1
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
2
|
Shavandi A, Saeedi P, Gérard P, Jalalvandi E, Cannella D, Bekhit AED. The role of microbiota in tissue repair and regeneration. J Tissue Eng Regen Med 2020; 14:539-555. [PMID: 31845514 DOI: 10.1002/term.3009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
A comprehensive understanding of the human body endogenous microbiota is essential for acquiring an insight into the involvement of microbiota in tissue healing and regeneration process in order to enable development of biomaterials with a better integration with human body environment. Biomaterials used for biomedical applications are normally germ-free, and the human body as the host of the biomaterials is not germ-free. The complexity and role of the body microbiota in tissue healing/regeneration have been underestimated historically. Traditionally, studies aiming at the development of novel biomaterials had focused on the effects of environment within the target tissue, neglecting the signals generated from the microbiota and their impact on tissue regeneration. The significance of the human body microbiota in relation to metabolism, immune system, and consequently tissue regeneration has been recently realised and is a growing research field. This review summarises recent findings on the role of microbiota and mechanisms involved in tissue healing and regeneration, in particular skin, liver, bone, and nervous system regrowth and regeneration highlighting the potential new roles of microbiota for development of a new generation of biomaterials.
Collapse
Affiliation(s)
- Amin Shavandi
- BioMatter-BTL, École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | - Pouya Saeedi
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Philippe Gérard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Esmat Jalalvandi
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - David Cannella
- PhotoBioCatalysis Unit - BTL - École interfacultaire de Bioingénieurs (EIB), Université Libre de Brussels, Brussels, Belgium
| | | |
Collapse
|
3
|
Polak D, Zigron A, Eli-Berchoer L, Shapira L, Nussbaum G. Myd88 plays a major role in the keratinocyte response to infection with Porphyromonas gingivalis. J Periodontal Res 2019; 54:396-404. [PMID: 30793777 DOI: 10.1111/jre.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/11/2018] [Accepted: 01/13/2019] [Indexed: 11/28/2022]
Abstract
AIM To explore the role of keratinocyte myeloid differentiation primary response 88 (MyD88) expression in the adhesion of Porphyromonas gingivalis to the cells and its subsequent invasion and intracellular survival. MATERIALS AND METHODS Primary mouse keratinocytes from wild-type (WT) or Myd88-/- mice were infected with P gingivalis alone or co-infected with Fusobacterium nucleatum. Bacterial adhesion and invasion were measured using fluorescent microscopy and flow cytometry, and intracellular survival in keratinocytes was quantified by an antibiotic protection assay. Keratinocyte expression of antimicrobial peptides was measured by real-time PCR. RESULTS In the absence of MyD88, P gingivalis adherence, invasion, and intracellular survival were enhanced compared with WT keratinocytes. The presence of F nucleatum during infection increased the adhesion of P gingivalis to WT keratinocytes but reduced the adhesion to Myd88-/- keratinocytes. Fusobacterium nucleatum improved mildly the invasion and survival of P gingivalis in both cell types. Baseline expression of beta-defensin 2, 3, 4 and RegIII-γ was elevated in Myd88-/- keratinocytes compared to WT cells; however, following infection beta-defensin expression was strongly induced in WT cells but decreased dramatically in the MyD88 deficient cells. CONCLUSION In the absence of MyD88 expression, P gingivalis adhesion to keratinocytes is improved, and invasion and intracellular survival are increased. Furthermore, keratinocyte infection by P gingivalis induces antimicrobial peptide expression in a MyD88-dependent manner. Thus, MyD88 plays a key role in the interaction between P gingivalis and keratinocytes.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Asaf Zigron
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel.,Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
4
|
Henderson B, Kaiser F. Bacterial modulators of bone remodeling in the periodontal pocket. Periodontol 2000 2017; 76:97-108. [DOI: 10.1111/prd.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2589276. [PMID: 27547756 PMCID: PMC4980501 DOI: 10.1155/2016/2589276] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia associated with a progressive neurodegenerative disorder, with a prevalence of 44 million people throughout the world in 2015, and this figure is estimated to double by 2050. This disease is characterized by blood-brain barrier disruption, oxidative stress, mitochondrial impairment, neuroinflammation, and hypometabolism; it is related to amyloid-β peptide accumulation and tau hyperphosphorylation as well as a decrease in acetylcholine levels and a reduction of cerebral blood flow. Obesity is a major risk factor for AD, because it induces adipokine dysregulation, which consists of the release of the proinflammatory adipokines and decreased anti-inflammatory adipokines, among other processes. The pharmacological treatments for AD can be divided into two categories: symptomatic treatments such as acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists and etiology-based treatments such as secretase inhibitors, amyloid binders, and tau therapies. Strategies for prevention of AD through nonpharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. AD is an important health issue on which all people should be informed so that prevention strategies that minimize the risk of its development may be implemented.
Collapse
Affiliation(s)
- J. Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - L. C. Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - K. Padilla
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - G. Garcia-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| |
Collapse
|
6
|
Kabouridis PS, Pachnis V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J Clin Invest 2015; 125:956-64. [PMID: 25729852 DOI: 10.1172/jci76308] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell-intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function. Initial reports confirm this idea while further studies in this area promise new insights into ENS physiology and pathophysiology.
Collapse
|
7
|
Ge RT, Mo LH, Wu R, Liu JQ, Zhang HP, Liu Z, Liu Z, Yang PC. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine. Sci Rep 2015; 5:7735. [PMID: 25588622 PMCID: PMC4295102 DOI: 10.1038/srep07735] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine.
Collapse
Affiliation(s)
- Rong-Ti Ge
- 1] Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China [2] Brain Body Institute, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Li-Hua Mo
- Shenzhen Key Laboratory of Allergy &Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, 518060, China
| | - Ruijin Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Jiang-Qi Liu
- Brain Body Institute, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Huan-Ping Zhang
- Brain Body Institute, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Zhigang Liu
- Shenzhen Key Laboratory of Allergy &Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, 518060, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Ping-Chang Yang
- 1] Shenzhen Key Laboratory of Allergy &Immunology, Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, 518060, China [2] Brain Body Institute, McMaster University, Hamilton, ON, Canada L8N 4A6
| |
Collapse
|
8
|
Feehley T, Nagler CR. Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens. Curr Opin Immunol 2014; 31:79-86. [PMID: 25458998 PMCID: PMC4255329 DOI: 10.1016/j.coi.2014.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022]
Abstract
Food allergies are a growing public health concern. The rapidly increasing prevalence of allergic disease cannot be explained by genetic variation alone, suggesting a role for gene-by-environment interactions. The bacteria that colonize barrier surfaces, often referred to as the commensal microbiota, are dramatically affected by environmental factors and have a major impact on host health and homeostasis. Increasing evidence suggests that alterations in the composition of the microbiota, caused by factors such as antibiotic use and diet, are contributing to increased sensitization to dietary antigens. This review will discuss the cellular and molecular pathways activated by commensal bacteria to protect against allergic sensitization. By understanding the interplay between the environment, the microbiota, and the host, we may uncover novel therapeutic targets that will allow us to control the allergy epidemic.
Collapse
Affiliation(s)
- Taylor Feehley
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, Department of Pathology, The University of Chicago, 924 E. 57th St. JFK R120, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Perez-Chanona E, Mühlbauer M, Jobin C. The microbiota protects against ischemia/reperfusion-induced intestinal injury through nucleotide-binding oligomerization domain-containing protein 2 (NOD2) signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2965-75. [PMID: 25204845 DOI: 10.1016/j.ajpath.2014.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, induces autophagy on detection of muramyl dipeptide (MDP), a component of microbial cell walls. The role of bacteria and NOD2 signaling toward ischemia/reperfusion (I/R)-induced intestinal injury response is unknown. Herein, we report that I/R-induced intestinal injury in germ-free (GF) C57BL/6 wild-type (WT) mice is worse than in conventionally derived mice. More important, microbiota-mediated protection against I/R-induced intestinal injury is abrogated in conventionally derived Nod2(-/-) mice and GF Nod2(-/-) mice. Also, WT mice raised in specific pathogen-free (SPF) conditions fared better against I/R-induced injury than SPF Nod2(-/-) mice. Moreover, SPF WT mice i.p. administered 10 mg/kg MDP were protected against injury compared with mice administered the inactive enantiomer, l-MDP, an effect lost in Nod2(-/-) mice. However, MDP administration failed to protect GF mice from I/R-induced intestinal injury compared with control, a phenomenon correlating with undetectable Nod2 mRNA level in the epithelium of GF mice. More important, the autophagy-inducer rapamycin protected Nod2(-/-) mice against I/R-induced injury and increased the levels of LC3(+) puncta in injured tissue of Nod2(-/-) mice. These findings demonstrate that NOD2 protects against I/R and promotes wound healing, likely through the induction of the autophagy response.
Collapse
Affiliation(s)
- Ernesto Perez-Chanona
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida
| | - Marcus Mühlbauer
- Departments of Medicine, Microbiology and Immunology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida; Departments of Medicine, Microbiology and Immunology, and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
10
|
Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G, Carey HV. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 2014; 23:4658-69. [PMID: 25130694 DOI: 10.1111/mec.12884] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/15/2022]
Abstract
The gut microbiota plays important roles in animal nutrition and health. This relationship is particularly dynamic in hibernating mammals where fasting drives the gut community to rely on host-derived nutrients instead of exogenous substrates. We used 16S rRNA pyrosequencing and caecal tissue protein analysis to investigate the effects of hibernation on the mucosa-associated bacterial microbiota and host responses in 13-lined ground squirrels. The mucosal microbiota was less diverse in winter hibernators than in actively feeding spring and summer squirrels. UniFrac analysis revealed distinct summer and late winter microbiota clusters, while spring and early winter clusters overlapped slightly, consistent with their transitional structures. Communities in all seasons were dominated by Firmicutes and Bacteroidetes, with lesser contributions from Proteobacteria, Verrucomicrobia, Tenericutes and Actinobacteria. Hibernators had lower relative abundances of Firmicutes, which include genera that prefer plant polysaccharides, and higher abundances of Bacteroidetes and Verrucomicrobia, some of which can survive solely on host-derived mucins. A core mucosal assemblage of nine operational taxonomic units shared among all individuals was identified with an average total sequence abundance of 60.2%. This core community, together with moderate shifts in specific taxa, indicates that the mucosal microbiota remains relatively stable over the annual cycle yet responds to substrate changes while potentially serving as a pool for 'seeding' the microbiota once exogenous substrates return in spring. Relative to summer, hibernation reduced caecal crypt length and increased MUC2 expression in early winter and spring. Hibernation also decreased caecal TLR4 and increased TLR5 expression, suggesting a protective response that minimizes inflammation.
Collapse
|