties for NSIP by sampling of industry flocks, and (4) development of premium genetic lines for public release. In response, USSES began to incorporate external sires from NSIP participating flocks into the USSES Targhee flock. Our objective, based on a pedigree analysis, was to test if introgression of external genetics into the flock was achieved. The pedigree included 13,189 animals with mean maximum generations, mean complete generations, and mean equivalent complete generations of 4.2, 1.8, and 2.6, respectively. The mean generation interval was 3.1 yr. The reference population was defined as lambs born from 2021 to 2023 (n = 792). Two additional populations were defined as the current mature ewe flock (n = 123) and the current mature rams (n = 14). The Genetic Conservation Index averaged 7.7 for the full population and 25.7 for the reference population. Overall inbreeding was 0.003 for the full population and 0.006 for the reference population. The rate of inbreeding was 0.0003 per generation. Average relatedness was 0.015 for the full population and 0.018 for the reference population. The effective number of founders, effective number of ancestors, and founder genome equivalents contributing to the reference population were 60, 39, and 19.1, respectively. The ratio of the effective number of founders to the effective number of ancestors was 1.5, indicating the presence of genetic bottlenecks. Measures of effective population size ranged from 102 to 547. Of the 704 offspring produced by external sires, 17 ram lambs and 132 ewe lambs were retained for breeding. The USSES sires produced 299 offspring with 2 ram lambs and 51 ewe lambs retained. Incorporating external sires resulted in a cumulative percentage of genetic variance of 48.8, 49.1, and 44.2 of external genetics for the reference population, current mature ewe flock, and current mature rams, respectively. Stakeholder needs were addressed by introgression of external sires and participation in NSIP, but future selection practices need to be modified to maintain a minimum of 50% USSES core genetics in the flock.
Collapse
Affiliation(s)
- Carrie S Wilson
- Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, ARS, USDA, Dubois, ID, 83423, USA
| | - J Bret Taylor
- Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, ARS, USDA, Dubois, ID, 83423, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Niciura SCM, Cardoso TF, Ibelli AMG, Okino CH, Andrade BG, Benavides MV, Chagas ACDS, Esteves SN, Minho AP, Regitano LCDA, Gondro C. Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. Parasit Vectors 2024; 17:102. [PMID: 38429820 PMCID: PMC10908167 DOI: 10.1186/s13071-024-06205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.
Collapse
|
5
|
Giuliotti L, Benvenuti MN, Preziuso G, Ventura E, Fresi P, Cecchi F. Demography and Genealogical Analysis of Massese Sheep, a Native Breed of Tuscany. Animals (Basel) 2024; 14:582. [PMID: 38396550 PMCID: PMC10886389 DOI: 10.3390/ani14040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigates the genealogical and demographic trends of the Massese sheep breed in Tuscany from 2001 to 2021. The Herd Book kept by the Italian Sheep and Goat Breeders Association (Asso.Na.Pa) provided the data. The descriptive statistics were analyzed using JMP software. The pedigree parameters of a total of 311,056 animals (whole population-WP) were analyzed using CFC, ENDOG, and Pedigree viewer software. A total of 24,586 animals born in the period 2007-2021 represented the Reference Population (RP), and 18,554 animals the Base Population (BP). The demographic results showed an inconsistent trend of offspring registration. This study showed a short period of productivity for both ewes and rams, with means of 1.47 and 19.2 registered newborn ewes and rams, respectively. The genealogical analysis revealed incomplete data, highlighting inaccurate assessments of the relationships among the animals, and inbreeding with large differences among provinces. The average inbreeding coefficient in the WP was 1.16%, and it was 2.26% in the RP. The total number of inbreds was 2790 in the WP, with an average FPED of 13.56%, and 2713 in the RP, with an average FPED of 12.82%. The use of pedigree data is a key and economical approach to calculating inbreeding and relationship coefficients. It is the primary step in genetic management, playing a crucial role in the preservation of a breed. The regular updating of genealogical data is the first step to ensuring the conservation of animal genetic resources, and this study is compromised by the lack of such updates.
Collapse
Affiliation(s)
- Lorella Giuliotti
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.N.B.); (G.P.); (F.C.)
| | - Maria Novella Benvenuti
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.N.B.); (G.P.); (F.C.)
| | - Giovanna Preziuso
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.N.B.); (G.P.); (F.C.)
| | - Emilia Ventura
- Veterinarian Free lance, Via dell’alberaccio 15, 56017 San Giuliano Terme, Italy;
| | - Pancrazio Fresi
- Asso.Na.Pa (Associazione Nazionale della Pastorizia), Via XXIV Maggio 44, 00187 Roma, Italy;
| | - Francesca Cecchi
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.N.B.); (G.P.); (F.C.)
| |
Collapse
|
6
|
Morell Miranda P, Soares AER, Günther T. Demographic reconstruction of the Western sheep expansion from whole-genome sequences. G3 (BETHESDA, MD.) 2023; 13:jkad199. [PMID: 37675574 PMCID: PMC11648245 DOI: 10.1093/g3journal/jkad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
As one of the earliest livestock, sheep (Ovis aries) were domesticated in the Fertile Crescent about 12,000-10,000 years ago and have a nearly worldwide distribution today. Most of our knowledge about the timing of their expansions stems from archaeological data but it is unclear how the genetic diversity of modern sheep fits with these dates. We used whole-genome sequencing data of 63 domestic breeds and their wild relatives, the Asiatic mouflon (O. gmelini, previously known as O. orientalis), to explore the demographic history of sheep. On the global scale, our analysis revealed geographic structuring among breeds with unidirectional recent gene flow from domestics into Asiatic mouflons. We then selected 4 representative breeds from Spain, Morocco, the United Kingdom, and Iran to build a comprehensive demographic model of the Western sheep expansion. We inferred a single domestication event around 11,000 years ago. The subsequent westward expansion is dated to approximately 7,000 years ago, later than the original Neolithic expansion of sheep and slightly predating the Secondary Product Revolution associated with wooly sheep. We see some signals of recent gene flow from an ancestral population into Southern European breeds which could reflect admixture with feral European mouflon. Furthermore, our results indicate that many breeds experienced a reduction of their effective population size during the last centuries, probably associated with modern breed development. Our study provides insights into the complex demographic history of Western Eurasian sheep, highlighting interactions between breeds and their wild counterparts.
Collapse
Affiliation(s)
- Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| | - André E R Soares
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory,
Department of Medical Biochemistry and Microbiology, Uppsala University,
SE-752 37 Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala
University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Rodrigues CS, de Faria DA, Lacerda TS, Paiva SR, Caetano AR, Blackburn H, McManus C. Lentivirus Susceptibility in Brazilian and US Sheep with TMEM154 Mutations. Genes (Basel) 2022; 14:genes14010070. [PMID: 36672811 PMCID: PMC9858560 DOI: 10.3390/genes14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) affect sheep and goats worldwide. The major gene related to SRLV infections is the Transmembrane Protein Gene 154 (TMEM154). We estimated the haplotype frequencies of TMEM154 in the USA (USDA-ARS) and Brazil (Embrapa) Gene Banks by using two different SNP genotyping methodologies, FluidigmTM and KASPTM. We also genotyped the ZNF389_ss748775100 deletion variant in Brazilian flocks. A total of 1040 blood samples and 112 semen samples from 15 Brazilian breeds were genotyped with Fluidigm for the SNP ZNF389_ss748775100 and 12 TMEM154 SNPs. A total of 484 blood samples from the Santa Inês breed and 188 semen samples from 14 North American sheep breeds were genotyped with KASP for 6 TMEM154 SNPs. All the Brazilian samples had the "I/I" genotype for the ZNF389_ss748775100 mutation. There were 25 TMEM154 haplotypes distributed across the Brazilian breeds, and 4 haplotypes in the US breeds. Haplotypes associated with susceptibility were present in almost all breeds, which suggests that genetic testing can help to improve herd health and productivity by selecting non-susceptible animals as founders of the next generations. Fluidigm and KASP are reliable assays when compared with Beadchip arrays. Further studies are necessary to understand the unknown role of TMEM154 mutations, host-pathogen interaction and new genes associated with the clinical condition.
Collapse
Affiliation(s)
- Camila Souza Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Danielle Assis de Faria
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Thaísa Sant’Anna Lacerda
- Faculdade de Agronomia e Medicina Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Samuel Rezende Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Final W5 Norte, Brasilia 70770-917, DF, Brazil
- Correspondence:
| | | | - Harvey Blackburn
- USDA-ARS—Agricultural Genetic Resources Preservation Research, 1111 South Mason Street, Fort Collins, CO 805214500, USA
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasilia, Asa Norte, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
8
|
Genome-Wide Association Study for Haemonchus contortus Resistance in Morada Nova Sheep. Pathogens 2022; 11:pathogens11080939. [PMID: 36015059 PMCID: PMC9413486 DOI: 10.3390/pathogens11080939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Among the gastrointestinal nematodes affecting sheep, Haemonchus contortus is the most prevalent and virulent, resulting in health problems and production losses. Therefore, selecting sheep resistant to H. contortus is a suitable and sustainable strategy for controlling endoparasites in flocks. Here, 287 lambs of the native Brazilian Morada Nova hair sheep breed were subjected to two consecutive artificial infections with H. contortus and assessed for fecal egg count (FEC), packed cell volume (PCV), and live weight (LW). Forty-four animals ranked as having extreme resistance phenotypes were genotyped using the Illumina OvineSNP50v3 chip. A case−control genome-wide association study (GWAS) detected 37 significant (p < 0.001) markers in 12 ovine chromosomes in regions harboring quantitative trait loci (QTL) for FEC, Trichostrongylus spp. adults and larvae, weight, and fat; and candidate genes for immune responses, mucins, hematological parameters, homeostasis, and growth. Four single-nucleotide polymorphisms (SNP; OAR1_rs427671974, OAR2_rs419988472, OAR5_rs424070217, and OAR17_rs401006318) genotyped by qPCR followed by high-resolution melting (HRM) were associated with FEC and LW. Therefore, molecular markers detected by GWAS for H. contortus resistance in Morada Nova sheep may support animal selection programs aimed at controlling gastrointestinal nematode infections in flocks. Furthermore, genotyping of candidate genes using HRM qPCR may provide a rapid and efficient tool for animal identification.
Collapse
|
9
|
|
10
|
Špehar M, Ramljak J, Kasap A. Estimation of genetic parameters and the effect of inbreeding on dairy traits in Istrian sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2031320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marija Špehar
- Croatian Agency for Agriculture and Food, Zagreb, Croatia
| | - Jelena Ramljak
- Zavod za specijalno stočarstvo, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Ante Kasap
- Zavod za specijalno stočarstvo, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
11
|
Vyas J, Chopra A, Pannu U, Saran RK, Narula H. Population structure of Marwari sheep through pedigree analysis. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2021.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Matos ÉJA, Lôbo RNB. Population structure and inbreeding effects on growth traits of Morada Nova sheep. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Arrais AM, Mello MRBD, Vergani GB, Figueira LM, Esteves SN, Pereira VSDA, Bartlewski PM, Oliveira MEF, Souza-Fabjan JMG, Fonseca JFD. NonSurgical Embryo Recovery from Estrus-Synchronized or Superovulated Morada Nova Ewes: A Feasible Strategy for Sheep Embryo Banking. Biopreserv Biobank 2021; 19:360-368. [PMID: 33769085 DOI: 10.1089/bio.2020.0125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study assessed the feasibility of in vivo embryo production and nonsurgical embryo recovery (NSER) in Morada Nova ewes (an endangered native Brazilian breed of sheep) subjected to different estrus synchronization and/or superovulation protocols. Ewes received intravaginal sponges soaked with 60 mg medroxyprogesterone acetate (MAP), which were kept in place for six (G6; n = 12), nine (G9; n = 12), or 12 (G12; n = 12) days. Half of the ewes in each group remained estrus synchronized only (SYNCH) and the other half was superovulated (SOV) with 133 mg porcine follicle-stimulating hormone (pFSH). There were no differences (p > 0.05) in antral follicle counts determined with ultrasonography 60 hours before MAP sponge removal (or at the time of the first pFSH dose) among G6 (6.4 ± 0.9), G9 (6.2 ± 0.7), and G12 (5.5 ± 0.6). Estrus responses and NSER success rates did not vary (p > 0.05) among the three progestin-treatment groups of ewes for either estrus-induced or superovulated animals. The onset of estrus occurred 10-12 hours later (p < 0.01) in G9SYNCH ewes compared with G6SYNCH and G12SYNCH, and the duration of estrus was ∼19 hours greater (p < 0.01) in G9SOV than in G6SOV. The average duration of the NSER procedure was 32.6 ± 1.3 minutes. At least one structure was recovered in 85.7% of synchronized and in 87.5% of superovulated ewes. Viable embryo recovery rates were also similar (p > 0.05) for G6 (1.0 ± 0.3 and 2.5 ± 1.5), G9 (1.3 ± 0.5 and 4.8 ± 2.0), and G12 groups (1.0 ± 0.3 and 4.8 ± 2.3; estrus-synchronized and superovulated ewes, respectively). In conclusion, progestogen pretreatment of different durations and NSER can be employed in Morada Nova ewes, resulting in reasonable viable embryo recovery rates in both estrus-synchronized and superovulated animals. Therefore, both techniques are suitable for use in commercial settings as well as small ruminant conservation programs.
Collapse
Affiliation(s)
- Aline Matos Arrais
- Departamento de Reprodução e Avaliação Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Gabriel Brun Vergani
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nosrati M, Asadollahpour Nanaei H, Javanmard A, Esmailizadeh A. The pattern of runs of homozygosity and genomic inbreeding in world-wide sheep populations. Genomics 2021; 113:1407-1415. [PMID: 33705888 DOI: 10.1016/j.ygeno.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Genome-wide pattern of runs of homozygosity (ROH) across ovine genome can provide a useful resource for studying diversity and demography history in sheep. We analyzed 50 k SNPs chip data of 2536 animals to identify pattern, distribution and level of ROHs in 68 global sheep populations. A total of 60,301 ROHs were detected in all breeds. The majority of the detected ROHs were <16 Mb and the average total number of ROHs per individual was 23.8 ± 13.8. The ROHs greater than 1 Mb covered on average 8.2% of the sheep autosomes, 1% of which was related to the ROHs with 1-4 Mb of length. The mean sum of ROH length in two-thirds of the populations was less than 250 Mb ranging from 21.7 to near 570 Mb. The level of genomic inbreeding was relatively low. The average of the inbreeding coefficients based on ROH (FROH) was 0.09 ± 0.05. It was rising in a stepwise manner with distance from Southwest Asia and maximum values were detected in North European breeds. A total of 465 ROH hotspots were detected in 25 different autosomes which partially surrounding 257 Refseq genes across the genome. Most of the detected genes were related to growth, body weight, meat production and quality, wool production and pigmentation. In conclusion, our analysis showed that the sheep genome, compared with other livestock species such as cattle and pig, displays low levels of homozygosity and appropriate genetic diversity for selection response and genetic merit gain.
Collapse
Affiliation(s)
- Maryam Nosrati
- Department of Agriculture, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Arash Javanmard
- Departement of Animal Sceince, Faculty of Agriculture, University of Tabriz, PB 5166616471,Tabriz, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran.
| |
Collapse
|
15
|
Hashemi M, Ghavi Hossein-Zadeh N. Population genetic structure analysis of Shall sheep using pedigree information and effect of inbreeding on growth traits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1827992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohammad Hashemi
- Faculty of Agricultural Sciences, Department of Animal Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
16
|
Mandal A, Baneh H, Subramanyam B, Notter D. Genetic variability and population structure based on pedigree information for Muzaffarnagari sheep in India. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Genetic diversity evolution of a sheep breed reintroduced after extinction: Tracing back Christopher Columbus' first imported sheep. Res Vet Sci 2020; 132:207-216. [PMID: 32604044 DOI: 10.1016/j.rvsc.2020.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
New World's hair sheep breeds may genetically stem from West African introgression into established ecotypes of Spanish descent presumably extinct in the XIX Century. However, present Canary non-wooled breeds have presumably regressively resulted from the absorption of primitive individuals through Venezuelan descendants. We studied genetic diversity, structure, and evolution of the Canary hair sheep since its reintroduction in the 1950s. Demographic and genetic variability were evaluated using ENDOG (v4.8). Effective population size based on individual inbreeding rate was around one third higher than when based on individual coancestry rate. Nei's distances and equivalent subpopulations number indicated a highly-structured population. Although genetic diversity loss since the founder generations could be considered small, narrower pedigree bottlenecks could result from intraflock breeding policies and excessive contribution of few ancestors. Long generation intervals could be considered when reducing inbreeding. Wright's fixation statistics indicated slight interflock inbreeding. Pedigree completeness suggested genetic parameters were reliable, hence controlling inbreeding negative effects, could indeed, be crucial preserving these animal resources, consolidating the population in the archipelago after reintroduction.
Collapse
|