1
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ebersole JL, Nguyen LM, Gonzalez OA. Gingival tissue antibody gene utilization in aging and periodontitis. J Periodontal Res 2022; 57:780-798. [PMID: 35582846 DOI: 10.1111/jre.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study used a nonhuman primate model of ligature-induced periodontitis to document the characteristics of immunoglobulin (Ig) gene usage in gingival tissues with disease and affected by age. BACKGROUND Adaptive immune responses to an array of oral bacteria are routinely detected in local gingival tissues and the systemic circulation across the human population. The level and diversity of antibody increases with periodontitis, reflecting the increased quantity of B cells and plasmacytes in the tissues at sites of periodontal lesions. METHODS Macaca mulatta (n = 36) in four groups (young - ≤3 years; adolescent >3-7 years; adult - 12-15 years; aged - 17-23 years) were used in this study. Gingival tissues were sampled at baseline (health), 2 weeks (initiation), 1 and 3 months (progression), and 5 months (resolution) of the lesion development and transcriptomic analysis included 78 Ig-related genes. RESULTS The results demonstrated extensive variation in Ig gene usage patterns and changes with the disease process that was substantially affected by the age of the animal. Of note was that the aged animals generally demonstrated elevated expression on multiple Ig genes even in the baseline/healthy gingival tissues. The expression levels revealed 5 aggregates of Ig gene change profiles across the age groups. The number of gene changes were greatly increased in adult animals with the initiation of disease, while the young and adolescent animals showed extensive changes with disease progression. Elevated Ig gene transcripts remained with disease resolution except in the aged animals. The response profiles demonstrated selective heavy/light change gene transcripts that differed with age and clustering of the transcript expression was dominated by the age of the animals. CONCLUSIONS The results suggested potential critical variations in the molecular aspects of Ig gene expression in gingival tissues that can contribute to understanding the kinetics of periodontal lesions, as well as the variation in episodes, rapidity of progression, and role in resolution that are impacted by age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Lin SG, Ba Z, Alt FW, Zhang Y. RAG Chromatin Scanning During V(D)J Recombination and Chromatin Loop Extrusion are Related Processes. Adv Immunol 2018; 139:93-135. [PMID: 30249335 DOI: 10.1016/bs.ai.2018.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An effective adaptive immune system depends on the ability of developing B and T cells to generate diverse immunoglobulin (Ig) and T cell receptor repertoires, respectively. Such diversity is achieved through a programmed somatic recombination process whereby germline V, D, and J segments of antigen receptor loci are assembled to form the variable region V(D)J exons of Ig and TCRs. Studies of this process, termed V(D)J recombination, have provided key insights into our understanding of a variety of general gene regulatory and DNA repair processes over the last several decades. V(D)J recombination is initiated by the RAG endonuclease which generates DNA double-stranded breaks at the borders of V, D, and J segments. In this review, we cover recent work that has elucidated RAG structure and work that revealed that RAG has a novel chromatin scanning activity, likely mediated by chromatin loop extrusion, that contributes to its ability to locate V, D, J gene segment substrates within large chromosomal loop domains bounded by CTCF-binding elements (CBEs). This latter function, coupled with the role CBE-based chromatin loop domains and subdomains within them play in focusing V(D)J recombination activity within antigen receptor loci, provide mechanistic explanations for long-standing questions regarding V(D)J segment usage diversification and in limiting potentially deleterious off-target RAG-initiated recombination events genome-wide. This review will focus mainly on studies of the mouse Ig heavy chain locus, but the principles described also apply to other Ig loci and to TCR loci in mice and humans.
Collapse
Affiliation(s)
- Sherry G Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Zhaoqing Ba
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States.
| | - Yu Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Wu C, Dong Y, Zhao X, Zhang P, Zheng M, Zhang H, Li S, Jin Y, Ma Y, Ren H, Ji Y. RAG2 involves the Igκ locus demethylation during B cell development. Mol Immunol 2017. [PMID: 28641141 DOI: 10.1016/j.molimm.2017.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genes encoding the immunoglobulin κ light chain are assembled during B cell development by V(D)J recombination. For efficient rearrangement, the Igκ locus must undergo a series of epigenetic changes. One such epigenetic mark is DNA methylation. The mechanism that the Igκ locus is selectively demethylated at the pre-B cell stage has not previously been characterized. Here, we employed bisulfite DNA-modification assays to analyze the methylation status of the Igκ locus in primary pre-B cells from RAG-deficient mice with pre-rearranged Igh knock-in allele. We observed that the Igκ locus was hypermethylated in RAG2-deficient pre-B cells but hypomethylated in RAG1-deficient pre-B cells, indicating that wild-type (WT) RAG2 involves the Igκ locus demethylation in a RAG1-independent manner prior to rearrangement. We generated a series of RAG2 mutants between residue 350 and 383. We showed that these mutants mediated the Igκ rearrangement but failed to regulate the Igκ gene demethylation. We further analyzed that these mutants could increase RAG recombinase activity in vivo. We conclude that residues 350-383 region are responsible for endogenous Igκ locus demethylation at pre-B cells. We propose that WT RAG2 has an intrinsic function to regulate the Igκ locus demethylation.
Collapse
Affiliation(s)
- Caijun Wu
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Yanying Dong
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Shichang Li
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Yaofeng Jin
- Department of Pathology, the 2nd Affiliated hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Huixun Ren
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi,710061, China.
| |
Collapse
|
5
|
Dong Y, Wu C, Zhao X, Zhang P, Zhang H, Zheng M, Li S, Jiao J, Yu X, Lv Z, Ji Y. Epigenetic modifications of the V H region after DJ H recombination in Pro-B cells. Immunology 2017; 152:218-231. [PMID: 28502113 DOI: 10.1111/imm.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022] Open
Abstract
The variable region of murine immunoglobulin heavy chain (Igh) is assembled by sequential DH -JH and VH -DJH recombination. The accessibility of the Igh locus determines the order of rearrangement. Because of the large number of VH genes and the lack of a suitable model, the epigenetic modifications of VH genes after DJH recombination have not previously been characterized. Here, we employed two v-Abl pro-B cell lines, in which the Igh locus is in germline and DJH -recombined configurations, respectively. The DJH junction displays the characteristics of a recombination centre, such as high levels of activation-associated histone modifications and recombination-activating gene protein (RAG) binding in DJH -rearranged pro-B cells, which extend the recombination centre model proposed for the germline Igh locus. The different domains of the VH region have distinct epigenetic characteristics after DJH recombination. Distal VH genes have higher levels of active histone modifications, germline transcription and Pax5 binding, and good quality recombination signal sequences. Proximal VH genes are relatively close to the DJH recombination centre, which partially compensates for the low levels of the above active epigenetic modifications. DJH recombination centre might serve as a cis-acting element to regulate the accessibility of the VH region. Furthermore, we demonstrate that RAG weakly binds to functional VH genes, which is the first detailed assessment of RAG dynamic binding to VH genes. We provide a way for VH -DJH recombination in which the VH gene is brought into close proximity with the DJH recombination centre for RAG binding by a Pax5-dependent chromosomal compaction event, and held in this position for subsequent cleavage and VH -DJH joining.
Collapse
Affiliation(s)
- Yanying Dong
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Caijun Wu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Shichang Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Junna Jiao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Zhuangwei Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Regulated large-scale nucleosome density patterns and precise nucleosome positioning correlate with V(D)J recombination. Proc Natl Acad Sci U S A 2016; 113:E6427-E6436. [PMID: 27698124 DOI: 10.1073/pnas.1605543113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination activating gene (RAG) recombinase. These changes result in establishment of a specific chromatin organization at the RSS that facilitates accessibility of the genomic DNA for the RAG recombinase. In contrast, in mouse embryonic fibroblasts the coding segment is depleted of nucleosomes, which instead cover the RSS, thereby rendering it inaccessible. Pro-T cells exhibit a pattern intermediate between pro-B cells and mouse embryonic fibroblasts. We also find large-scale variations of nucleosome density over hundreds of kilobases, delineating chromosomal domains within IgH, in a cell type-dependent manner. These findings suggest that developmentally regulated changes in nucleosome location and occupancy, in addition to the known chromatin modifications, play a fundamental role in regulating V(D)J recombination. Nucleosome positioning-which has previously been observed to vary locally at individual enhancers and promoters-may be a more general mechanism by which cells can regulate the accessibility of the genome during development, at scales ranging from several hundred base pairs to many kilobases.
Collapse
|
7
|
Rodríguez-Cortez VC, Del Pino-Molina L, Rodríguez-Ubreva J, López-Granados E, Ballestar E. Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies. J Clin Immunol 2016; 36 Suppl 1:48-56. [PMID: 26984849 DOI: 10.1007/s10875-016-0267-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/04/2023]
Abstract
Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.
Collapse
Affiliation(s)
- Virginia C Rodríguez-Cortez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lucia Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
8
|
To κ(+) B or not to κ(+) B. Nat Immunol 2015; 16:1007-9. [PMID: 26382861 DOI: 10.1038/ni.3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Complete cis Exclusion upon Duplication of the Eμ Enhancer at the Immunoglobulin Heavy Chain Locus. Mol Cell Biol 2015; 35:2231-41. [PMID: 25896912 DOI: 10.1128/mcb.00294-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Developing lymphocytes somatically diversify their antigen-receptor loci through V(D)J recombination. The process is associated with allelic exclusion, which results in monoallelic expression of an antigen receptor locus. Various cis-regulatory elements control V(D)J recombination in a developmentally regulated manner, but their role in allelic exclusion is still unclear. At the immunoglobulin heavy chain locus (IgH), the Eμ enhancer plays a critical role in V(D)J recombination. We generated a mouse line with a replacement mutation in the constant region of the locus that duplicates the Eμ enhancer and allows premature expression of the γ3 heavy chain. Strikingly, IgM expression was completely and specifically excluded in cis from the mutant allele. This cis exclusion recapitulated the main features of allelic exclusion, including differential exclusion of variable genes. Notably, sense and antisense transcription within the distal variable domain and distal V(H)-DJ(H) recombination were inhibited. cis exclusion was established and stably maintained despite an active endogenous Eμ enhancer. The data reveal the importance of the dynamic, developmental stage-dependent interplay between IgH locus enhancers and signaling in the induction and maintenance of allelic exclusion.
Collapse
|
10
|
Hauser J, Grundström C, Grundström T. Allelic exclusion of IgH through inhibition of E2A in a VDJ recombination complex. THE JOURNAL OF IMMUNOLOGY 2014; 192:2460-70. [PMID: 24470503 DOI: 10.4049/jimmunol.1302216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A key feature of the immune system is the paradigm that one lymphocyte has only one Ag specificity that can be selected for or against. This requires that only one of the alleles of genes for AgR chains is made functional. However, the molecular mechanism of this allelic exclusion has been an enigma. In this study, we show that B lymphocytes with E2A that cannot be inhibited by calmodulin are dramatically defective in allelic exclusion of the IgH locus. Furthermore, we provide data supporting that E2A, PAX5, and the RAGs are in a VDJ recombination complex bound to key sequences on the Igh gene. We show that pre-BCR activation releases the VDJ recombination complex through calmodulin binding to E2A. We also show that pre-BCR signaling downregulates several components of the recombination machinery, including RAG1, RAG2, and PAX5, through calmodulin inhibition of E2A.
Collapse
Affiliation(s)
- Jannek Hauser
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
11
|
Perrin C, Lepesant JMJ, Roger E, Duval D, Fneich S, Thuillier V, Alliene JF, Mitta G, Grunau C, Cosseau C. Schistosoma mansoni mucin gene (SmPoMuc) expression: epigenetic control to shape adaptation to a new host. PLoS Pathog 2013; 9:e1003571. [PMID: 24009504 PMCID: PMC3757033 DOI: 10.1371/journal.ppat.1003571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/27/2013] [Indexed: 11/28/2022] Open
Abstract
The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain) while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs) in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C) or incompatible (IC) with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general. Schistosoma mansoni is a parasitic worm and agent of a disease that causes a considerable economic burden in African and South American countries. The propagation of the parasite requires passage through a freshwater snail of Biomphalaria genus. In the field, actually very few snails are infected. This is due to the fact that specific strains of the parasite can infect only specific strains of the snail. Comparative studies have shown that this so-called compatibility is based on the expression of a family of genes that are called SmPoMucs. We have shown previously that all parasites strains possess the repertoire of all SmPoMuc genes but every strain and even every individual parasite expresses only a subset. These differences could be due to DNA sequence differences in the regions that control gene expression, but here we show that these regions are nearly identical. Instead, the chromatin structure shows strain-specific characteristics. This means that the parasite can adapt to different snail strains simply by changing its chromatin structure and not necessarily the DNA sequence. If this holds true for other parasites, then we have to rethink the way parasite evolution is currently imagined but this also provides a new potential entry point to control the spread of diseases.
Collapse
Affiliation(s)
- Cecile Perrin
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Julie M. J. Lepesant
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Emmanuel Roger
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille, University Lille Nord de France, Lille, France
| | - David Duval
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Virginie Thuillier
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Jean-Francois Alliene
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Guillaume Mitta
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Celine Cosseau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- * E-mail:
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms have the ability to alter the phenotype without changing the genetic code. The science of epigenetics has grown considerably in recent years, and future epigenetically based treatments or prevention strategies are likely. Epigenetic associations with asthma have received growing interest because genetic and environmental factors have been unable to independently explain the cause of asthma. RECENT FINDINGS Recent findings suggest that both the environment and underlying genetic sequence variation influence DNA methylation, which in turn seems to modify the risk conferred by genetic variants for various asthma phenotypes. In particular, DNA methylation may act as an archive of a variety of early developmental exposures, which then can modify the risk related to genetic variants. SUMMARY Current asthma treatments may control the symptoms of asthma but do not modify its natural history. Epigenetic mechanisms and novel explanatory models provide burgeoning approaches to significantly increase our understanding of the initiation and progression of asthma. Due to the inheritance of epigenetics, we anticipate a rapid emergence of critical information that will provide novel treatment strategies for asthma in the current generation and ultimately the prevention of asthma in future generations.
Collapse
|
13
|
Biesinger J, Wang Y, Xie X. Discovering and mapping chromatin states using a tree hidden Markov model. BMC Bioinformatics 2013; 14 Suppl 5:S4. [PMID: 23734743 PMCID: PMC3622631 DOI: 10.1186/1471-2105-14-s5-s4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
New biological techniques and technological advances in high-throughput sequencing are paving the way for systematic, comprehensive annotation of many genomes, allowing differences between cell types or between disease/normal tissues to be determined with unprecedented breadth. Epigenetic modifications have been shown to exhibit rich diversity between cell types, correlate tightly with cell-type specific gene expression, and changes in epigenetic modifications have been implicated in several diseases. Previous attempts to understand chromatin state have focused on identifying combinations of epigenetic modification, but in cases of multiple cell types, have not considered the lineage of the cells in question. We present a Bayesian network that uses epigenetic modifications to simultaneously model 1) chromatin mark combinations that give rise to different chromatin states and 2) propensities for transitions between chromatin states through differentiation or disease progression. We apply our model to a recent dataset of histone modifications, covering nine human cell types with nine epigenetic modifications measured for each. Since exact inference in this model is intractable for all the scale of the datasets, we develop several variational approximations and explore their accuracy. Our method exhibits several desirable features including improved accuracy of inferring chromatin states, improved handling of missing data, and linear scaling with dataset size. The source code for our model is available at http:// http://github.com/uci-cbcl/tree-hmm
Collapse
Affiliation(s)
- Jacob Biesinger
- Department of Computer Science, University of California-Irvine, CA, USA
| | | | | |
Collapse
|
14
|
Subrahmanyam R, Du H, Ivanova I, Chakraborty T, Ji Y, Zhang Y, Alt FW, Schatz DG, Sen R. Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions. Nat Immunol 2012; 13:1205-12. [PMID: 23104096 PMCID: PMC3685187 DOI: 10.1038/ni.2447] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Abstract
Genes encoding immunoglobulin heavy chains (Igh) are assembled by rearrangement of variable (V(H)), diversity (D(H)) and joining (J(H)) gene segments. Three critical constraints govern V(H) recombination. These include timing (V(H) recombination follows D(H) recombination), precision (V(H) gene segments recombine only to DJ(H) junctions) and allele specificity (V(H) recombination is restricted to DJ(H)-recombined alleles). Here we provide a model for these universal features of V(H) recombination. Analyses of DJ(H)-recombined alleles showed that DJ(H) junctions were selectively epigenetically marked, became nuclease sensitive and bound RAG recombinase proteins, which thereby permitted D(H)-associated recombination signal sequences to initiate the second step of Igh gene assembly. We propose that V(H) recombination is precise, because these changes did not extend to germline D(H) segments located 5' of the DJ(H) junction.
Collapse
Affiliation(s)
- Ramesh Subrahmanyam
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 2012; 6:307-27. [PMID: 23055689 PMCID: PMC3459549 DOI: 10.2147/btt.s24067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Indexed: 12/18/2022]
Abstract
The lack of complete concordance of autoimmune disease in identical twins suggests that nongenetic factors play a major role in determining disease susceptibility. In this review, we consider how epigenetic mechanisms could affect the immune system and effector mechanisms in autoimmunity and/or the target organ of autoimmunity and thus affect the development of autoimmune diseases. We also consider the types of stimuli that lead to epigenetic modifications and how these relate to the epidemiology of autoimmune diseases and the biological pathways operative in different autoimmune diseases. Increasing our knowledge of these epigenetic mechanisms and processes will increase the prospects for controlling or preventing autoimmune diseases in the future through the use of drugs that target the epigenetic pathways.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Campos-Sanchez E, Toboso-Navasa A, Romero-Camarero I, Barajas-Diego M, Sanchez-García I, Cobaleda C. Acute lymphoblastic leukemia and developmental biology: a crucial interrelationship. Cell Cycle 2011; 10:3473-86. [PMID: 22031225 DOI: 10.4161/cc.10.20.17779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease.
Collapse
Affiliation(s)
- Elena Campos-Sanchez
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Guo C, Yoon HS, Franklin A, Jain S, Ebert A, Cheng HL, Hansen E, Despo O, Bossen C, Vettermann C, Bates JG, Richards N, Myers D, Patel H, Gallagher M, Schlissel MS, Murre C, Busslinger M, Giallourakis CC, Alt FW. CTCF-binding elements mediate control of V(D)J recombination. Nature 2011; 477:424-30. [PMID: 21909113 PMCID: PMC3342812 DOI: 10.1038/nature10495] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 07/18/2011] [Indexed: 12/14/2022]
Abstract
Immunoglobulin heavy chain (IgH) variable region exons are assembled from V(H), D and J(H) gene segments in developing B lymphocytes. Within the 2.7-megabase mouse Igh locus, V(D)J recombination is regulated to ensure specific and diverse antibody repertoires. Here we report in mice a key Igh V(D)J recombination regulatory region, termed intergenic control region 1 (IGCR1), which lies between the V(H) and D clusters. Functionally, IGCR1 uses CTCF looping/insulator factor-binding elements and, correspondingly, mediates Igh loops containing distant enhancers. IGCR1 promotes normal B-cell development and balances antibody repertoires by inhibiting transcription and rearrangement of D(H)-proximal V(H) gene segments and promoting rearrangement of distal V(H) segments. IGCR1 maintains ordered and lineage-specific V(H)(D)J(H) recombination by suppressing V(H) joining to D segments not joined to J(H) segments, and V(H) to DJ(H) joins in thymocytes, respectively. IGCR1 is also required for feedback regulation and allelic exclusion of proximal V(H)-to-DJ(H) recombination. Our studies elucidate a long-sought Igh V(D)J recombination control region and indicate a new role for the generally expressed CTCF protein.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- CCCTC-Binding Factor
- Cell Lineage/genetics
- Chromosomes, Mammalian/genetics
- Chromosomes, Mammalian/metabolism
- DNA, Intergenic/genetics
- Enhancer Elements, Genetic/genetics
- Feedback, Physiological
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Germ Cells/metabolism
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mutation/genetics
- Recombination, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Repressor Proteins/metabolism
- Thymus Gland/cytology
- Transcription, Genetic/genetics
- VDJ Exons/genetics
Collapse
Affiliation(s)
- Chunguang Guo
- Howard Hughes Medical Institute, The Children's Hospital, The Immune Disease Institute, Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cells of the immune system are generated through a developmental cascade that begins in haematopoietic stem cells. During this process, gene expression patterns are programmed in a series of stages that bring about the restriction of cell potential, ultimately leading to the formation of specialized innate immune cells and mature lymphocytes that express antigen receptors. These events involve the regulation of both gene expression and DNA recombination, mainly through the control of chromatin accessibility. In this Review, we describe the epigenetic changes that mediate this complex differentiation process and try to understand the logic of the programming mechanism.
Collapse
|
19
|
Lucas JS, Bossen C, Murre C. Transcription and recombination factories: common features? Curr Opin Cell Biol 2010; 23:318-24. [PMID: 21169003 DOI: 10.1016/j.ceb.2010.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 12/20/2022]
Abstract
There is now substantial evidence that the eukaryotic nucleus consists of highly organized structures. Among such structures are transcription factories that consist of an ensemble of genes recruited by the RNA polymerase machinery. Here we suggest that antigen receptor variable regions are similarly organized. Specifically, we propose that the immunoglobulin heavy chain locus variable gene segments are anchored to the base of rosettes, wrapping around a cavity that contains the recombination machinery. We suggest that the folding of the chromatin fiber into rosettes underpins a crucial mechanism by which antigen receptor diversity is generated.
Collapse
Affiliation(s)
- Joseph S Lucas
- Division of Biological Sciences, 0377 Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | | | |
Collapse
|