1
|
Mai C, Fukui A, Saeki S, Takeyama R, Yamaya A, Shibahara H. Expression of NKp46 and other activating inhibitory receptors on uterine endometrial NK cells in females with various reproductive failures: A review. Reprod Med Biol 2025; 24:e12610. [PMID: 39807425 PMCID: PMC11725765 DOI: 10.1002/rmb2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition. Methods This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures. Main Findings Numerous studies have indicated that the natural cytotoxic receptors, killer cell immunoglobulin-like receptors, and C-type lectin receptors, particularly those expressed on uNK cells, play crucial roles in successful pregnancy. Conclusion As studies on human uNK cells are limited owing to the low availability of fertile samples, and the extrapolation of animal models has certain limitations, the in vivo role of uNK cells has not yet been fully elucidated. However, immunotherapies focusing on modulating uNK cell function have been controversial in terms of pregnancy outcomes. Further research is required to elucidate the role of uNK cells in reproduction.
Collapse
Affiliation(s)
- Chuxian Mai
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
- Reproductive Medicine Centre, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological DiseasesFirst Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Atsushi Fukui
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Shinichiro Saeki
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ryu Takeyama
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Ayano Yamaya
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| | - Hiroaki Shibahara
- Department of Obstetrics and GynecologySchool of Medicine, Hyogo Medical UniversityNishinomiyaHyogoJapan
| |
Collapse
|
2
|
Li J, Wang X, Cao G, Wu Y, Cheng M, Chen Y, Sun H, Sun R, Peng H, Tian Z. CD94 deficiency or blockade unleashes the anti-tumor immunity in mice and humanized murine models. Cancer Lett 2024; 605:217305. [PMID: 39424259 DOI: 10.1016/j.canlet.2024.217305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
NKG2 family members have emerged as promising targets in tumor immunotherapy. CD94 can dimerize with both inhibitory and activating NKG2 proteins, while the overall effect and value of targeting CD94 on anti-tumor immunity are unclear. Here, it is shown that the expression of CD94 is upregulated on tumor-infiltrating natural killer (NK) cells and CD8+ T cells, and is related to their exhausted characteristics. Tumor-bearing CD94 knockout (CD94-KO) mice exhibit delayed tumor growth, decreased lung metastases, and prolonged survival. Single cell RNA-seq reveals a remodeled tumor microenvironment in CD94-KO mice, with a reduction in immunosuppressive cells and an increase in anti-tumor immune cells. Moreover, NK cells and CD8+ T cells become proliferative and strongly tumoricidal in CD94-KO mice, thus contributing to the tumor inhibition effect of CD94 deficiency. Treatment with a humanized anti-CD94 blocking antibody (h15C10) alone, in tumor-bearing humanized mouse, delays tumor progression, and improves the therapeutic efficacy of PD-L1 blockade through combination therapy. Our study indicates that CD94 may work as a candidate target in checkpoint immunotherapy.
Collapse
Affiliation(s)
- Jiarui Li
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xianwei Wang
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Guoshuai Cao
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Yuwei Wu
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Ming Cheng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yawen Chen
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haoyu Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Hefei TG ImmunoPharma Corporation Limited, Hefei, China.
| |
Collapse
|
3
|
Zhu A, Bai Y, Nan Y, Ju D. Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy. Clin Transl Med 2024; 14:e70046. [PMID: 39472273 PMCID: PMC11521791 DOI: 10.1002/ctm2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Natural killer cell engagers (NKCEs) are a specialised subset of antibodies capable of simultaneously targeting endogenous NK cells and tumour cells, generating precise and effective cytolytic responses against cancer. This review systematically explores NK engagers as a rising star in NK-mediated immunotherapy, specifically focusing on multi-specific engagers. It examines the diverse configuration of NKCEs and how certain biologics could be employed to boost NK activity, including activating receptor engagement and cytokine incorporation. Some challenges and future perspectives of current NKCEs therapy are also discussed, including optimising pharmacokinetics, addressing the immunosuppressive tumour microenvironment and exploring potential combinatorial approaches. By offering an in-depth analysis of the current landscape and future trajectories of multi-specific NKCEs in cancer treatment, this review serves as a valuable resource for understanding this promising field of immunotherapy. HIGHLIGHTS Innovative NKCEs: NK cell engagers (NKCEs) represent a promising new class of immunotherapeutics targeting tumours by activating NK cells. Multi-specific formats: The transition from bi-specific to multi-specific NKCEs enhances their versatility and therapeutic efficacy. MECHANISMS OF ACTION NKCEs have the potential to improve NK cell activation by engaging activating receptors and incorporating cytokines. CLINICAL POTENTIAL Current clinical trials demonstrate the safety and efficacy of various NKCEs across different cancer types. Future research directions: Optimising NKCE designs and exploring combination therapies are essential for overcoming challenges in cancer treatment.
Collapse
Affiliation(s)
- An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Almeida JS, Sousa LM, Couceiro P, Andrade TF, Alves V, Martinho A, Rodrigues J, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Casanova JM, Rodrigues-Santos P. Peripheral immune profiling of soft tissue sarcoma: perspectives for disease monitoring. Front Immunol 2024; 15:1391840. [PMID: 39502689 PMCID: PMC11536262 DOI: 10.3389/fimmu.2024.1391840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Studying the tumor microenvironment and surrounding lymph nodes is the main focus of current immunological research on soft tissue sarcomas (STS). However, due to the restricted opportunity to examine tumor samples, alternative approaches are required to evaluate immune responses in non-surgical patients. Therefore, the purpose of this study was to evaluate the peripheral immune profile of STS patients, characterize patients accordingly and explore the impact of peripheral immunotypes on patient survival. Blood samples were collected from 55 STS patients and age-matched healthy donors (HD) controls. Deep immunophenotyping and gene expression analysis of whole blood was analyzed using multiparametric flow cytometry and real-time RT-qPCR, respectively. Using xMAP technology, proteomic analysis was also carried out on plasma samples. Unsupervised clustering analysis was used to classify patients based on their immune profiles to further analyze the impact of peripheral immunotypes on patient survival. Significant differences were found between STS patients and HD controls. It was found a contraction of B cells and CD4 T cells compartment, along with decreased expression levels of ICOSLG and CD40LG; a major contribution of suppressor factors, as increased frequency of M-MDSC and memory Tregs, increased expression levels of ARG1, and increased plasma levels of IL-10, soluble VISTA and soluble TIMD-4; and a compromised cytotoxic potential associated with NK and CD8 T cells, namely decreased frequency of CD56dim NK cells, and decreased levels of PRF1, GZMB, and KLRK1. In addition, the patients were classified into three peripheral immunotype groups: "immune-high," "immune-intermediate," and "immune-low." Furthermore, it was found a correlation between these immunotypes and patient survival. Patients classified as "immune-high" exhibited higher levels of immune-related factors linked to cytotoxic/effector activity and longer survival times, whereas patients classified as "immune-low" displayed higher levels of immune factors associated with immunosuppression and shorter survival times. In conclusion, it can be suggested that STS patients have a compromised systemic immunity, and the correlation between immunotypes and survival emphasizes the importance of studying peripheral blood samples in STS. Assessing the peripheral immune response holds promise as a useful method for monitoring and forecasting outcomes in STS.
Collapse
Affiliation(s)
- Jani Sofia Almeida
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Patrícia Couceiro
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Tânia Fortes Andrade
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - António Martinho
- Portuguese Institute for Blood and Transplantation (IPST), Blood and Transplantation Center of Coimbra, Coimbra, Portugal
| | - Joana Rodrigues
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Ruben Fonseca
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - José Manuel Casanova
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
5
|
Okpoluaefe S, Ismail IS, Mohamed R, Hassan N. Adaptive natural killer cell expression in response to cytomegalovirus infection in blood and solid cancer. Heliyon 2024; 10:e32622. [PMID: 38961938 PMCID: PMC11219991 DOI: 10.1016/j.heliyon.2024.e32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Natural Killer (NK) cells are conventionally thought to be an indefinite part of innate immunity. However, in a specific subset of NK cells, recent data signify an extension of their "duties" in immune surveillance and response, having characteristics of adaptive immunity, in terms of persistence and cytotoxicity. These cells are known as the adaptive or memory-like NK cells, where human cytomegalovirus (HCMV) infection has been shown to drive the expansion of adaptive NKG2C+ NK cells. HCMV is a ubiquitous pathogen whose prevalence differs worldwide with respect to the socioeconomic status of countries. The adaptive NK cell subpopulation is often characterized by the upregulated expression of NKG2C, CD16, and CD2, and restricted expression of NKG2A, FCεRγ and killer immunoglobulin-like receptors (KIR), although these phenotypes may differ in different disease groups. The reconfiguration of these receptor distributions has been linked to epigenetic factors. Hence, this review attempts to appraise literature reporting markers associated with adaptive or memory-like NK cells post-HCMV infection, in relation to solid cancers and hematological malignancies. Adaptive NK cells, isolated and subjected to ex vivo modifications, have the potential to enhance anti-tumor response which can be a promising strategy for adoptive immunotherapy.
Collapse
Affiliation(s)
- Suruthimitra Okpoluaefe
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Norfarazieda Hassan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| |
Collapse
|
6
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Pighi C, Rotili A, De Luca M, Chiurchiù S, Calò Carducci FI, Rossetti C, Cifaldi L, Bei R, Caforio L, Bernardi S, Palma P, Amodio D. Characterization of Natural Killer Cell Profile in a Cohort of Infected Pregnant Women and Their Babies and Its Relation to CMV Transmission. Viruses 2024; 16:780. [PMID: 38793661 PMCID: PMC11125694 DOI: 10.3390/v16050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human cytomegalovirus (CMV) is a common herpesvirus causing lifelong latent infection in most people and is a primary cause of congenital infection worldwide. Given the role of NK cells in the materno-fetal barrier, we investigated peripheral blood NK cell behavior in the context of CMV infection acquired during pregnancy. We analyzed the NK phenotype and CD107a surface mobilization on PBMCs from CMV-transmitting and non-transmitting mothers and newborns with or without congenital infection. NK cells from non-transmitting mothers showed the typical phenotype of CMV-adaptive NK cells, characterized by higher levels of NKG2C, CD57, and KIRs, with reduced NKG2A, compared to transmitting ones. A significantly higher percentage of DNAM-1+, PD-1+, and KIR+NKG2A-CD57+PD-1+ CD56dim cells was found in the non-transmitting group. Accordingly, NK cells from congenital-CMV (cCMV)-infected newborns expressed higher levels of NKG2C and CD57, with reduced NKG2A, compared to non-congenital ones. Furthermore, they showed a significant expansion of CD56dim cells co-expressing NKG2C and CD57 or with a memory-like (KIR+NKG2A-CD57+NKG2C+) phenotype, as well as a significant reduction of the CD57-NKG2C- population. Degranulation assays showed a slightly higher CD107a geomean ratio in NK cells of mothers who were non-transmitting compared to those transmitting the virus. Our findings demonstrate that both CMV-transmitting mothers and cCMV newborns show a specific NK profile. These data can guide studies on predicting virus transmission from mothers and congenital infection in infants.
Collapse
Affiliation(s)
- Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Arianna Rotili
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- PhD Program in “Immunology, Molecular Medicine and Applied Biotechnologies”, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Sara Chiurchiù
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | | | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Leonardo Caforio
- Fetal Medicine and Surgery Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefania Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
8
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
9
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
10
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
11
|
Rousselière A, Delbos L, Foureau A, Reynaud-Gaubert M, Roux A, Demant X, Le Pavec J, Kessler R, Mornex JF, Messika J, Falque L, Le Borgne A, Boussaud V, Tissot A, Hombourger S, Bressollette-Bodin C, Charreau B. Changes in HCMV immune cell frequency and phenotype are associated with chronic lung allograft dysfunction. Front Immunol 2023; 14:1143875. [PMID: 37187736 PMCID: PMC10175754 DOI: 10.3389/fimmu.2023.1143875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is common and often severe in lung transplant recipients (LTRs), and it is a risk factor associated with chronic lung allograft dysfunction (CLAD). The complex interplay between HCMV and allograft rejection is still unclear. Currently, no treatment is available to reverse CLAD after diagnosis, and the identification of reliable biomarkers that can predict the early development of CLAD is needed. This study investigated the HCMV immunity in LTRs who will develop CLAD. Methods This study quantified and phenotyped conventional (HLA-A2pp65) and HLA-E-restricted (HLA-EUL40) anti-HCMV CD8+ T (CD8 T) cell responses induced by infection in LTRs developing CLAD or maintaining a stable allograft. The homeostasis of immune subsets (B, CD4T, CD8 T, NK, and γδT cells) post-primary infection associated with CLAD was also investigated. Results At M18 post-transplantation, HLA-EUL40 CD8 T responses were less frequently found in HCMV+ LTRs (21.7%) developing CLAD (CLAD) than in LTRs (55%) keeping a functional graft (STABLE). In contrast, HLA-A2pp65 CD8 T was equally detected in 45% of STABLE and 47.8% of CLAD LTRs. The frequency of HLA-EUL40 and HLA-A2pp65 CD8 T among blood CD8 T cells shows lower median values in CLAD LTRs. Immunophenotype reveals an altered expression profile for HLA-EUL40 CD8 T in CLAD patients with a decreased expression for CD56 and the acquisition of PD-1. In STABLE LTRs, HCMV primary infection causes a decrease in B cells and inflation of CD8 T, CD57+/NKG2C+ NK, and δ2-γδT cells. In CLAD LTRs, the regulation of B, total CD8 T, and δ2+γδT cells is maintained, but total NK, CD57+/NKG2C+ NK, and δ2-γδT subsets are markedly reduced, while CD57 is overexpressed across T lymphocytes. Conclusions CLAD is associated with significant changes in anti-HCMV immune cell responses. Our findings propose that the presence of dysfunctional HCMV-specific HLA-E-restricted CD8 T cells together with post-infection changes in the immune cell distribution affecting NK and γδT cells defines an early immune signature for CLAD in HCMV+ LTRs. Such a signature may be of interest for the monitoring of LTRs and may allow an early stratification of LTRs at risk of CLAD.
Collapse
Affiliation(s)
- Amélie Rousselière
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Laurence Delbos
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Aurore Foureau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Martine Reynaud-Gaubert
- CHU de Marseille, APHM, Hôpital Nord, Service de Pneumologie et Equipe de Transplantation pulmonaire; Marseille, France; Aix-Marseille Université, Marseille, France
| | - Antoine Roux
- Hôpital Foch, Service de pneumologie, Suresnes, France
| | - Xavier Demant
- Hôpital Haut-Lévêque, Service de pneumologie, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Le Pavec
- Service de Pneumologie et de Transplantation Pulmonaire, Groupe Hospitalier Marie-Lannelongue -Paris Saint Joseph, Le Plessis-Robinson, France
- Université Paris-Saclay, Le Kremlin Bicêtre, France
- UMR_S 999, Université Paris–Sud, Inserm, Groupe hospitalier Marie-Lannelongue-Saint Joseph, Le Plessis-Robinson, France
| | - Romain Kessler
- Groupe de transplantation pulmonaire des hôpitaux universitaires de Strasbourg, Inserm-Université de Strasbourg, Strasbourg, France
| | - Jean-François Mornex
- Université de Lyon, Université Lyon1, INRAE, IVPC, Lyon, France
- Hospices Civils de Lyon, GHE, Service de Pneumologie, Inserm, Lyon, France
| | - Jonathan Messika
- APHP, Nord-Université Paris Cité, Hôpital Bichat-Claude Bernard, Service de Pneumologie B et Transplantation Pulmonaire, Paris, France
- Physiopathology and Epidemiology of Respiratory Diseases, UMR1152 INSERM and Université de Paris, Paris, France
| | - Loïc Falque
- Service Hospitalier Universitaire Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Grenoble, France
| | | | - Véronique Boussaud
- Service de Pneumologie, Hôpital Européen Georges-Pompidou, Paris, France
| | - Adrien Tissot
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- Nantes Université, CHU Nantes, Service de Pneumologie, Institut du thorax, Nantes, France
| | - Sophie Hombourger
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire de Virologie, Nantes, France
| | - Béatrice Charreau
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationnelle en Transplantation et Immunologie, Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
- *Correspondence: Béatrice Charreau,
| |
Collapse
|
12
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
14
|
Asenjo J, Moraru M, Al‐Akioui‐Sanz K, Altadill M, Muntasell A, López‐Botet M, Vilches C. Diversity of NKG2C genotypes in a European population: Conserved and recombinant haplotypes in the coding, promoter, and 3'-untranslated regions. HLA 2022; 100:469-478. [PMID: 35802353 PMCID: PMC9796621 DOI: 10.1111/tan.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 01/01/2023]
Abstract
NK cells monitor altered molecular patterns in tumors and infected cells through an ample array of receptors. Two families of evolutionarily distant receptors have converged to enable human NK cells to sense levels of HLA class I ligands, frequently abnormal in altered cells. Whilst different forms of polymorphism are a hallmark of killer-cell immunoglobulin-like receptors and their classic HLA-A, B, and C ligands, genetic diversity of killer-cell lectin-like receptors for the non-classical HLA-E (CD94/NKG2 heterodimers) is less conspicuous and has attracted less attention. A common pattern of diversification in both receptor families is evolution of pairs of inhibitory and activating homologs for a common ligand, the genes encoding activating receptors being more frequently affected by copy number variation (CNV). This is exemplified by the gene encoding the activating NKG2C subunit (KLRC2 or NKG2C), which marks an NK-cell subpopulation that differentiates or expands in response to cytomegalovirus. We have studied NKG2C diversity in 240 South European individuals, using polymerase chain reaction and sequencing methods to assess both gene CNV and single-nucleotide polymorphisms (SNPs) affecting its promoter, coding and 3'-untranslated (3'UT) regions. Sequence analysis revealed eight common SNPs-one in the promoter, two in the coding sequence, and five in the 3'UT region. These SNPs associate strongly with each other, forming three conserved extended haplotypes (frequencies: 0.456, 0.221, and 0.117). Homo- and heterozygous combination of these, together with complete gene deletion (0.175) and additional haplotypes with frequencies lower than 0.015, generate a diversity of NKG2C genotypes of potential immunological importance.
Collapse
Affiliation(s)
- Judit Asenjo
- Immunogenetics and Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
| | - Karima Al‐Akioui‐Sanz
- Immunogenetics and Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
| | - Mireia Altadill
- Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Aura Muntasell
- Immunology, Department of PathologyHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain,Department of Cell Biology, Physiology and ImmunologyUniversitat Autonòma de BarcelonaBellaterraCataloniaSpain
| | - Miguel López‐Botet
- Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain,Immunology, Department of PathologyHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility LabInstituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
| |
Collapse
|
15
|
Phan MTT, Kim J, Koh SK, Lim Y, Yu H, Lee M, Lee JM, Kang ES, Kim HY, Kim SK, Hwang I, Cho D. Selective Expansion of NKG2C+ Adaptive NK Cells Using K562 Cells Expressing HLA-E. Int J Mol Sci 2022; 23:ijms23169426. [PMID: 36012691 PMCID: PMC9409060 DOI: 10.3390/ijms23169426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Adaptive natural killer (NK) cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs) can be expanded in vivo in response to human cytomegalovirus (HCMV) infection. Developing a method to preferentially expand this subset is essential for effective targeting of allogeneic cancer cells. A previous study developed an in vitro method to generate single KIR+ NK cells for enhanced targeting of the primary acute lymphoblastic leukemia cells; however, the expansion rate was quite low. Here, we present an effective expansion method using genetically modified K562-HLA-E feeder cells for long-term proliferation of adaptive NK cells displaying highly differentiated phenotype and comparable cytotoxicity, CD107a, and interferon-γ (IFN-γ) production. More importantly, our expansion method achieved more than a 10,000-fold expansion of adaptive NK cells after 6 weeks of culture, providing a high yield of alloreactive NK cells for cell therapy against cancer.
Collapse
Affiliation(s)
- Minh-Trang Thi Phan
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul 06351, Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Seung Kwon Koh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Yuree Lim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Hongbi Yu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Mijeong Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Jong-Min Lee
- Bio Research Center, Lugensci Co., Ltd., Bucheon 14556, Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Korea
| | - Ilwoong Hwang
- Department of Emergency Medicine, Soonchunhyang University Gumi Hospital, Gumi 39371, Korea
- Correspondence: (I.H.); (D.C.)
| | - Duck Cho
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (I.H.); (D.C.)
| |
Collapse
|
16
|
Natural killer cells and immune-checkpoint inhibitor therapy: Current knowledge and new challenges. Mol Ther Oncolytics 2022; 24:26-42. [PMID: 34977340 PMCID: PMC8693432 DOI: 10.1016/j.omto.2021.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The discovery of immune checkpoints (ICs) and the development of specific blockers to relieve immune effector cells from this inhibiting mechanism has changed the view of anti-cancer therapy. In addition to cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed death 1 (PD1), classical ICs of T lymphocytes and recently described also on a fraction of natural killer (NK) cells, several NK cell receptors, including killer immunoglobulin-like inhibitory receptors (KIRs) and NGK2A, have been recognized as checkpoint members typical of the NK cell population. This offers the opportunity of a dual-checkpoint inhibition approach, targeting classical and non-classical ICs and leading to a synergistic therapeutic effect. In this review, we will overview and discuss this new perspective, focusing on the most relevant candidates for this role among the variety of potential NK ICs. Beside listing and defining classical ICs expressed also by NK cells, or non-classical ICs either on T or on NK cells, we will address their role in NK cell survival, chronic stimulation or functional exhaustion, and the potential relevance of this phenomenon on anti-tumor immune response. Furthermore, NK ICs will be proposed as possible new targets for the development of efficient combined immunotherapy, not forgetting the relevant concerns that may be raised on NK IC blockade. Finally, the impact of epigenetic drugs in such a complex therapeutic picture will be briefly addressed.
Collapse
|
17
|
Capuano C, Pighi C, Battella S, Pulcinelli F, Santoro C, Ferretti A, Turriziani O, De Federicis D, Fionda C, Sciumè G, Galandrini R, Palmieri G. (Auto)Antibody Responses Shape Memory NK Cell Pool Size and Composition. Biomedicines 2022; 10:biomedicines10030625. [PMID: 35327427 PMCID: PMC8945707 DOI: 10.3390/biomedicines10030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
In vivo establishment and long-term persistence of a heterogeneous memory or an adaptive NK cell pool represents a functional adaptation to human cytomegalovirus (HCMV) infection in humans. Memory NK cells are commonly identified by lack of the FcεRIγ signalling chain, variably associated to the preferential but not completely overlapping expression of the HLA-E receptor NKG2C and CD57 maturation marker. Although characterized by selective hyperresponsiveness to IgG stimulation, the impact of the CD16/antibody interaction in regulating the establishment/maintenance and size, and in determining the relative abundance of this population, is still under investigation. Memory NK cell subset ex vivo profile and in vitro responsiveness to CD16 stimulation was evaluated in HCMV+ healthy donors and in patients affected by immune thrombocytopenia (ITP), an antibody-mediated autoimmune disease. We identified the FcεRIγ− NKG2C+CD57+ memory NK cell subset, whose abundance is uniquely associated with anti-HCMV antibody levels in healthy seropositive donors, and which is significantly expanded in ITP patients. This fully mature memory subset robustly and selectively expands in vitro in response to mAb-opsonized targets or ITP-derived platelets and displays superior CD16-dependent IFNγ production. Our work identifies opsonizing antibodies as a host-dependent factor that shapes HCMV-driven memory NK cell compartment. We first demonstrate that chronic exposure to auto-antibodies contributes to the establishment/expansion of a highly specialized and unique memory NK cell subset with distinct CD16-dependent functional capabilities. We also identify the specific contribution of the lack of FcεRIγ chain in conferring to NKG2C+CD57+ memory cells a higher responsivity to CD16 engagement.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
| | - Cristina Santoro
- Hematology Division, Policlinico Umberto I, 00185 Rome, Italy; (C.S.); (A.F.)
| | - Antonietta Ferretti
- Hematology Division, Policlinico Umberto I, 00185 Rome, Italy; (C.S.); (A.F.)
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (O.T.); (C.F.); (G.S.)
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (O.T.); (C.F.); (G.S.)
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (O.T.); (C.F.); (G.S.)
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Roma, Italy; (O.T.); (C.F.); (G.S.)
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
- Correspondence: (R.G.); (G.P.); Tel.: +39-06-4997-4084 (R.G.); +39-06-446-8448 (G.P.)
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (C.C.); (C.P.); (S.B.); (F.P.); (D.D.F.)
- Correspondence: (R.G.); (G.P.); Tel.: +39-06-4997-4084 (R.G.); +39-06-446-8448 (G.P.)
| |
Collapse
|
18
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol 2022; 234:108911. [PMID: 34929414 PMCID: PMC8683215 DOI: 10.1016/j.clim.2021.108911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
19
|
Ataya M, Redondo-Pachón D, Llinàs-Mallol L, Yélamos J, Alari-Pahissa E, Pérez-Sáez MJ, Altadill M, Raïch-Regué D, Vilches C, Pascual J, Crespo M, López-Botet M. Long-Term Evolution of the Adaptive NKG2C + NK Cell Response to Cytomegalovirus Infection in Kidney Transplantation: An Insight on the Diversity of Host-Pathogen Interaction. THE JOURNAL OF IMMUNOLOGY 2021; 207:1882-1890. [PMID: 34470855 DOI: 10.4049/jimmunol.2100055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Human CMV infection is frequent in kidney transplant recipients (KTR). Pretransplant Ag-specific T cells and adaptive NKG2C+ NK cells associate with reduced incidence of infection in CMV+ KTR. Expansions of adaptive NKG2C+ NK cells were reported in posttransplant CMV-infected KTR. To further explore this issue, NKG2C+ NK, CD8+, and TcRγδ T cells were analyzed pretransplant and at different time points posttransplant for ≥24 mo in a cohort of CMV+ KTR (n = 112), stratified according to CMV viremia detection. In cryopreserved samples from a subgroup (n = 49), adaptive NKG2C+ NK cell markers and T cell subsets were compared after a longer follow-up (median, 56 mo), assessing the frequencies of CMV-specific T cells and viremia at the last time point. Increased proportions of NKG2C+ NK, CD8+, and TcRγδ T cells were detected along posttransplant evolution in viremia(+) KTR. However, the individual magnitude and kinetics of the NKG2C+ NK response was variable and only exceptionally detected among viremia(-) KTR, presumably reflecting subclinical viral replication events. NKG2C+ expansions were independent of KLRC2 zygosity and associated with higher viral loads at diagnosis; no relation with other clinical parameters was perceived. Increased proportions of adaptive NKG2C+ NK cells (CD57+, ILT2+, FcεRIγ-) were observed after resolution of viremia long-term posttransplant, coinciding with increased CD8+ and Vδ2- γδ T cells; at that stage CMV-specific T cells were comparable to viremia(-) cases. These data suggest that adaptive NKG2C+ NK cells participate with T cells to restore CMV replication control, although their relative contribution cannot be discerned.
Collapse
Affiliation(s)
| | - Dolores Redondo-Pachón
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | | | - José Yélamos
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Immunology Laboratory, Department of Pathology, Hospital del Mar, Barcelona, Spain; and
| | | | - María J Pérez-Sáez
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | | | - Dàlia Raïch-Regué
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-HLA, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| | - Julio Pascual
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Marta Crespo
- Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Universitat Pompeu Fabra, Barcelona, Spain; .,Instituto Hospital del Mar de Investigaciones Médicas, Barcelona, Spain.,Immunology Laboratory, Department of Pathology, Hospital del Mar, Barcelona, Spain; and
| |
Collapse
|
20
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
21
|
Sportoletti P, De Falco F, Del Papa B, Baldoni S, Guarente V, Marra A, Dorillo E, Rompietti C, Adamo FM, Ruggeri L, Di Ianni M, Rosati E. NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22136665. [PMID: 34206399 PMCID: PMC8268440 DOI: 10.3390/ijms22136665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in increased susceptibility to infections and disease progression. Several immune effectors are impaired in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in CLL progression and immunotherapy has been extensively studied. Less is known about the role of NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are an attractive source for novel immunotherapeutic strategies in this disease, including chimeric antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this leukemia. In this review, we provide an overview of the current knowledge about phenotypic and functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK cells in CLL immunotherapy.
Collapse
MESH Headings
- Biomarkers
- Cell Communication
- Disease Management
- Disease Susceptibility
- Humans
- Immune System/immunology
- Immune System/metabolism
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Ligands
- Protein Binding
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/metabolism
- Treatment Outcome
- Tumor Escape/genetics
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Filomena De Falco
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Stefano Baldoni
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Erica Dorillo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Chiara Rompietti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Loredana Ruggeri
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, 65124 Pescara, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
22
|
Phenotypic and Functional Characteristics of a Novel Influenza Virus Hemagglutinin-Specific Memory NK Cell. J Virol 2021; 95:JVI.00165-21. [PMID: 33827945 DOI: 10.1128/jvi.00165-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022] Open
Abstract
Immune memory represents the most efficient defense against invasion and transmission of infectious pathogens. In contrast to memory T and B cells, the roles of innate immunity in recall responses remain inconclusive. In this study, we identified a novel mouse spleen NK cell subset expressing NKp46 and NKG2A induced by intranasal influenza virus infection. These memory NK cells specifically recognize N-linked glycosylation sites on influenza hemagglutinin (HA) protein. Different from memory-like NK cells reported previously, these NKp46+ NKG2A+ memory NK cells exhibited HA-specific silence of cytotoxicity but increase of gamma interferon (IFN-γ) response against influenza virus-infected cells, which could be reversed by pifithrin-μ, a p53-heat shock protein 70 (HSP70) signaling inhibitor. During recall responses, splenic NKp46+ NKG2A+ NK cells were recruited to infected lung and modulated viral clearance of virus and CD8+ T cell distribution, resulting in improved clinical outcomes. This long-lived NK memory bridges innate and adaptive immune memory response and promotes the homeostasis of local environment during recall response.IMPORTANCE In this study, we demonstrate a novel hemagglutinin (HA)-specific NKp46+ NKG2A+ NK cell subset induced by influenza A virus infection. These memory NK cells show virus-specific decreased cytotoxicity and increased gamma interferon (IFN-γ) on reencountering the same influenza virus antigen. In addition, they modulate host recall responses and CD8 T cell distribution, thus bridging the innate immune and adaptive immune responses during influenza virus infection.
Collapse
|
23
|
Yu Z, Wang Y, Liu L, Zhang X, Jiang S, Wang B. Apoptosis Disorder, a Key Pathogenesis of HCMV-Related Diseases. Int J Mol Sci 2021; 22:ijms22084106. [PMID: 33921122 PMCID: PMC8071541 DOI: 10.3390/ijms22084106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Yashuo Wang
- College of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Lili Liu
- Department of Basic Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
- Correspondence: ; Tel.: +86-136-8532-6203
| |
Collapse
|
24
|
Yawata N, Shirane M, Woon K, Lim X, Tanaka H, Kawano YI, Yawata M, Chee SP, Siak J, Sonoda KH. Molecular Signatures of Natural Killer Cells in CMV-Associated Anterior Uveitis, A New Type of CMV-Induced Disease in Immunocompetent Individuals. Int J Mol Sci 2021; 22:ijms22073623. [PMID: 33807229 PMCID: PMC8037729 DOI: 10.3390/ijms22073623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) causes clinical issues primarily in immune-suppressed conditions. CMV-associated anterior uveitis (CMV-AU) is a notable new disease entity manifesting recurrent ocular inflammation in immunocompetent individuals. As patient demographics indicated contributions from genetic background and immunosenescence as possible underlying pathological mechanisms, we analyzed the immunogenetics of the cohort in conjunction with cell phenotypes to identify molecular signatures of CMV-AU. Among the immune cell types, natural killer (NK) cells are main responders against CMV. Therefore, we first characterized variants of polymorphic genes that encode differences in CMV-related human NK cell responses (Killer cell Immunoglobulin-like Receptors (KIR) and HLA class I) in 122 CMV-AU patients. The cases were then stratified according to their genetic features and NK cells were analyzed for human CMV-related markers (CD57, KLRG1, NKG2C) by flow cytometry. KIR3DL1 and HLA class I combinations encoding strong receptor–ligand interactions were present at substantially higher frequencies in CMV-AU. In these cases, NK cell profiling revealed expansion of the subset co-expressing CD57 and KLRG1, and together with KIR3DL1 and the CMV-recognizing NKG2C receptor. The findings imply that a mechanism of CMV-AU pathogenesis likely involves CMV-responding NK cells co-expressing CD57/KLRG1/NKG2C that develop on a genetic background of KIR3DL1/HLA-B allotypes encoding strong receptor–ligand interactions.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD57 Antigens/genetics
- CD57 Antigens/immunology
- Cohort Studies
- Cytomegalovirus/immunology
- Cytomegalovirus/pathogenicity
- Cytomegalovirus Infections/immunology
- Female
- Genes, MHC Class I/genetics
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Immunocompromised Host/immunology
- Immunocompromised Host/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/physiology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily C/genetics
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR/genetics
- Transplantation, Homologous/adverse effects
- Uveitis, Anterior/genetics
- Uveitis, Anterior/metabolism
- Uveitis, Anterior/virology
Collapse
Affiliation(s)
- Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka 812-8582, Japan
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| | - Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka 812-8582, Japan; (M.S.); (K.-H.S.)
| | - Kaing Woon
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
| | - Xinru Lim
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
| | | | - Yoh-Ichi Kawano
- Department of Ophthalmology, Fukuoka Dental College, Fukuoka 814-0193, Japan;
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, A*STAR, Singapore 117609, Singapore;
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- National University Health System, Singapore 119228, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Soon-Phaik Chee
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ocular Inflammation and Immunology Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jay Siak
- Singapore Eye Research Institute, Singapore 168751, Singapore; (K.W.); (X.L.); (S.-P.C.); (J.S.)
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ocular Inflammation and Immunology Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka 812-8582, Japan; (M.S.); (K.-H.S.)
| |
Collapse
|
25
|
Asenjo J, Muntasell A, López-Botet M, Moraru M, Vilches C. Complete genomic characterization of a new KLRC2 allele, NKG2C*03. HLA 2021; 98:259-261. [PMID: 33608973 PMCID: PMC8451841 DOI: 10.1111/tan.14231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
The novel NKG2C*03 allele encodes a hybrid of the NKG2C*01 and NKG2C*02 primary structures.
Collapse
Affiliation(s)
- Judit Asenjo
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Aura Muntasell
- Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,University Pompeu Fabra, Barcelona, Spain
| | - Manuela Moraru
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| |
Collapse
|
26
|
Puiggros A, Blanco G, Muntasell A, Rodríguez-Rivera M, Nonell L, Altadill M, Puigdecanet E, Arnal M, Calvo X, Gimeno E, Abella E, Abrisqueta P, Bosch F, Yélamos J, Ferrer A, López-Botet M, Espinet B. Reduced expansion of CD94/NKG2C + NK cells in chronic lymphocytic leukemia and CLL-like monoclonal B-cell lymphocytosis is not related to increased human cytomegalovirus seronegativity or NKG2C deletions. Int J Lab Hematol 2021; 43:1032-1040. [PMID: 33615729 DOI: 10.1111/ijlh.13494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Dysregulated NK cell-mediated immune responses contribute to tumor evasion in chronic lymphocytic leukemia (CLL), although the NK cell compartment in CLL-like monoclonal B-cell lymphocytosis (MBL) is poorly understood. In healthy individuals, human cytomegalovirus (HCMV) induces the expansion of NK cells expressing high levels of CD94/NKG2C NK cell receptor (NKR) specific for HLA-E. METHODS We analyzed the expression of NKG2A, NKG2C, ILT2, KIR, CD161, and CD57 in 24 MBL and 37 CLL. NKG2C was genotyped in these patients and in 81 additional MBL/CLL, while NKG2C gene expression was assessed in 26 cases. In 8 CLL patients with increased lymphocytosis (≥20 × 109 /L), tumor HLA-E and HLA-G expression was evaluated. RESULTS NKR distribution did not significantly differ between MBL and CLL patients, although they exhibited reduced NKG2C+ NK cells compared with a non-CLL group (4.6% vs 12.2%, P = .012). HCMV+ patients showed increased percentages of NKG2C+ NK cells compared with HCMV- (7.3% vs 2.9%, P = .176). Frequencies of NKG2C deletions in MBL/CLL were similar to those of the general population. Low/undetectable NKG2C expression was found among NKG2C+/- (45%) and NKG2C+/+ (12%) patients. CLL cases with increased lymphocytosis displayed especially reduced NKG2C expression (1.8% vs 8.1%, P = .029) and tumor cells with high HLA-E (>98%) and variable HLA-G expression (12.4%, range: 0.5-56.4). CLL patients with low NKG2C expression (<7%) showed shorter time to first treatment (P = .037). CONCLUSION Reduced percentages of CD94/NKG2C+ NK cells were observed in CLL and MBL patients independently of HCMV serostatus and NKG2C zygosity, particularly in CLL patients with increased lymphocytosis, which could potentially be related to the exposure to tumor cells.
Collapse
Affiliation(s)
- Anna Puiggros
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Gonzalo Blanco
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - María Rodríguez-Rivera
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | | | | | - Eulàlia Puigdecanet
- MARGenomics, IMIM, Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | | | - Xavier Calvo
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Eva Gimeno
- Hematology Department, Hospital del Mar-IMIM, Barcelona, Spain.,Applied Clinical Research in Hematological Malignances, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Eugènia Abella
- Hematology Department, Hospital del Mar-IMIM, Barcelona, Spain.,Applied Clinical Research in Hematological Malignances, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Pau Abrisqueta
- Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Bosch
- Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Yélamos
- Immunology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Ferrer
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Hematological Cytology Laboratory, Pathology Department, Hospital del Mar, Barcelona, Spain.,Translational Research on Hematological Neoplasms Group, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| |
Collapse
|
27
|
Hayashi F, Isobe N, Glanville J, Matsushita T, Maimaitijiang G, Fukumoto S, Watanabe M, Masaki K, Kira JI. A new clustering method identifies multiple sclerosis-specific T-cell receptors. Ann Clin Transl Neurol 2021; 8:163-176. [PMID: 33400858 PMCID: PMC7818280 DOI: 10.1002/acn3.51264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To characterize T-cell receptors (TCRs) and identify target epitopes in multiple sclerosis (MS). METHODS Peripheral blood mononuclear cells were obtained from 39 MS patients and 19 healthy controls (HCs). TCR repertoires for α/β/δ/γ chains, TCR diversity, and V/J usage were determined by next-generation sequencing. TCR β chain repertoires were compared with affectation status using a novel clustering method, Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH). Cytomegalovirus (CMV)-IgG was measured in an additional 113 MS patients and 93 HCs. Regulatory T cells (Tregs) were measured by flow cytometry. RESULTS TCR diversity for all four chains decreased with age. TCRα and TCRβ diversity was higher in MS patients (P = 0.0015 and 0.024, respectively), even after age correction. TRAJ56 and TRBV4-3 were more prevalent in MS patients than in HCs (pcorr = 0.027 and 0.040, respectively). GLIPH consolidated 208,674 TCR clones from MS patients into 1,294 clusters, among which two candidate clusters were identified. The TRBV4-3 cluster was shared by HLA-DRB1*04:05-positive patients (87.5%) and predicted to recognize CMV peptides (CMV-TCR). MS Severity Score (MSSS) was lower in patients with CMV-TCR than in those without (P = 0.037). CMV-IgG-positivity was associated with lower MSSS in HLA-DRB1*04:05 carriers (P = 0.0053). HLA-DRB1*04:05-positive individuals demonstrated higher CMV-IgG titers than HLA-DRB1*04:05-negative individuals (P = 0.017). CMV-IgG-positive patients had more Tregs than CMV-IgG-negative patients (P = 0.054). INTERPRETATION High TCRα/TCRβ diversity, regardless of age, is characteristic of MS. Association of a CMV-recognizing TCR with mild disability indicates CMV's protective role in HLA-DRB1*04:05-positive MS.
Collapse
Affiliation(s)
- Fumie Hayashi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jacob Glanville
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Takuya Matsushita
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shoko Fukumoto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Prospective Study of Long Noncoding RNA, MGAT3-AS1, and Viremia of BK Polyomavirus and Cytomegalovirus in Living Donor Renal Transplant Recipients. Kidney Int Rep 2020; 5:2218-2227. [PMID: 33305115 PMCID: PMC7710814 DOI: 10.1016/j.ekir.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction Viremia after renal transplantation is a major cause of morbidity and mortality and treatment opportunities are limited. Tests to determine the increased risk for viremia would be preferable. Methods In a prospective, single-center study, we conducted follow-up of 163 renal transplant recipients after incident living donor renal transplantation. We determined a long noncoding RNA, β-1,4-mannosylglycoprotein 4-β-N-acetylglucosaminyltransferase-antisense1 (MGAT3-AS1/beta-actin ratio), in peripheral blood mononuclear cells. Viremia of BK polyomavirus and cytomegalovirus was diagnosed with more than 1000 plasma copies/ml within the first 3 postoperative months. The MGAT3-AS1/beta-actin ratio was assessed before viremia was determined. Results Receiver operator characteristics curve analysis showed a median MGAT3-AS1/beta-actin ratio cutoff value of 4.45 × 10–6 to indicate viremia after transplantation. Samples for 11 of 66 renal transplant recipients (17%) with MGAT3-AS1/beta-actin ratios below 4.45 × 10–6 showed viremia of BK polyomavirus and cytomegalovirus compared with only 6 of 97 renal transplant recipients (6%) with higher MGAT3-AS1/beta-actin ratios (odds ratio [OR]: 3.03; 95% confidence interval [CI]: 1.06–8.67 by Fisher exact test). Furthermore, samples for 6 of 66 renal transplant recipients (9%) with MGAT3-AS1/beta-actin ratios below 4.45 × 10–6 showed BK polyomavirus viremia compared with none of 97 renal transplant recipients (0%) with higher MGAT3-AS1/beta-actin ratios (OR: 20.95; 95% CI, 1.16–378.85 by Fisher exact test). Multivariate logistic regression analysis confirmed that MGAT3-AS1/beta-actin ratios below the cutoff level remained significantly associated with viremia after transplant. Lower MGAT3-AS1/beta-actin ratios occurred with rituximab-containing induction therapy. Conclusions A low MGAT3-AS1/beta-actin ratio indicates an increased risk for viremia of BK polyomavirus and cytomegalovirus in living donor renal transplant recipients.
Collapse
|
29
|
Genetic Variants of the NKG2C/HLA-E Receptor-Ligand Axis Are Determinants of Progression-Free Survival and Therapy Outcome in Aggressive B-Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12113429. [PMID: 33218185 PMCID: PMC7699209 DOI: 10.3390/cancers12113429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary NKG2C and its ligand HLA-E represent key molecules for NK cell-mediated immune responsiveness. However, the impact of genetic variants in NKG2C and HLA-E on clinical outcomes of aggressive B-cell non-Hodgkin lymphoma patients (B-NHL) has not been clarified. In this study, we analyzed the distribution of NKG2C deletion status and HLA-E variants in 441 patients and 192 healthy individuals. Homozygous deletion of NKG2C (NKG2C−/−) was more often found in high-risk patients compared to patients with a lower risk and consequently was associated with reduced 2-year progression-free survival. The HLA-E*01:01 allele frequency was increased in B-NHL patients and was strongly related with complete remission. Our results show that absence of NKG2C and HLA-E allelic variations is predictive for B-NHL outcome; while carriers of HLA-E*01:01 are characterized by high, complete remission rates, NKG2C−/− was rare, but associated with poorer outcome. Prospective validation of our results identifies patients that may benefit from risk-adapted therapy. Abstract Aggressive B-cell lymphomas account for the majority of non-Hodgkin lymphomas (B-NHL). NK cells govern the responses to anti-CD20 monoclonal antibodies and have emerged as attractive targets for immunotherapy in subtypes of B-NHL. NKG2C and its cognate ligand HLA-E represent key molecules for fine-tuning of NK cell-mediated immune responses. Here, we investigated the impact of genetic variants of NKG2C and HLA-E on clinical outcomes of 441 B-NHL patients. Homozygous deletion of NKG2C (NKG2C−/−) was three-fold increased in patients compared to 192 healthy controls. Among studied patients, NKG2C−/− was more abundant in International Prognostic Index (IPI) high-risk patients compared to patients with a lower IPI (p = 0.013). Strikingly, NKG2C−/− was associated with a significantly reduced 2-year PFS (progression-free survival) (p = 0.0062) and represented an independent risk factor for 2-year PFS in multivariate analysis (p = 0.005). For HLA-E, the cognate ligand of NKG2C, the HLA-E*01:01 allele frequency was increased in B-NHL patients compared to controls (p = 0.033) and was associated with complete remission in univariate (p = 0.034) and multivariate (p = 0.018) analysis. Our data suggest that NKG2C and HLA-E genotyping is a promising tool for both defining risk groups of aggressive B-NHL and predicting response to immune therapeutic approaches.
Collapse
|
30
|
Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clin Cancer Res 2020; 26:5549-5556. [PMID: 32409305 DOI: 10.1158/1078-0432.ccr-19-2095] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The success of checkpoint blockade therapy revolutionized cancer treatment. However, we need to increase the fraction of responding patients and overcome acquired resistance to these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially residing in tissues, like the tumor microenvironment. Its ligand, histocompatibility leucocyte antigen E (HLA-E), is a conserved nonclassical HLA class I molecule that binds a limited peptide repertoire and its expression is commonly detected in human cancer. NKG2A blockade as a standalone therapy appears poorly effective in mouse tumor models, however, in the presence of activated T cells, for example, induced by PD-1/PD-L1 blockade or cancer vaccines, exerts strongly enhanced efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody, monalizumab, and first results of phase II trials demonstrate encouraging durable response rates. Further development of this axis is clearly warranted.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
31
|
Soleimanian S, Yaghobi R. Harnessing Memory NK Cell to Protect Against COVID-19. Front Pharmacol 2020; 11:1309. [PMID: 32973527 PMCID: PMC7468462 DOI: 10.3389/fphar.2020.01309] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Collapse
Affiliation(s)
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Cantoni C, Granata S, Bruschi M, Spaggiari GM, Candiano G, Zaza G. Recent Advances in the Role of Natural Killer Cells in Acute Kidney Injury. Front Immunol 2020; 11:1484. [PMID: 32903887 PMCID: PMC7438947 DOI: 10.3389/fimmu.2020.01484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
Growing evidence is revealing a central role for natural killer (NK) cells, cytotoxic cells belonging to the broad family of innate lymphoid cells (ILCs), in acute and chronic forms of renal disease. NK cell effector functions include both the recognition and elimination of virus-infected and tumor cells and the capability of sensing pathogens through Toll-like receptor (TLR) engagement. Notably, they also display immune regulatory properties, exerted thanks to their ability to secrete cytokines/chemokines and to establish interactions with different innate and adaptive immune cells. Therefore, because of their multiple functions, NK cells may have a major pathogenic role in acute kidney injury (AKI), and a better understanding of the molecular mechanisms driving NK cell activation in AKI and their downstream interactions with intrinsic renal cells and infiltrating immune cells could help to identify new potential biomarkers and to select clinically valuable novel therapeutic targets. In this review, we discuss the current literature regarding the potential involvement of NK cells in AKI.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
33
|
Falco M, Pende D, Munari E, Vacca P, Mingari MC, Moretta L. Natural killer cells: From surface receptors to the cure of high-risk leukemia (Ceppellini Lecture). HLA 2020; 93:185-194. [PMID: 30828978 PMCID: PMC6767140 DOI: 10.1111/tan.13509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells are innate immune effector cells involved in the first line of defense against viral infections and malignancies. In the last three decades, the identification of HLA class I‐specific inhibitory killer immunoglobulin‐like receptors (KIR) and of the main activating receptors has strongly improved our understanding of the mechanisms regulating NK cell functions. The increased knowledge on how NK cells discriminate healthy cells from damaged cells has made it possible to transfer basic research notions to clinical applications. Of particular relevance is the strong NK‐mediated anti‐leukemia effect in haploidentical hematopoietic stem cell transplantation to cure high‐risk leukemia.
Collapse
Affiliation(s)
- Michela Falco
- Laboratorio di Immunologia Clinica e Sperimentale, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Daniela Pende
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maria C Mingari
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES) and CEBR, Università di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
34
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
35
|
Del Zotto G, Antonini F, Pesce S, Moretta F, Moretta L, Marcenaro E. Comprehensive Phenotyping of Human PB NK Cells by Flow Cytometry. Cytometry A 2020; 97:891-899. [PMID: 32198974 DOI: 10.1002/cyto.a.24001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
The NK cell compartment provides powerful innate defenses against virus-infected and tumor cells. Specific NK cell receptors control this process and maintain the immune system homeostasis and prevent autoimmunity. A wide variety of NK cell subsets with different functional capabilities exist and this reflects not only the different maturation stages of NK cells but also different microenvironments in which they can operate. In this review, we will give an overview on the various NK cell subsets present in peripheral blood of healthy donors in order to clearly and univocally identify them on the basis of their phenotypic traits using flow cytometry. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Genny Del Zotto
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Francesca Antonini
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
36
|
Pascual-Guardia S, Ataya M, Ramírez-Martínez I, Yélamos J, Chalela R, Bellido S, López-Botet M, Gea J. Adaptive NKG2C+ natural killer cells are related to exacerbations and nutritional abnormalities in COPD patients. Respir Res 2020; 21:63. [PMID: 32131843 PMCID: PMC7057582 DOI: 10.1186/s12931-020-1323-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract Chronic obstructive pulmonary disease (COPD) is a chronic and often progressive disorder with a heterogeneous presentation and frequent systemic manifestations. Several aspects like persistence in smoking habit, continuous exacerbations, alpha-1-antitrypsin deficiency and inflammatory-immune response, are involved in the pathophysiology and progression of the disease. However, the role of natural killer (NK) cells remains controversial. Otherwise, human cytomegalovirus (HCMV) infection has been reported to induce an adaptive differentiation and expansion of an NK cell subset which carries the CD94/NKG2C receptor, which may contribute to an upset immune defense. For these reasons, our objective is to assess the distribution of NK cells and their subset in COPD patients and some of its phenotypes. Methods Peripheral blood samples were obtained from 66 COPD patients. HCMV serology and the proportions of total NK cells and the NKG2C+ and NKG2A+ subsets were evaluated by flow cytometry. The NKG2C genotype was also assessed. Results Eighty-eight per cent of COPD patients were HCMV(+), and the proportions of total NK cells were higher in patients with severe-very severe airway obstruction than in those with only mild-moderate involvement. There were no differences in the proportions of NKG2C+ cells between controls and COPD, either among COPD patients classified by severity of the disease. However, the percentage of NKG2C+ cells were higher in COPD patients with frequent exacerbations than in occasional exacerbators, and higher in cases with reduced lean mass (Fat free mass index) than in those with normal nutritional status. Conclusion These results suggest a relationship between levels of NKG2C+ cells in COPD patients and clinical variables closely linked to a poor/worse prognosis.
Collapse
Affiliation(s)
- Sergi Pascual-Guardia
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain. .,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,CIBERES, ISCIII, Barcelona, Spain. .,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.
| | - Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Isabel Ramírez-Martínez
- Immunology Department, Hospital del Mar, Barcelona, Spain.,Psychiatry department, Hospital Torrecardenas, Almería, Spain
| | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Department, Hospital del Mar, Barcelona, Spain
| | - Roberto Chalela
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Salomé Bellido
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.,Immunology Department, Hospital del Mar, Barcelona, Spain
| | - Joaquim Gea
- Respiratory Department, Hospital del Mar, Pg. Marítim 27, 08003, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,CIBERES, ISCIII, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain.,Barcelona Respiratory Network, Barcelona, Spain
| |
Collapse
|
37
|
Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran E, Alonso C, Solana R. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother 2020; 69:879-899. [PMID: 32130453 DOI: 10.1007/s00262-020-02532-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
A better understanding of the complex interactions between the immune system and tumour cells from different origins has opened the possibility to design novel procedures of antitumoral immunotherapy. One of these novel approaches is based on the use of autologous or allogeneic natural killer (NK) cells to treat cancer. In the last decade, different strategies to activate NK cells and their use in adoptive NK cell-based therapy have been established. Although NK cells are often considered as a uniform cell population, several phenotypic and functionally distinct NK cells subsets exist in healthy individuals, that are differentially affected by ageing or by apparently innocuous viruses such as cytomegalovirus (CMV). In addition, further alterations in the expression of activating and inhibitory receptors are found in NK cells from cancer patients, likely because of their interaction with tumour cells. Thus, NK cells represent a promising strategy for adoptive immunotherapy of cancer already tested in phase 1/2 clinical trials. However, the existence of NK cell subpopulations expressing different patterns of activating and inhibitory receptors and different functional capacities, that can be found to be altered not only in cancer patients but also in healthy individuals stratified by age or CMV infection, makes necessary a personalized definition of the procedures used in the selection, expansion, and activation of the relevant NK cell subsets to be successfully used in NK cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Pera
- University of Cordoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
| | | | - Nieves Pastor
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Esther Duran
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Corona Alonso
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| | - Rafael Solana
- University of Cordoba, Córdoba, Spain. .,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|
38
|
Ataya M, Redondo-Pachón D, Llinàs-Mallol L, Yélamos J, Heredia G, Pérez-Sáez MJ, Vila J, Costa-García M, Raïch-Regué D, Vilches C, Pascual J, Crespo M, López-Botet M. Pretransplant adaptive NKG2C+ NK cells protect against cytomegalovirus infection in kidney transplant recipients. Am J Transplant 2020; 20:663-676. [PMID: 31612635 DOI: 10.1111/ajt.15658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023]
Abstract
Cytomegalovirus (CMV) infection constitutes a complication for kidney transplant recipients (KTR) and CMV-specific T cells reduce the risk of viral replication in seropositive patients. CMV promotes the adaptive differentiation and expansion of an NK cell subset, hallmarked by expression of the CD94/NKG2C receptor with additional characteristic features. We previously reported an association of pretransplant NKG2C+ NK cells with a reduced incidence of CMV infection. We have strengthened the analysis in cryopreserved peripheral blood mononuclear cells from an enlarged KTR cohort (n = 145) with homogeneous immunosuppression, excluding cases at low risk of infection (ie, CMV D-R-) or receiving antiviral prophylaxis. Moreover, adaptive NKG2C+ NK cell-associated markers (ie, NKG2A, CD57, Immunoglobulin-like transcript 2 [LIR1 or LILRB1], FcεRI γ chain, and Prolymphocytic Leukemia Zinc Finger transcription factor) as well as T lymphocyte subsets were assessed by multicolor flow cytometry. The relation of NKG2C+ NK cells with T cells specific for CMV antigens was analyzed in pretransplant patients (n = 29) and healthy controls (n = 28). Multivariate Cox regression and Kaplan-Meier analyses supported that NKG2C+ NK cells bearing adaptive markers were specifically associated with a reduced incidence of posttransplant symptomatic CMV infection; no correlation between NKG2C+ NK cells and CMV-specific T cells was observed. These results support that adaptive NKG2C+ NK cells contribute to control CMV infection in KTR.
Collapse
Affiliation(s)
- Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dolores Redondo-Pachón
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | | | - José Yélamos
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Service, Hospital del Mar, Barcelona, Spain
| | | | - María J Pérez-Sáez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Joan Vila
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Dàlia Raïch-Regué
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics-HLA, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Marta Crespo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Immunology Service, Hospital del Mar, Barcelona, Spain.,University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
HCMV Infection in a Mesenchymal Stem Cell Niche: Differential Impact on the Development of NK Cells versus ILC3. J Clin Med 2019; 9:jcm9010010. [PMID: 31861547 PMCID: PMC7027004 DOI: 10.3390/jcm9010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) is highly prevalent in most populations worldwide and has a major influence on shaping the human immune system. Natural killer (NK) cells are important antiviral effectors that adapt to HCMV infection by expansion of virus-specific effector/memory cells. The impact of HCMV infection on the development of NK cells and innate lymphoid cells (ILC) in general is less well understood. In this context, we have recently established a novel in vitro platform to study human NK cell development in a stem cell niche based on human bone marrow-derived mesenchymal stem cells (MSC). Here, the system was modified by infecting MSC with HCMV to study the influence of virus infection on NK/ILC development. We show that cord blood-derived hematopoietic progenitor cells are successfully differentiated into mature CD56+CD94+NKG2A+ NK cells on HCMV-infected MSC with significant higher anti-viral cytokine production compared to NK cells developing on non-infected MSC. Furthermore, the generation of ILC3, characterized by expression of the signature transcription factor RAR-related orphan receptor gamma (RORγt) and the production of IL-22, was strongly impaired by HCMV infection. These observations are clinically relevant, given that ILC3 are associated with protection from graft-versus-host disease (GvHD) following stem cell transplantation and HCMV reactivation in turn is associated with increased incidence of GvHD.
Collapse
|
40
|
Gyurova IE, Ali A, Waggoner SN. Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunol 2019; 33:334-341. [PMID: 31800366 DOI: 10.1089/vim.2019.0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Secretion of both neutralizing and nonneutralizing virus-specific antibodies by B cells is a key component of immune control of many virus infections and a critical benchmark of successful preventative vaccines. Natural killer (NK) cells also play a vital role in antiviral immune defense via cytolytic elimination of infected cells and production of proinflammatory antiviral cytokines. Accumulating evidence points to multifaceted crosstalk between NK cells and antiviral B cell responses that can determine virus elimination, pathogenesis of infection, and efficacy of vaccine-elicited protection. These outcomes are a result of both positive and negative influences of NK cells on the B cell responses, as well as canonical antiviral killing of infected B cells. On one hand, NK cell-derived cytokines such as interferon-gamma (IFN-γ) may promote B cell activation and enhance immunoglobulin production. In contrast, NK cell immunoregulatory killing of CD4 T cells can limit affinity maturation in germinal centers resulting in weak infection or vaccine induction of antiviral neutralizing antibodies. In this review, we will discuss these and other dueling contributions of NK cells to B cell responses during virus infection or vaccination.
Collapse
Affiliation(s)
- Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
41
|
Kanevskiy L, Erokhina S, Kobyzeva P, Streltsova M, Sapozhnikov A, Kovalenko E. Dimorphism of HLA-E and its Disease Association. Int J Mol Sci 2019; 20:ijms20215496. [PMID: 31690066 PMCID: PMC6862560 DOI: 10.3390/ijms20215496] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. However, opposite to multiallelic classical MHC I genes, HLA-E in fact has only two alleles—HLA-E*01:01 and HLA-E*01:03—which differ by one nonsynonymous amino acid substitution at position 107, resulting in an arginine in HLA-E*01:01 (HLA-ER) and glycine in HLA-E*01:03 (HLA-EG). In contrast to HLA-ER,HLA-EG has higher affinity to peptide, higher surface expression, and higher thermal stability of the corresponding protein, and it is more ancient than HLA-ER, though both alleles are presented in human populations in nearly equal frequencies. In the current review, we aimed to uncover the reason of the expansion of the younger allele, HLA-ER, by analysis of associations of both HLA-E alleles with a number of diseases, including viral and bacterial infections, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Leonid Kanevskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Sofya Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Polina Kobyzeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Maria Streltsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexander Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| |
Collapse
|
42
|
Moreira A, Alari-Pahissa E, Munteis E, Vera A, Zabalza A, Llop M, Villarrubia N, Costa-García M, Álvarez-Lafuente R, Villar LM, López-Botet M, Martínez-Rodríguez JE. Adaptive Features of Natural Killer Cells in Multiple Sclerosis. Front Immunol 2019; 10:2403. [PMID: 31681293 PMCID: PMC6803486 DOI: 10.3389/fimmu.2019.02403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been recently related with a lower susceptibility to multiple sclerosis (MS). HCMV promotes an adaptive development of NK cells bearing the CD94/NKG2C receptor with a characteristic phenotypic and functional profile. NK cells are proposed to play an immunoregulatory role in MS, and expansion of the NKG2C(+) subset was recently associated with reduced disability progression. To further explore this issue, additional adaptive NK cell markers, i.e., downregulation of FcεRIγ chain (FcRγ) and PLZF transcription factor, as well as antibody-dependent NK cell activation were assessed in controls and MS patients considering HCMV serology and clinical features. In line with previous reports, increased proportions of NKG2C(+), FcRγ(-), and PLZF(-) CD56dim NK cells were found in HCMV(+) cases. However, PLZF(-) NK cells were detected uncoupled from other adaptive markers within the CD56bright subset from HCMV(+) cases and among CD56dim NK cells from HCMV(-) MS patients, suggesting an additional effect of HCMV-independent factors in PLZF downregulation. Interferon-β therapy was associated with lower proportions of FcRγ(-) CD56dim NK cells in HCMV(+) and increased PLZF(-) CD56bright NK cells in HCMV(-) patients, pointing out to an influence of the cytokine on the expression of adaptive NK cell-associated markers. In addition, proportions of NKG2C(+) and FcRγ(-) NK cells differed in progressive MS patients as compared to controls and other clinical forms. Remarkably, an adaptive NK cell phenotype did not directly correlate with enhanced antibody-triggered degranulation and TNFα production in MS in contrast to controls. Altogether, our results provide novel insights into the putative influence of HCMV and adaptive NK cells in MS.
Collapse
Affiliation(s)
- Antía Moreira
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Neurology Department, Althaia, Xarxa Assistencial i Universitària de Manresa, Manresa, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Elvira Munteis
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Andrea Vera
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana Zabalza
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mireia Llop
- Neurology Department, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Noelia Villarrubia
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Roberto Álvarez-Lafuente
- Neurology Service, Instituto de Investigación Sanitaria del Hospital Clínico de San Carlos, Madrid, Spain
| | - Luisa María Villar
- Immunology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel López-Botet
- University Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | |
Collapse
|
43
|
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2944-2958. [PMID: 31604804 DOI: 10.4049/jimmunol.1801525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
NK cells can develop cell-intrinsic memory-like characteristics. Whether they develop these characteristics during Toxoplasma gondii infection is unknown. We addressed this question and dissected the mechanisms involved in secondary NK cell responses using a vaccine-challenge mouse model of T. gondii infection. NK cells were required for control of and survival after secondary T. gondii infection. NK cells increased in number at the reinfection site and produced IFN-γ. To test if these T. gondii experienced NK cells were intrinsically different from naive NK cells, we performed NK cell adoptive transfer into RAG2/cγ-chain-/- mice, NK cell fate mapping, and RAG1-/- mice vaccine-challenge experiments. Although NK cells contributed to immunity after reinfection, they did not develop cell-intrinsic memory-like characteristics after T. gondii vaccination. The mechanisms required for generating these secondary NK cell responses were investigated. Secondary NK cell responses were CD4+ or CD8+ T cell independent. Although IL-12 alone is required for NK cell IFN-γ production during primary T. gondii infection, in the absence of IL-12 using IL-12p35-/- mice or anti-IL-12p70, secondary NK cell responses were only partially reduced after reinfection. IL-23 depletion with anti-IL-23p19 in vivo also significantly reduced the secondary NK cell response. IL-12 and IL-23 blockade with anti-IL-12p40 treatment completely eliminated secondary NK cell responses. Importantly, blockade of IL-12, IL-23, or both significantly reduced control of parasite reinfection and increased parasite burden. Our results define a previously unknown protective role for NK cells during secondary T. gondii infection that is dependent on IL-12 and IL-23.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | | | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
44
|
Manser AR, Scherenschlich N, Thöns C, Hengel H, Timm J, Uhrberg M. KIR Polymorphism Modulates the Size of the Adaptive NK Cell Pool in Human Cytomegalovirus-Infected Individuals. THE JOURNAL OF IMMUNOLOGY 2019; 203:2301-2309. [PMID: 31519864 DOI: 10.4049/jimmunol.1900423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Acute infection with human CMV (HCMV) induces the development of adaptive NKG2C+ NK cells. In some cases, large expansions of this subset, characterized by coexpression of HLA-C-specific KIR, are stably maintained during the life-long latent phase of infection. The factors that control these unusual expansions in vivo are currently unknown. In this study, the role of KIR polymorphism and expression in this process was analyzed. It is shown that strong NKG2C+ NK cell expansions are dominated by single KIR clones, whereas moderate expansions are frequently polyclonal (p < 0.0001). Importantly, the choice of KIR was not arbitrary but biased toward usage of HLA-C-specific KIR encoded by the centromeric part of group A (cenA) haplotypes. Consideration of KIR allelic variation and gene copy number revealed that the cenA effect was predominantly due to the HLA-C2-specific KIR2DL1 receptor; presence of KIR2DL1 on NKG2C+ NK cells led to significantly larger clonal expansions than the cenB-encoded KIR2DL2 (p = 0.002). Expansion of NKG2C+KIR2DL1+ NK cells was always accompanied by the cognate ligand HLA-C2. Moreover, in these donors the frequency of NKG2C+ NK cells correlated with the concentration of anti-HCMV IgG (r = 0.62, p = 0.008), suggesting direct relevance of NKG2C+KIR2DL1+ NK cells for virus control. Altogether, the study suggests that the homeostasis of NKG2C+ NK cells in HCMV infection is at least partly controlled by coexpression of cognate inhibitory KIR. In particular, the strong interaction of KIR2DL1 and HLA-C2 ligands seems to promote large and stable expansion of adaptive NK cells in HCMV infection.
Collapse
Affiliation(s)
- Angela R Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Scherenschlich
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Thöns
- Institute of Virology, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; and.,Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jörg Timm
- Institute of Virology, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
45
|
Tabellini G, Patrizi O, Dobbs K, Lougaris V, Baronio M, Coltrini D, Plebani A, Badolato R, Notarangelo LD, Parolini S. From Natural Killer Cell Receptor Discovery to Characterization of Natural Killer Cell Defects in Primary Immunodeficiencies. Front Immunol 2019; 10:1757. [PMID: 31396241 PMCID: PMC6668486 DOI: 10.3389/fimmu.2019.01757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Alessandro Moretta was Professor of Histology at University of Brescia from 1994 to 1997. It was in that period that we met and started a collaboration that continued in the years to follow. He immediately involved us in the production of monoclonal antibodies (mAbs) that allowed the identification and fine characterization of novel receptor molecules that were able to activate or inhibit human Natural Killer cell function, including several antibodies specific for Natural Cytotoxicity Receptor (NCR) and Killer-cell Immunoglobulin-like Receptor (KIR) molecules. These reagents, generated in our laboratory in Brescia, contributed to complete the studies aimed to characterize innate lymphoid NK cells, that had been initiated by Alessandro and his brother Lorenzo in Genoa. Soon, we identified an anti-KIR3DL2 that was subsequently shown to be helpful for the diagnosis and treatment of various forms of cutaneous T cell lymphoma. While in Brescia, Alessandro established a partnership with those of us who were working in the Department of Pediatrics; together, in short time we tackled the goal of studying the role of NK cells in patients with primary immunodeficiencies. This collaboration led to novel discoveries that shed light on the critical role played by NK cells in the immune response against virus and tumors in humans, as best exemplified by our characterization of the molecular mechanisms of impaired control of Epstein-Barr Virus (EBV) infection in patients with X-linked lymphoproliferative (XLP) disease. After Alessandro left Brescia to return to Genoa, our collaboration continued with the same enthusiasm, and even from a distance he remained an extraordinary example of an inspirational and generous mentor. This review is a sign of our gratitude to a mentor and a friend whom we deeply miss.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassilios Lougaris
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Host Defenses, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
46
|
Vazquez-Gonzalez WG, Martinez-Alvarez JC, Arrazola-Garcia A, Perez-Rodriguez M. Haplotype block 1 variant (HB-1v) of the NKG2 family of receptors. Hum Immunol 2019; 80:842-847. [PMID: 31320124 DOI: 10.1016/j.humimm.2019.07.276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The natural killer group 2 (NKG2) family of receptors, encoded within the NK complex gene region (NKC), modulate the cytotoxic activity of NK cells. Two haplotype blocks throughout the NKC, hb-1 and hb-2 have been associated with different levels of overall natural cytotoxicity. Here, we evaluated allelic and genotype frequencies at rs1049174, rs2617160, rs2617170, rs2617171, rs1983526 (hb-1 haplotype), and rs2255336 and rs2246809 (hb-2 haplotype) in 928 subjects examined from Mexico City. The most frequent alleles and genotypes were as follows: C, CG to rs1049174; G, GG to rs2255336; T, AT to rs2617160; G, GG to rs2246809; C, CT to rs2617170; G, CG to rs2617171; and G, CG to rs1983526. Linkage disequilibrium analysis revealed that rs1049174, rs2617160, rs2617170, and rs2617171 constituted the haplotype block-1 variant (hb-1v) (r2 ≥ 0.89). Two predominant haplotypes of hb-1v were identified based on the allele content and included CTCG and GATC. This study is the first to evaluate the allelic and genotype frequency distribution of rs1049174, rs2255336, rs2617160, rs2246809, rs2617170, rs2617171, and rs1983526 in the population of Mexico City.
Collapse
Affiliation(s)
- Wendy Guadalupe Vazquez-Gonzalez
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Col. Doctores, CP 06720 Ciudad de México, Mexico
| | - Julio Cesar Martinez-Alvarez
- Banco Central de Sangre, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Col. Doctores, CP 06720 Ciudad de México, Mexico
| | - Araceli Arrazola-Garcia
- Banco Central de Sangre, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Col. Doctores, CP 06720 Ciudad de México, Mexico
| | - Martha Perez-Rodriguez
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 330, Col. Doctores, CP 06720 Ciudad de México, Mexico.
| |
Collapse
|
47
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
48
|
Costa-García M, Ataya M, Moraru M, Vilches C, López-Botet M, Muntasell A. Human Cytomegalovirus Antigen Presentation by HLA-DR+ NKG2C+ Adaptive NK Cells Specifically Activates Polyfunctional Effector Memory CD4+ T Lymphocytes. Front Immunol 2019; 10:687. [PMID: 31001281 PMCID: PMC6456717 DOI: 10.3389/fimmu.2019.00687] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells play a dual role in the defense against viral pathogens by directly lysing infected cells as well as by regulating anti-viral T cell immunity. Infection by human cytomegalovirus (HCMV) promotes a persistent expansion of NKG2C+ adaptive NK cells which have been shown to display enhanced antibody-dependent responses against infected targets and associated to viral control in transplanted patients. Based on gene expression data showing increased transcription of CIITA and several genes related to the MHC class II pathway in adaptive NK cells, we explored their putative capacity for antigen presentation to CD4+ T cells. Phenotypic analysis confirmed a preferential steady-state expression of HLA-DR by circulating NKG2C+ adaptive NK cells in healthy individuals. Expression of HLA-DR in NKG2C+ adaptive NK cells was variable and unrelated to the expression of activation (i.e., CD69 and CD25) or differentiation (i.e., FcRγ chain, CD57) markers, remaining stable over time at the individual level. Incubation of purified NK cells with HCMV complexed with serum specific antibodies induced an up-regulation of surface HLA-DR concomitant to CD16 loss whereas no changes in CD80/CD86 co-stimulatory ligands were detected. In addition, surface CX3CR1 decreased upon antigen-loading while HLA-DR+ NK cells maintained a CCR7-, CXCR3low homing profile. Remarkably, HCMV-loaded purified NK cells activated autologous CD4+ T cells in an HLA-DR dependent manner. The fraction of T lymphocytes activated by antigen-loaded NK cells was smaller than that stimulated by monocyte-derived dendritic cells, corresponding to CD28-negative effector-memory CD4+ T cells with cytotoxic potential. Antigen presentation by NK cells activated a polyfunctional CD4+ T cell response characterized by degranulation (CD107a) and the secretion of Th1 cytokines (IFNγ and TNFα). Overall, our data discloses the capacity of NKG2C+ adaptive NK cells to process and present HCMV antigens to memory CD4+ cytotoxic T cells, directly regulating their response to the viral infection.
Collapse
Affiliation(s)
- Marcel Costa-García
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Manuela Moraru
- Immunogenetics and HLA Laboratory, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Carlos Vilches
- Immunogenetics and HLA Laboratory, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Miguel López-Botet
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
49
|
Maucourant C, Petitdemange C, Yssel H, Vieillard V. Control of Acute Arboviral Infection by Natural Killer Cells. Viruses 2019; 11:v11020131. [PMID: 30709036 PMCID: PMC6410043 DOI: 10.3390/v11020131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
The recent explosive pandemic of chikungunya virus (CHIKV) followed by Zika (ZIKV) virus infections occurring throughout many countries represents the most unexpected arrival of arthropod-borne viral diseases in the past 20 years. Transmitted through the bite of Aedes mosquitoes, the clinical picture associated with these acute arbovirus infections, including Dengue (DENV), CHIKV and ZIKV, ranges from classical febrile illness to life-threatening disease. Whereas ZIKV and CHIKV-mediated infections have previously been recognized as relatively benign diseases, in contrast to Dengue fever, recent epidemic events have brought waves of increased morbidity and mortality leading to a serious public health problem. Although the host immune response plays a crucial role in controlling infections, it may also promote viral spread and immunopathology. Here, we review recent developments in our understanding of the immune response, with an emphasis on the early antiviral immune response mediated by natural killer cells and emphasize their Janus-faced effects in the control of arbovirus infection and pathogenesis. Improving our understanding knowledge on of the mechanisms that control viral infection is crucial in the current race against the globalization of arbovirus epidemics.
Collapse
Affiliation(s)
- Christopher Maucourant
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| | - Caroline Petitdemange
- Institut Gustave Roussy, CNRS UMR9196, Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, 94800 Villejuif, France.
| | - Hans Yssel
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| | - Vincent Vieillard
- Sorbonne Université, UPMC Univ Paris 06, Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France.
| |
Collapse
|
50
|
Cadena-Mota S, Monsiváis-Urenda A, Salgado-Bustamante M, Monjarás-Ávila C, Bernal-Silva S, Aranda-Romo S, Noyola DE. Effect of cytomegalovirus infection and leukocyte immunoglobulin like receptor B1 polymorphisms on receptor expression in peripheral blood mononuclear cells. Microbiol Immunol 2019; 62:755-762. [PMID: 30461037 DOI: 10.1111/1348-0421.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Leukocyte immunoglobulin like receptor B1 (LILRB1) plays a significant role in a number of infectious, autoimmune, cardiovascular, and oncologic disorders. LILRB1 expression varies between individuals and may be associated with polymorphisms on the regulatory region of the LILRB1 gene, as well as to previous cytomegalovirus infection. In this study, the contribution of these two factors to LILRB1 expression in peripheral blood mononuclear cells of healthy young adults was analyzed. LILRB1 expression in NK cells, T cells, B cells and monocytes was significantly stronger in individuals who had had cytomegalovirus infection than in those who had not (P < 0.001, P < 0.001, P < 0.01, and P < 0.001, respectively). Overall, no differences in LILRB1 expression were observed between individuals with and without GAA haplotypes of the LILRB1 regulatory region. However, when analyzed according to cytomegalovirus infection status, significant differences in LILRB1+ NK cells were observed. A higher proportion of LILRB1+ cells was found in GAA+ than in GAA- individuals who had not been infected (P < 0.01), whereas GAA- individuals had a larger proportion of LILRB1+ cells than GAA+ individuals who were cytomegalovirus positive (P < 0.01). In conclusion, cytomegalovirus infection has a major effect on LILRB1 expression in NK and other mononuclear cells and polymorphisms in the LILRB1 regulatory region appear to have a modulatory influence over this effect.
Collapse
Affiliation(s)
- Sandra Cadena-Mota
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - Adriana Monsiváis-Urenda
- Faculty of Medicine, Department of Immunology, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico.,Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, 550 Sierra Leona Avenue, Lomas 2da Sección, 78210 San Luis Potosí, Mexico
| | - Mariana Salgado-Bustamante
- Faculty of Medicine, Department of Biochemistry, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - César Monjarás-Ávila
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - Sofía Bernal-Silva
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico.,Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, 550 Sierra Leona Avenue, Lomas 2da Sección, 78210 San Luis Potosí, Mexico
| | - Saray Aranda-Romo
- Faculty of Dentistry, Biochemistry, Microbiology, and Pathology Laboratory, Autonomous University of San Luis Potosí, 2 Dr. Manuel Nava Avenue, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Daniel E Noyola
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| |
Collapse
|