1
|
Zhou S, Huang G. Some important inhibitors and mechanisms of rheumatoid arthritis. Chem Biol Drug Des 2021; 99:930-943. [PMID: 34942050 DOI: 10.1111/cbdd.14015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis is a chronic disease that seriously affects human health and quality of life, and it is one of the main causes of labor loss and disability. Many countries have listed rheumatoid arthritis as one of the national a key diseases to tackle. The pathogenesis of RA in humans is still unknown, and medical researchers believe that the pathogenesis of RA may be the result of a combination of genetic and environmental factors. RA is an incurable condition that can only be controlled and treated with conventional drugs. In this paper, the pathologic features and pathogenesis of RA were introduced, and the research progress of new anti-rheumatoid arthritis chemical drugs in recent years was reviewed.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, 401228, China.,College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
2
|
Dong M, Jin H, Zuo M, Bai H, Wang L, Shi C, Niu W. The potential effect of Bruton's tyrosine kinase in refractory periapical periodontitis. Biomed Pharmacother 2019; 112:108710. [PMID: 30818138 DOI: 10.1016/j.biopha.2019.108710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023] Open
Abstract
To determine the expression of Bruton's tyrosine kinase (BTK) in refractory periapical periodontitis and analyze the relationship between BTK and bone resorption in refractory periapical periodontitis. The mechanism of bone resorption is also discussed. The OneArray Plus expression microarray was used to screen for genes related to refractory periapical periodontitis. Real-time PCR was used to detect the expression of BTK in refractory periapical periodontitis tissues. A model of periapical periodontitis was established by sealing E.faecalis into the pulp of rats. To establish a model of E.faecalis LTA infection of osteoclasts, the relationship between BTK and bone destruction during refractory periapical periodontitis was analyzed. OneArray Plus expression microarray results showed that we found that the expression of 1787 genes in the two samples was different. After validating these samples, we found that BTK was closely related to refractory periapical periodontitis. The results showed that the expression of BTK in refractory periapical periodontitis tissues was higher than that in normal tissues. Immunohistochemistry, enzyme histochemistry and real-time PCR showed that the BTK expression curve in the experimental model resembled a reverse V shape from week 1 to week 4. Osteoclasts were cultured in vitro and treated with E. faecalis LTA. The expression of BTK in the E. faecalis model was greater than that in the control group. BTK played an important role in the progression of refractory periapical periodontitis.
Collapse
Affiliation(s)
- Ming Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Haiwei Jin
- Department of Oral Anatomy and Physiology, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Meina Zuo
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Hua Bai
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Lina Wang
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Chun Shi
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Weidong Niu
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
3
|
Ibrutinib inhibits pre-BCR + B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood 2016; 129:1155-1165. [PMID: 28031181 DOI: 10.1182/blood-2016-06-722900] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR+ B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR+ ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR+ ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR+ ALL. Consequently, in mouse xenograft models of pre-BCR+ ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR+ ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR+ ALL and highlight the importance of ibrutinib effects on alternative kinase targets.
Collapse
|
4
|
Walliser C, Hermkes E, Schade A, Wiese S, Deinzer J, Zapatka M, Désiré L, Mertens D, Stilgenbauer S, Gierschik P. The Phospholipase Cγ2 Mutants R665W and L845F Identified in Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the Rho GTPase Rac2 Protein. J Biol Chem 2016; 291:22136-22148. [PMID: 27542411 PMCID: PMC5063995 DOI: 10.1074/jbc.m116.746842] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Piperidines
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- Quinolines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
| | | | - Anja Schade
- From the Institute of Pharmacology and Toxicology and
| | - Sebastian Wiese
- the Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Julia Deinzer
- From the Institute of Pharmacology and Toxicology and
| | - Marc Zapatka
- the Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany, and
| | - Laurent Désiré
- the Diaxonhit, 63-65 Boulevard Masséna, 75013 Paris, France
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | | |
Collapse
|
5
|
Kil LP, Corneth OB, de Bruijn MJ, Asmawidjaja PS, Krause A, Lubberts E, van Loo PF, Hendriks RW. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. J Autoimmun 2015; 57:30-41. [DOI: 10.1016/j.jaut.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
6
|
Fernández-Vega I, Quirós LM, Santos-Juanes J, Pane-Foix M, Marafioti T. Bruton’s tyrosine kinase (Btk) is a useful marker for Hodgkin and B cell non-Hodgkin lymphoma. Virchows Arch 2014; 466:229-35. [PMID: 25433814 DOI: 10.1007/s00428-014-1698-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
|
7
|
Sandoval GJ, Graham DB, Gmyrek GB, Akilesh HM, Fujikawa K, Sammut B, Bhattacharya D, Srivatsan S, Kim A, Shaw AS, Yang-Iott K, Bassing CH, Duncavage E, Xavier RJ, Swat W. Novel mechanism of tumor suppression by polarity gene discs large 1 (DLG1) revealed in a murine model of pediatric B-ALL. Cancer Immunol Res 2013; 1:426-37. [PMID: 24778134 DOI: 10.1158/2326-6066.cir-13-0065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster discs large (dlg) is an essential tumor suppressor gene (TSG) controlling epithelial cell growth and polarity of the fly imaginal discs in pupal development. A mammalian ortholog, Dlg1, is involved in embryonic urogenital morphogenesis, postsynaptic densities in neurons, and immune synapses in lymphocytes. However, a potential role for Dlg1 as a mammalian TSG is unknown. Here, we present evidence that loss of Dlg1 confers strong predisposition to the development of malignancies in a murine model of pediatric B-cell acute lymphoblastic leukemia (B-ALL). Using mice with conditionally deleted Dlg1 alleles, we identify a novel "pre-leukemic" stage of developmentally arrested early B-lineage cells marked by preeminent c-Myc expression. Mechanistically, we show that in B-lineage progenitors Dlg1 interacts with and stabilizes the PTEN protein, regulating its half-life and steady-state abundance. The loss of Dlg1 does not affect the level of PTEN mRNAs but results in a dramatic decrease in PTEN protein, leading to excessive phosphoinositide 3-kinase signaling and proliferation. Our data suggest a novel model of tumor suppression by a PDZ domain-containing polarity gene in hematopoietic cancers.
Collapse
|
8
|
Sandoval GJ, Graham DB, Bhattacharya D, Sleckman BP, Xavier RJ, Swat W. Cutting edge: cell-autonomous control of IL-7 response revealed in a novel stage of precursor B cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2485-9. [PMID: 23420891 DOI: 10.4049/jimmunol.1203208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During early stages of B-lineage differentiation in bone marrow, signals emanating from IL-7R and pre-BCR are thought to synergistically induce proliferative expansion of progenitor cells. Paradoxically, loss of pre-BCR-signaling components is associated with leukemia in both mice and humans. Exactly how progenitor B cells perform the task of balancing proliferative burst dependent on IL-7 with the termination of IL-7 signals and the initiation of L chain gene rearrangement remains to be elucidated. In this article, we provide genetic and functional evidence that the cessation of the IL-7 response of pre-B cells is controlled via a cell-autonomous mechanism that operates at a discrete developmental transition inside Fraction C' (large pre-BII) marked by transient expression of c-Myc. Our data indicate that pre-BCR cooperates with IL-7R in expanding the pre-B cell pool, but it is also critical to control the differentiation program shutting off the c-Myc gene in large pre-B cells.
Collapse
Affiliation(s)
- Gabriel J Sandoval
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
9
|
Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 2011; 7:818-26. [PMID: 21946277 DOI: 10.1038/nchembio.670] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/27/2011] [Indexed: 12/29/2022]
Abstract
Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cell's sensitivity to Hsp90 inhibition.
Collapse
|
10
|
Ta VBT, de Haan AB, de Bruijn MJW, Dingjan GM, Hendriks RW. Pre-B-cell leukemias in Btk/Slp65-deficient mice arise independently of ongoing V(D)J recombination activity. Leukemia 2010; 25:48-56. [PMID: 21030983 DOI: 10.1038/leu.2010.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adapter protein Slp65 and Bruton's tyrosine kinase (Btk) are key components of the precursor-B (pre-B) cell receptor (pre-BCR) signaling pathway. Slp65-deficient mice spontaneously develop pre-B-cell leukemia, expressing high levels of the pre-BCR on their cell surface. As leukemic Slp65-deficient pre-B cells express the recombination activating genes (Rag)1 and Rag2, and manifest ongoing immunoglobulin (Ig) light-chain rearrangement, it has been hypothesized that deregulated recombinase activity contributes to malignant transformation. In this report, we investigated whether Rag-induced DNA damage is involved in oncogenic transformation of Slp65-deficient B cells. We employed Btk/Slp65 double-deficient mice carrying an autoreactive 3-83μδ BCR transgene. When developing B cells in their bone marrow express this BCR, the V(D)J recombination machinery will be activated, allowing for secondary Ig light-chain gene rearrangements to occur. This phenomenon, called receptor editing, will rescue autoreactive B cells from apoptosis. We observed that 3-83μδ transgenic Btk/Slp65 double-deficient mice developed B-cell leukemias expressing both the 3-83μδ BCR and the pre-BCR components λ5/VpreB. Importantly, such leukemias were found at similar frequencies in mice concomitantly deficient for Rag1 or the non-homologous end-joining factor DNA-PKcs. We therefore conclude that malignant transformation of Btk/Slp65 double-deficient pre-B cells is independent of deregulated V(D)J recombination activity.
Collapse
Affiliation(s)
- V B T Ta
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Trageser D, Iacobucci I, Nahar R, Duy C, von Levetzow G, Klemm L, Park E, Schuh W, Gruber T, Herzog S, Kim YM, Hofmann WK, Li A, Storlazzi CT, Jäck HM, Groffen J, Martinelli G, Heisterkamp N, Jumaa H, Müschen M. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. ACTA ACUST UNITED AC 2009; 206:1739-53. [PMID: 19620627 PMCID: PMC2722172 DOI: 10.1084/jem.20090004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre–B cell receptor–dependent stages. The Philadelphia chromosome–positive (Ph+) subtype of ALL accounts for 25–30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre–B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre–B cell receptor–mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre–B cell receptor signaling pathway, even if expression of the pre–B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre–B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre–B cell receptor–mediated tumor suppression.
Collapse
Affiliation(s)
- Daniel Trageser
- Leukemia and Lymphoma Program, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Denley A, Gymnopoulos M, Kang S, Mitchell C, Vogt PK. Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res 2009; 7:1132-8. [PMID: 19584261 DOI: 10.1158/1541-7786.mcr-09-0068] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3K) are divided into three classes, which differ in their substrates and products. Class I generates the inositol phospholipids PI(3)P, PI(3,4)P2, and PI(3,4,5)P3 referred as PIP, PIP2, and PIP3, respectively. Class II produces PIP and PIP2, and class III generates only PIP. Substrate and product differences of the three classes are determined by the activation loops of their catalytic domains. Substitution of the class I activation loop with either class II or III activation loop results in a corresponding change of substrate preference and product restriction. We have evaluated such activation loop substitutions to show that oncogenic activity of class I PI3K is linked to the ability to produce PIP3. We further show that reduction of cellular PIP3 levels by the 5'-phosphatase PIPP interferes with PI3K-induced oncogenic transformation. PIPP also attenuates signaling through Akt and target of rapamycin. Class III PI3K fails to induce oncogenic transformation. Likewise, a constitutively membrane-bound class I PI3K mutant retaining only the protein kinase is unable to induce transformation. We conclude that PIP3 is an essential component of PI3K-mediated oncogenesis and that inability to generate PIP3 abolishes oncogenic potential.
Collapse
Affiliation(s)
- Adam Denley
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions. Blood 2009; 113:5878-86. [PMID: 19329777 DOI: 10.1182/blood-2009-01-198465] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of the pre-B-cell receptor (pre-BCR) in the bone marrow depends on both tonic and ligand-induced signaling and leads to pre-BII-cell proliferation and differentiation. Using normal mouse bone marrow pre-BII cells, we demonstrate that the ligand-induced pre-BCR activation depends on pre-BCR/galectin-1/integrin interactions leading to pre-BCR clustering at the pre-BII/stromal cell synapse. In contrast, heparan sulfates, shown to be pre-BCR ligands in mice, are not implicated in pre-BCR relocalization. Inhibition of pre-BCR/galectin-1/integrin interactions has functional consequences, since pre-BII-cell proliferation and differentiation are impaired in an in vitro B-cell differentiation assay, without affecting cellular apoptosis. Most strikingly, although galectin-1-deficient mice do not show an apparent B-cell phenotype, the kinetics of de novo B-cell reconstitution after hydroxyurea treatment indicates a specific delay in pre-BII-cell recovery due to a decrease in pre-BII-cell differentiation and proliferation. Thus, although it remains possible that the pre-BCR interacts with other ligands, these results highlight the role played by the stromal cell-derived galectin-1 for the efficient development of normal pre-BII cells and suggest the existence of pre-BII-specific stromal cell niches in normal bone marrow.
Collapse
|
14
|
Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M, Fiume G, Fierro O, Simonetta M, Argiriou N, Faraonio R, Capparelli R, Quinto I, Scala G. Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 2008; 36:4402-16. [PMID: 18596081 PMCID: PMC2490745 DOI: 10.1093/nar/gkn413] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is required for B-cell development. Btk deficiency causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk lacks a negative regulatory domain and may rely on cytoplasmic proteins to regulate its activity. Consistently, we identified an inhibitor of Btk, IBtk, which binds to the PH domain of Btk and down-regulates the Btk kinase activity. IBtk is an evolutionary conserved protein encoded by a single genomic sequence at 6q14.1 cytogenetic location, a region of recurrent chromosomal aberrations in lymphoproliferative disorders; however, the physical and functional organization of IBTK is unknown. Here, we report that the human IBTK locus includes three distinct mRNAs arising from complete intron splicing, an additional polyadenylation signal and a second transcription start site that utilizes a specific ATG for protein translation. By northern blot, 5′RACE and 3′RACE we identified three IBTKα, IBTKβ and IBTKγ mRNAs, whose transcription is driven by two distinct promoter regions; the corresponding IBtk proteins were detected in human cells and mouse tissues by specific antibodies. These results provide the first characterization of the human IBTK locus and may assist in understanding the in vivo function of IBtk.
Collapse
Affiliation(s)
- Carmen Spatuzza
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Habib T, Park H, Tsang M, de Alborán IM, Nicks A, Wilson L, Knoepfler PS, Andrews S, Rawlings DJ, Eisenman RN, Iritani BM. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. ACTA ACUST UNITED AC 2007; 179:717-31. [PMID: 17998397 PMCID: PMC2080907 DOI: 10.1083/jcb.200704173] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell-specific c-/N-myc double-knockout mice and E(mu)-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2-/- and Btk-/- Tec-/-) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+-adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes.
Collapse
Affiliation(s)
- Tania Habib
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|