1
|
Brandlmaier M, Hoellwerth M, Koelblinger P, Lang R, Harrer A. Adjuvant PD-1 Checkpoint Inhibition in Early Cutaneous Melanoma: Immunological Mode of Action and the Role of Ultraviolet Radiation. Cancers (Basel) 2024; 16:1461. [PMID: 38672543 PMCID: PMC11047851 DOI: 10.3390/cancers16081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma ranks as the fifth most common solid cancer in adults worldwide and is responsible for a significant proportion of skin-tumor-related deaths. The advent of immune checkpoint inhibition with anti-programmed death protein-1 (PD-1) antibodies has revolutionized the adjuvant treatment of high-risk, completely resected stage III/IV melanoma. However, not all patients benefit equally. Current strategies for improving outcomes involve adjuvant treatment in earlier disease stages (IIB/C) as well as perioperative treatment approaches. Interfering with T-cell exhaustion to counteract cancer immune evasion and the immunogenic nature of melanoma is key for anti-PD-1 effectiveness. Yet, the biological rationale for the efficacy of adjuvant treatment in clinically tumor-free patients remains to be fully elucidated. High-dose intermittent sun exposure (sunburn) is a well-known primary risk factor for melanomagenesis. Also, ultraviolet radiation (UVR)-induced immunosuppression may impair anti-cancer immune surveillance. In this review, we summarize the current knowledge about adjuvant anti-PD-1 blockade, including a characterization of the main cell types most likely responsible for its efficacy. In conclusion, we propose that local and systemic immunosuppression, to some extent UVR-mediated, can be restored by adjuvant anti-PD-1 therapy, consequently boosting anti-melanoma immune surveillance and the elimination of residual melanoma cell clones.
Collapse
Affiliation(s)
- Matthias Brandlmaier
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Magdalena Hoellwerth
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Andrea Harrer
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, El Ayadi A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina (B Aires) 2022; 58:medicina58070922. [PMID: 35888643 PMCID: PMC9315582 DOI: 10.3390/medicina58070922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Burn wound conversion refers to the phenomenon whereby superficial burns that appear to retain the ability to spontaneously heal, convert later into deeper wounds in need of excision. While no current treatment can definitively stop burn wound conversion, attempts to slow tissue damage remain unsatisfactory, justifying the need for new therapeutic interventions. To attenuate burn wound conversion, various studies have targeted at least one of the molecular mechanisms underlying burn wound conversion, including ischemia, inflammation, apoptosis, autophagy, generation of reactive oxygen species, hypothermia, and wound rehydration. However, therapeutic strategies that can target various mechanisms involved in burn wound conversion are still lacking. This review highlights the pathophysiology of burn wound conversion and focuses on recent studies that have turned to the novel use of biologics such as mesenchymal stem cells, biomaterials, and immune regulators to mitigate wound conversion. Future research should investigate mechanistic pathways, side effects, safety, and efficacy of these different treatments before translation into clinical studies.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, A-8036 Graz, Austria
| | - Jayson W. Jay
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Robert P. Duggan
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Ludwik K. Branski
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Steven E. Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
| | - Naseem Ansari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.P.); (J.W.J.); (R.P.D.); (L.K.B.); (S.E.W.)
- Correspondence:
| |
Collapse
|
3
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
4
|
Tan Y, Tey HL, Chong SZ, Ng LG. Skin-ny deeping: Uncovering immune cell behavior and function through imaging techniques. Immunol Rev 2021; 306:271-292. [PMID: 34859448 DOI: 10.1111/imr.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Bryan ER, Barrero RA, Cheung E, Tickner JAD, Trim LK, Richard D, McLaughlin EA, Beagley KW, Carey AJ. DNA damage contributes to transcriptional and immunological dysregulation of testicular cells during Chlamydia infection. Am J Reprod Immunol 2021; 86:e13400. [PMID: 33565167 DOI: 10.1111/aji.13400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/23/2020] [Accepted: 02/06/2021] [Indexed: 01/17/2023] Open
Abstract
Chlamydia is the most commonly reported sexually transmitted bacterial infection, with 127 million notifications worldwide each year. Both males and females are susceptible to the pathological impacts on fertility that Chlamydia infections can induce. However, male chlamydial infections, particularly within the upper reproductive tract, including the testis, are not well characterized. In this study, using mouse testicular cell lines, we examined the impact of infection on testicular cell lineage transcriptomes and potential mechanisms for this impact. The somatic cell lineages exhibited significantly fragmented genomes during infection. Likely resulting from this, each of the Leydig, Sertoli and germ cell lineages experienced extensive transcriptional dysregulation, leading to significant changes in cellular biological pathways, including interferon and germ-Sertoli cell signalling. The cell lineages, as well as isolated spermatozoa from infected mice, also contained globally hypomethylated DNA. Cumulatively, the DNA damage and epigenetic-mediated transcriptional dysregulation observed within testicular cells during chlamydial infection could result in the production of spermatozoa with abnormal epigenomes, resulting in previously observed subfertility in infected animals and congenital defects in their offspring.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Roberto A Barrero
- eResearch Office and Division of Research & Innovation, Queensland University of Technology, Brisbane City, QLD, Australia
| | - Eddie Cheung
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Jacob A D Tickner
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Derek Richard
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
6
|
Blakney AK, Deletic P, McKay PF, Bouton CR, Ashford M, Shattock RJ, Sabirsh A. Effect of complexing lipids on cellular uptake and expression of messenger RNA in human skin explants. J Control Release 2020; 330:1250-1261. [PMID: 33250305 DOI: 10.1016/j.jconrel.2020.11.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Messenger RNA (mRNA) represents a promising next-generation approach for both treatment and vaccination. Lipid based particles are one of the most investigated delivery systems for mRNA formulations. Here we explore how the complexing lipid affects uptake and translation of lipoplex-delivered RNA in resident cells in human skin explants and, we explore a more modular delivery system that utilizes mRNA added to pre-formed nanoparticles prior to dosing. We prepared formulations of lipoplexes with ionizable, cationic or zwitterionic lipids, externally complexed these with mRNA, and observed which cells internalized and/or expressed the mRNA over 72 h after intradermal injections into primary, human, skin explants. Using a flow cytometry panel to assess cellular phenotypes, mRNA uptake and mRNA expression, we found that, unlike other cell types, adipocytes expressed mRNA efficiently at 4 and 24 h after mRNA-lipoplex injection and contributed the greatest proportion of total RNA-encoded protein expression, despite being the lowest frequency cell type. Other cell types (epithelial cells, fibroblasts, T cells, B cells, dendritic cells, monocytes, NK cells, Langerhans cells, and leukocytes) had increasing mRNA expression over the course of 72 h, irrespective of lipoplex formulation. We observed that overall charge of the particle, but not the complexing lipid classification, was predictive for the pattern of mRNA uptake and expression among resident cell types in this model. This study provides insight into maximizing protein expression, using modular mRNA lipoplexes that are more compatible with product development, in a clinically relevant, human skin explant model.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Infectious Diseases, Imperial College London, London W21PG, United Kingdom.
| | - Polina Deletic
- Department of Infectious Diseases, Imperial College London, London W21PG, United Kingdom
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London W21PG, United Kingdom
| | - Clément R Bouton
- Department of Infectious Diseases, Imperial College London, London W21PG, United Kingdom
| | - Marianne Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R & D, AstraZeneca, Macclesfield, United Kingdom
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London W21PG, United Kingdom
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R & D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
7
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Chen H, Eling N, Martinez‐Jimenez CP, O'Brien LM, Carbonaro V, Marioni JC, Odom DT, de la Roche M. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep 2019; 20:e47379. [PMID: 31283095 PMCID: PMC6680116 DOI: 10.15252/embr.201847379] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
How the age-associated decline of immune function leads to increased cancer incidence is poorly understood. Here, we have characterised the cellular composition of the γδ T-cell pool in peripheral lymph nodes (pLNs) upon ageing. We find that ageing has minimal cell-intrinsic effects on function and global gene expression of γδ T cells, and γδTCR diversity remains stable. However, ageing alters TCRδ chain usage and clonal structure of γδ T-cell subsets. Importantly, IL-17-producing γδ17 T cells dominate the γδ T-cell pool of aged mice-mainly due to the selective expansion of Vγ6+ γδ17 T cells and augmented γδ17 polarisation of Vγ4+ T cells. Expansion of the γδ17 T-cell compartment is mediated by increased IL-7 expression in the T-cell zone of old mice. In a Lewis lung cancer model, pro-tumourigenic Vγ6+ γδ17 T cells are exclusively activated in the tumour-draining LN and their infiltration into the tumour correlates with increased tumour size in aged mice. Thus, upon ageing, substantial compositional changes in γδ T-cell pool in the pLN lead to an unbalanced γδ T-cell response in the tumour that is associated with accelerated tumour growth.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-7/genetics
- Interleukin-7/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Tumor Burden/genetics
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Hung‐Chang Chen
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Nils Eling
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
| | - Celia Pilar Martinez‐Jimenez
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Helmholtz Pioneer Campus, Helmholtz Zentrum MünchenNeuherbergGermany
| | | | | | - John C Marioni
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
| | - Duncan T Odom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Division of Signalling and Functional GenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Maike de la Roche
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
9
|
Israr M, Rosenthal D, Frejo-Navarro L, DeVoti J, Meyers C, Bonagura VR. Microarray analysis of human keratinocytes from different anatomic sites reveals site-specific immune signaling and responses to human papillomavirus type 16 transfection. Mol Med 2018; 24:23. [PMID: 30134802 PMCID: PMC6016891 DOI: 10.1186/s10020-018-0022-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stratified human keratinocytes (SHKs) are an essential part of mucosal innate immune response that modulates adaptive immunity to microbes encountered in the environment. The importance of these SHKs in mucosal integrity and development has been well characterized, however their regulatory immunologic role at different mucosal sites, has not. In this study we compared the immune gene expression of SHKs from five different anatomical sites before and after HPV16 transfection using microarray analyses. METHODS Individual pools of human keratinocytes from foreskin, cervix, vagina, gingiva, and tonsils (HFKs, HCKs, HVKs, HGKs and HTLKs) were prepared. Organotypic (raft) cultures were established for both normal and HPV16 immortalized HFKs, HCKs, HVKs, HGKs and HTLKs lines which stably maintained episomal HPV16 DNA. Microarray analysis was carried out using the HumanHT-12 V4 gene chip (Illumina). Immune gene expression profiles were obtained by global gene chip (GeneSifter) and Ingenuity pathway analysis (IPA) for each individual site, with or without HPV16 transfection. RESULTS We examined site specific innate immune response gene expression in SHKs from all five different anatomical sites before and after HPV16 transfection. We observed marked differences in SHK immune gene repertoires within and between mucosal tracts before HPV 16 infection. In addition, we observed additional changes in SHKs immune gene repertoire patterns when these SHKs were productively transfected with HPV16. Some immune response genes were similarly expressed by SHKs from different sites. However, there was also variable expression of non-immune response genes, such as keratin genes, by the different SHKs. CONCLUSIONS Our results suggest that keratinocytes from different anatomical sites are likely hard wired in their innate immune responses, and that these immune responses are unique depending on the anatomical site from which the SHKs were derived. These observations may help explain why select HPV types predominate at different mucosal sites, cause persistent infection at these sites, and on occasion, lead to HPV induced malignant and benign tumor development.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - David Rosenthal
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Lidia Frejo-Navarro
- Department of Genomic Medicine, Otology and Neurotology Group CTS495, Centre for Genomics and Oncological Research, Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - James DeVoti
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vincent R Bonagura
- The Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Allergy and Immunology, Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA.
| |
Collapse
|
10
|
Silva-Santos B, Strid J. Working in "NK Mode": Natural Killer Group 2 Member D and Natural Cytotoxicity Receptors in Stress-Surveillance by γδ T Cells. Front Immunol 2018; 9:851. [PMID: 29740448 PMCID: PMC5928212 DOI: 10.3389/fimmu.2018.00851] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/26/2023] Open
Abstract
Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the “lymphoid stress-surveillance” theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1+ T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Dalessandri T, Crawford G, Hayes M, Castro Seoane R, Strid J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun 2016; 7:12080. [PMID: 27357235 PMCID: PMC4931319 DOI: 10.1038/ncomms12080] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
The skin is under constant renewal and exposure to environmental challenges. How homeostasis is maintained alongside protective mechanisms against damage is unclear. Among the basal epithelial cells (ECs) is a population of resident intraepithelial lymphocytes (IELs) that provide host-protective immune surveillance. Here we show that IELs cross-communicate with ECs via the production of IL-13. Skin ECs are activated by IEL-derived IL-13, enabling a canonical EC stress response. In the absence of IL-13, or canonical IEL, the skin has decreased ability to repair its barrier and increased susceptibility to cutaneous carcinogenesis. IL-13 controls the rate of EC movement through the epidermis, which might explain the importance of IL-13 for epidermal integrity and its suppressive effect on skin carcinogenesis. These findings show that IL-13 acts as a molecular bridge between IELs and ECs, and reveal a critical host-defensive role for type-2 immunity in regulating EC tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Greg Crawford
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Mark Hayes
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Rocio Castro Seoane
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
12
|
Natsuga K, Cipolat S, Watt FM. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. J Invest Dermatol 2016; 136:99-106. [PMID: 26763429 PMCID: PMC4759621 DOI: 10.1038/jid.2015.383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/24/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance.
Collapse
Key Words
- amp, antimicrobial protein
- epi-/- mice, mice lacking envoplakin, periplakin, and involucrin
- fish, fluorescence in situ hybridization
- mpo, myeloperoxidase
- nkg2d, natural killer group 2d
- spf, specific pathogen free
- tpa, tetradecanoylphorbol-13-acetate
- wt, wild-type
Collapse
Affiliation(s)
- Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sara Cipolat
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Mondoulet L, Dioszeghy V, Thébault C, Benhamou PH, Dupont C. Epicutaneous immunotherapy for food allergy as a novel pathway for oral tolerance induction. Immunotherapy 2015; 7:1293-305. [PMID: 26584421 DOI: 10.2217/imt.15.86] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epicutaneous immunotherapy is a developing technique, aiming at desensitizing patients with food allergy with less risks that oral ingestion or injection could generate. Several clinical trials have been performed and are currently running, in milk and peanut allergy, assessing the safety of the technique and its efficacy. Preclinical models indicate a major role in the mechanisms of desensitization, for example, Tregs and epigenetic modifications.
Collapse
Affiliation(s)
- Lucie Mondoulet
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | - Vincent Dioszeghy
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | - Claude Thébault
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | | | - Christophe Dupont
- Université Paris Descartes - Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
14
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
15
|
Zhang B, Wu J, Jiao Y, Bock C, Dai M, Chen B, Chao N, Zhang W, Zhuang Y. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4282-91. [PMID: 26408667 DOI: 10.4049/jimmunol.1501220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023]
Abstract
Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yiqun Jiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Cheryl Bock
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Benny Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710; and
| | - Nelson Chao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Department of Medicine, Duke University Medical Center, Durham, NC 27710; and Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
16
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
17
|
Kim K. Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin. Biomol Ther (Seoul) 2014; 20:506-12. [PMID: 24009842 PMCID: PMC3762292 DOI: 10.4062/biomolther.2012.20.6.506] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/14/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022] Open
Abstract
Although pruritus is the critical symptom of atopic dermatitis that profoundly affect the patients' quality of life, controlling and management of prurirtus still remains as unmet needs mainly due to the distinctive multifactorial pathogenesis of pruritus in atopic dermatitis. Based on the distinct feature of atopic dermatitis that psychological state of patients substantially influence on the intensity of pruritus, various psychotropic drugs have been used in clinic to relieve pruritus of atopic dermatitis patients. Only several psychotropic drugs were reported to show real antipruritic effects in atopic dermatitis patients including naltrexone, doxepin, trimipramine, bupropion, tandospirone, paroxetine and fluvoxamine. However, the precise mechanisms of antipruritic effect of these psychotropic drugs are still unclear. In human skin, serotonin receptors and serotonin transporter protein are expressed on skin cells such as keratinocytes, melanocytes, dermal fibroblasts, mast cells, T cells, natural killer cells, langerhans cells, and sensory nerve endings. It is noteworthy that serotonergic drugs, as well as serotonin itself, showed immune-modulating effect. Fenfluramine, fluoxetine and 2, 5-dimethoxy-4-iodoamphetamine significantly decreased lymphocyte proliferation. It is still questionable whether these serotonergic drugs exert the immunosuppressive effects via serotonin receptor or serotonin transporter. All these clinical and experimental reports suggest the possibility that antipruritic effects of selective serotonin reuptake inhibitors in atopic dermatitis patients might be at least partly due to their suppressive effect on T cells. Further studies should be conducted to elucidate the precise mechanism of neuroimmunological interaction in pruritus of atopic dermatitis.
Collapse
Affiliation(s)
- Kwangmi Kim
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
18
|
A fat story-antigen presentation by butyrophilin 3A1 to γδ T cells. Cell Mol Immunol 2013; 11:5-7. [PMID: 24097036 DOI: 10.1038/cmi.2013.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 11/09/2022] Open
|
19
|
Kypriotou M, Rivero D, Haller S, Mariotto A, Huber M, Acha-Orbea H, Werner S, Hohl D. Activin a inhibits antigen-induced allergy in murine epicutaneous sensitization. Front Immunol 2013; 4:246. [PMID: 23986758 PMCID: PMC3749436 DOI: 10.3389/fimmu.2013.00246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/07/2013] [Indexed: 01/20/2023] Open
Abstract
Activin A, a member of the TGFβ superfamily, is involved in physiological processes such as cell differentiation, tissue homeostasis, wound healing, reproduction, and in pathological conditions, such as fibrosis, cancer, and asthma. Activin enhances mast cell maturation, as well as regulatory T-cell and Langerhans cell differentiation. In this study we investigated the potential role of activin in epicutaneous sensitization with ovalbumin (OVA), notably with respect to its effect on known Th2-polarization. For this purpose, transgenic mice overexpressing activin in keratinocytes and their wild-type (WT) controls were sensitized epicutaneously with OVA. Skin biopsies were analyzed with regard to histopathological features and mRNA expression of pro-inflammatory and Th1/Th2 cytokines, and Ig levels were measured in the serum. Unexpectedly, activin overexpressing animals were protected from Th2-cytokine expression and induction of OVA-specific IgE levels compared to WT animals. On the other hand, transgenic mice were more susceptible to inflammation compared to WT littermates after tape-stripping and saline (vehicle) or OVA application, as shown by increased pro-inflammatory cytokine mRNA levels and neutrophil accumulation at the site of the treatment. We conclude that activin protects from antigen-induced cutaneous Th2-polarization through modulation of the immune response. These findings highlight the role of activin in cutaneous sensitization, allergy, and in skin homeostasis.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital, CHUV , Lausanne , Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Greaves NS, Ashcroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci 2013; 72:206-17. [PMID: 23958517 DOI: 10.1016/j.jdermsci.2013.07.008] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing ultimately functions to facilitate barrier restoration following injury-induced loss of skin integrity. It is an evolutionarily conserved, multi-cellular, multi-molecular process involving co-ordinated inter-play between complex signalling networks. Cellular proliferation is recognised as the third stage of this sequence. Within this phase, fibroplasia and angiogenesis are co-dependent processes which must be successfully completed in order to form an evolving extracellular matrix and granulation tissue. The resultant structures guide cellular infiltration, differentiation and secretory profile within the wound environment and consequently have major influence on the success or failure of wound healing. This review integrates in vitro, animal and human in vivo studies, to provide up to date descriptions of molecular and cellular interactions involved in fibroplasia and angiogenesis. Significant molecular networks include adhesion molecules, proteinases, cytokines and chemokines as well as a plethora of growth factors. These signals are produced by, and affect behaviour of, cells including fibroblasts, fibrocytes, keratinocytes, endothelial cells and inflammatory cells resulting in significant cellular phenotypic and functional plasticity, as well as controlling composition and remodelling of structural proteins including collagen and fibronectin. The interdependent relationship between angiogenesis and fibroplasia relies on dynamic reciprocity between cellular components, matrix proteins and bioactive molecules. Unbalanced regulation of any one component can have significant consequences resulting in delayed healing, chronic wounds or abnormal scar formation. Greater understanding of angiogenic and fibroplastic mechanisms underlying chronic wound pathogenesis has identified novel therapeutic targets and enabled development of improved treatment strategies including topical growth factors and skin substitutes.
Collapse
Affiliation(s)
- Nicholas S Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, UK; The University of Manchester, Manchester Academic Health Science Centre, University Hospital South Manchester Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | | | | | | |
Collapse
|
21
|
Elnekave M, Furmanov K, Hovav AH. Intradermal naked plasmid DNA immunization: mechanisms of action. Expert Rev Vaccines 2012; 10:1169-82. [PMID: 21854310 DOI: 10.1586/erv.11.66] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmid DNA is a promising vaccine modality that is regularly examined in prime-boost immunization regimens. Recent advances in skin immunity increased our understanding of the sophisticated cutaneous immune network, which revived scientific interest in delivering vaccines to the skin. Intradermal administration of plasmid DNA via needle injection is a simple and inexpensive procedure that exposes the plasmid and its encoded antigen to the dermal immune surveillance system. This triggers unique mechanisms for eliciting local and systemic immunity that can confer protection against pathogens and tumors. Understanding the mechanisms of intradermal plasmid DNA immunization is essential for enhancing and modulating its immunogenicity. With regard to vaccination, this is of greater importance as this routine injection technique is highly desirable for worldwide immunization. This article will focus on the current understanding of the mechanisms involved in antigen expression and presentation during primary and secondary syringe and needle intradermal plasmid DNA immunization.
Collapse
Affiliation(s)
- Mazal Elnekave
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, PO Box 122722, Jerusalem 91120, Israel
| | | | | |
Collapse
|
22
|
Bansal RR, Mackay CR, Moser B, Eberl M. IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur J Immunol 2011; 42:110-9. [PMID: 22009762 DOI: 10.1002/eji.201142017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022]
Abstract
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from all other lymphocytes by their specific responsiveness to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a metabolite produced by a large range of microbial pathogens. Vγ9/Vδ2 T cells can be skewed towards distinct effector functions, in analogy to, and beyond, the emerging plasticity of CD4(+) T cells. As such, depending on the microenvironment, Vγ9/Vδ2 T cells can assume features reminiscent of Th1, Th2, Th17 and Treg cells as well as professional APCs. We here demonstrate that Vγ9/Vδ2 T cells express markers associated with follicular B helper T (T(FH) ) cells when stimulated with HMB-PP in the presence of IL-21. HMB-PP induces upregulation of IL-21R on Vγ9/Vδ2 T cells. In return, IL-21 plays a co-stimulatory role in the expression of the B-cell-attracting chemokine CXCL13, the CXCL13 receptor CXCR5 and the inducible co-stimulator by activated Vγ9/Vδ2 T cells, and enhances their potential to support antibody production by B cells. The interaction between HMB-PP-responsive Vγ9/Vδ2 T cells, IL-21-producing T(FH) cells and B cells in secondary lymphoid tissues is likely to impact on the generation of high affinity, class-switched antibodies in microbial infections.
Collapse
Affiliation(s)
- Raj R Bansal
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
23
|
Wu T, Jia L, Du R, Tao X, Chen J, Cheng B. Genome-wide analysis reveals the active roles of keratinocytes in oral mucosal adaptive immune response. Exp Biol Med (Maywood) 2011; 236:832-43. [PMID: 21676921 DOI: 10.1258/ebm.2011.010307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To elucidate the roles of oral keratinocytes in the adaptive immune response of oral mucosa, global gene expression analysis was performed by microarray technique and integrating computational methods, including hierarchical clustering, biological process Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, self-organizing maps (SOMs) and biological association network analysis (BAN). Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database, http://www.ncbi.nlm.nih.gov/geo/ (GEO accession GSE28035). We identified 666 differentially expressed genes in the early stage (48 h) and 993 in the late stage (96 h) of the oral mucosal adaptive immune response. The analysis revealed that oral keratinocytes exerted diverse biological functions in different stages of immune response. Specifically, in 48 h the differentially expressed genes encompassed an array of biological ontology associated with immune response, such as antigen processing and presentation, and positive regulation of T-cell-mediated cytotoxicity. Several pathways which have been reported to be critical in inflammation, including mitogen-activated protein kinase pathway, were activated. Furthermore, after BAN construction, some putative hub genes and networks such as interleukin-1α and its subnetwork were recognized. Taken together, these results give substantial evidence to support the active roles of keratinocytes in the oral mucosal adaptive immune response.
Collapse
Affiliation(s)
- Tong Wu
- Department of Oral Medicine, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
24
|
de Jong A, Peña-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat Immunol 2010; 11:1102-9. [PMID: 21037579 PMCID: PMC3131223 DOI: 10.1038/ni.1956] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022]
Abstract
CD1 activates T cells, but the function and size of the possible human T cell repertoires that recognize each of the CD1 antigen-presenting molecules remain unknown. Using an experimental system that bypasses major histocompatibility complex (MHC) restriction and the requirement for defined antigens, we show that polyclonal T cells responded at higher rates to cells expressing CD1a than to those expressing CD1b, CD1c or CD1d. Unlike the repertoire of invariant natural killer T (NKT) cells, the CD1a-autoreactive repertoire contained diverse T cell antigen receptors (TCRs). Functionally, many CD1a-autoreactive T cells homed to skin, where they produced interleukin 22 (IL-22) in response to CD1a on Langerhans cells. The strong and frequent responses among genetically diverse donors define CD1a-autoreactive cells as a normal part of the human T cell repertoire and CD1a as a target of the T(H)22 subset of helper T cells.
Collapse
Affiliation(s)
- Annemieke de Jong
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ. Chemical allergy: translating biology into hazard characterization. Toxicol Sci 2010; 120 Suppl 1:S238-68. [PMID: 21097995 DOI: 10.1093/toxsci/kfq346] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The induction by chemicals of allergic sensitization and allergic disease is an important and challenging branch of toxicology. Skin sensitization resulting in allergic contact dermatitis represents the most common manifestation of immunotoxicity in humans, and many hundreds of chemicals have been implicated as skin sensitizers. There are far fewer chemicals that have been shown to cause sensitization of the respiratory tract and asthma, but the issue is no less important because hazard identification remains a significant challenge, and occupational asthma can be fatal. In all areas of chemical allergy, there have been, and remain still, intriguing challenges where progress has required a close and productive alignment between immunology, toxicology, and clinical medicine. What the authors have sought to do here is to exemplify, within the framework of chemical allergy, how an investment in fundamental research and an improved understanding of relevant biological and biochemical mechanisms can pay important dividends in driving new innovations in hazard identification, hazard characterization, and risk assessment. Here we will consider in turn three specific areas of research in chemical allergy: (1) the role of epidermal Langerhans cells in the development of skin sensitization, (2) T lymphocytes and skin sensitization, and (3) sensitization of the respiratory tract. In each area, the aim is to identify what has been achieved and how that progress has impacted on the development of new approaches to toxicological evaluation. Success has been patchy, and there is still much to be achieved, but the journey has been fascinating and there have been some very important developments. The conclusion drawn is that continued investment in research, if coupled with an appetite for translating the fruits of that research into imaginative new tools for toxicology, should continue to better equip us for tackling the important challenges that remain to be addressed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Lewis J, Filler R, Smith DA, Golubets K, Girardi M. The contribution of Langerhans cells to cutaneous malignancy. Trends Immunol 2010; 31:460-6. [PMID: 21071271 DOI: 10.1016/j.it.2010.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 01/08/2023]
Abstract
The skin is at the forefront of environmental exposures, such as ultraviolet radiation and a myriad of chemicals, and is at risk for malignant transformation. The skin is a highly responsive immunological organ that contains a unique population of immature intraepidermal dendritic cells (DCs) called Langerhans cells (LCs). Although LCs show morphological and migratory changes in response to epidermal perturbation, and can function as antigen-presenting cells to activate T cells, their role in carcinogenesis is unknown. Here we review recent studies that have provided clues to the potential roles that LCs might play in the pathogenesis of skin cancer, beyond their stimulation or regulation of adaptive immunity. Understanding this role of LCs might provide new perspectives on the relevance of DC populations that are resident within other epithelial tissues for cancer.
Collapse
Affiliation(s)
- Julia Lewis
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | |
Collapse
|
28
|
Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc Natl Acad Sci U S A 2010; 107:19903-8. [PMID: 21041641 DOI: 10.1073/pnas.1007404107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.
Collapse
|
29
|
Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, Teyton L, Fischer WH, Wilson IA, Havran WL. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 2010; 329:1205-10. [PMID: 20813954 PMCID: PMC2943937 DOI: 10.1126/science.1192698] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gammadelta T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial gammadelta T cell-specific costimulatory molecule, junctional adhesion molecule-like protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished gammadelta T cell activation and delayed wound closure akin to that seen in the absence of gammadelta T cells. Our results identify JAML as a crucial component of epithelial gammadelta T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.
Collapse
Affiliation(s)
- Deborah A. Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Petra Verdino
- Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephanie E. Rieder
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Garijo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn E. Mills
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luc Teyton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Ian A. Wilson
- Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wendy L. Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Affiliation(s)
- Andrey S. Shaw
- Department of Pathology and Immunology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yina Huang
- Department of Pathology and Immunology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Abstract
The development of T cells in the thymus involves several differentiation and proliferation events, during which hematopoietic precursors give rise to T cells ready to respond to antigen stimulation and undergo effector differentiation. This review addresses signaling and transcriptional checkpoints that control the intrathymic journey of T cell precursors. We focus on the divergence of alphabeta and gammadelta lineage cells and the elaboration of the alphabeta T cell repertoire, with special emphasis on the emergence of transcriptional programs that direct lineage decisions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage
- Gene Expression Regulation/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 2010; 11:656-65. [PMID: 20644571 PMCID: PMC2950874 DOI: 10.1038/ni.1905] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frequent microbial and nonmicrobial challenges to epithelial cells trigger discrete pathways, promoting molecular changes such as the secretion of specific cytokines and chemokines and alterations to molecules displayed at the epithelial cell surface. In combination, these molecules impose key decisions on innate and adaptive immune cells. Depending on context, those decisions can be as diverse as those imposed by professional antigen-presenting cells, benefiting the host by balancing immune competence with the avoidance of immunopathology. Nonetheless, this potency of epithelial cells is also consistent with the causal contribution of epithelial dysregulation to myriad inflammatory diseases. This pathogenic axis provides an attractive target for tissue-specific clinical manipulation. In this context, a research goal should be to identify all molecules used by epithelial cells to instruct immune cells. We term this the 'epimmunome'.
Collapse
Affiliation(s)
- Mahima Swamy
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| | - Colin Jamora
- Section of Cell and Developmental Biology, Division of Biological Sciences, Natural Science Building, Room 6311, 9500 Gilman Drive, MC 0380, La Jolla, California 92093, USA
| | - Wendy Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrian Hayday
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| |
Collapse
|
33
|
Havran WL, Jameson JM. Epidermal T cells and wound healing. THE JOURNAL OF IMMUNOLOGY 2010; 184:5423-8. [PMID: 20483798 DOI: 10.4049/jimmunol.0902733] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The murine epidermis contains resident T cells that express a canonical gammadelta TCR. These cells arise from fetal thymic precursors and use a TCR that is restricted to the skin in adult animals. These cells assume a dendritic morphology in normal skin and constitutively produce low levels of cytokines that contribute to epidermal homeostasis. When skin is wounded, an unknown Ag is expressed on damaged keratinocytes. Neighboring gammadelta T cells then round up and contribute to wound healing by local production of epithelial growth factors and inflammatory cytokines. In the absence of skin gammadelta T cells, wound healing is impaired. Similarly, epidermal T cells from patients with healing wounds are activated and secreting growth factors. Patients with nonhealing wounds have a defective epidermal T cell response. Information gained on the role of epidermal-resident T cells in the mouse may provide information for development of new therapeutic approaches to wound healing.
Collapse
Affiliation(s)
- Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
34
|
Garside P, Brewer J. In vivo imaging of infection immunology--4I's! Semin Immunopathol 2010; 32:289-96. [PMID: 20607240 DOI: 10.1007/s00281-010-0215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022]
Abstract
As predicted by the red queen hypothesis, microbial pathogens are probably the major reason for the evolution of the immune system (Paterson et al., Nature 464:275-278, 2010). In general, at the population level, i.e., for most of us, most of the time, the immune response to infection is highly effective. However, there remain significant challenges with particularly intransigent organisms or those that are crossing species barriers. Thus, in some cases, efforts to develop new and effective vaccines and drugs have met with limited success. To paraphrase Rudyard Kipling, "I keep six honest serving men--they taught me all I know; their names are what, and why, and when and how and where and who". Addressing these key tenets will be key to understanding the interaction between infection and the immune system. This is particularly important, as the early events during induction of an immune response influence the acquisition of effector function and development of memory responses. Our understanding of the interactions of pathogens with the host immune system has largely been derived through in vitro or static in vivo study. This is a significant issue, as the component parts of the immune system do not work in isolation, and their interactions occur in distinct and specialized micro- and macro anatomical locations that can only be assessed in the physiological context, dynamically in vivo. To this end, the increasing availability of genetically manipulable pathogens and high resolution, real-time in vivo imaging over the preceding 5 years has greatly enhanced our ability to understand and evaluate factors involved in host-pathogen interactions in vivo. This article will review the current status of this area, highlight why progress has been faster with some pathogens and tissues (e.g., protozoa and accessible site such as skin), and speculate on what recent developments in biology and imaging will tell us about pathogen-specific immune responses in the future. This will be done by following the chronological development of the infection process from invasion, to recognition, and dissemination.
Collapse
Affiliation(s)
- Paul Garside
- Division of Immunology, Infection & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | | |
Collapse
|
35
|
Yang J, Meyer M, Müller AK, Böhm F, Grose R, Dauwalder T, Verrey F, Kopf M, Partanen J, Bloch W, Ornitz DM, Werner S. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. ACTA ACUST UNITED AC 2010; 188:935-52. [PMID: 20308431 PMCID: PMC2845079 DOI: 10.1083/jcb.200910126] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of FGFRs results in skin abnormalities due to activation of keratinocytes and epidermal T cells. Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Biology, Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Human skin and its immune cells provide essential protection of the human body from injury and infection. Recent studies reinforce the importance of keratinocytes as sensors of danger through alert systems such as the inflammasome. In addition, newly identified CD103(+) dendritic cells are strategically positioned for cross-presentation of skin-tropic pathogens and accumulating data highlight a key role of tissue-resident rather than circulating T cells in skin homeostasis and pathology. This Review focuses on recent progress in dissecting the functional role of skin immune cells in skin disease.
Collapse
Affiliation(s)
- Frank O Nestle
- St. John's Institute of Dermatology, King's College London, UK.
| | | | | | | |
Collapse
|
37
|
|