1
|
Xia T, Lu X, Kong D, Guo T, Gao Y, Xin L, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Li Y, Wang L. Screening optimal DC-targeting peptide to enhance the immune efficacy of recombinant Lactobacillus expressing RHDV VP60. Virulence 2024; 15:2368080. [PMID: 38899573 PMCID: PMC11195490 DOI: 10.1080/21505594.2024.2368080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Dendritic cells (DCs) present an ideal target for delivering immunogenic cargo due to their potent antigen-presenting capabilities. This targeting approach holds promise in vaccine development by enhancing the efficiency of antigen recognition and capture by DCs. To identify a high-affinity targeting peptide binding to rabbit DCs, rabbit monocyte-derived DCs (raMoDCs) were isolated and cultured, and a novel peptide, HS (HSLRHDYGYPGH), was identified using a phage-displayed peptide library. Alongside HS, two other DC-targeting peptides, KC1 and MY, previously validated in our laboratory, were employed to construct recombinant Lactgobacillus reuteri fusion-expressed rabbit hemorrhagic disease virus (RHDV) capsid protein VP60. These recombinant Lactobacillus strains were named HS-VP60/L. reuteri, KC1-VP60/L. reuteri, and MY-VP60/L. reuteri. The ability of these recombinant Lactobacillus to bind rabbit DCs was evaluated both in vivo and in vitro. Results demonstrated that the DC-targeting peptide KC1 significantly enhanced the capture efficiency of recombinant Lactobacillus by raMoDCs, promoted DC maturation, and increased cytokine secretion. Furthermore, oral administration of KC1-VP60/L. reuteri effectively induced SIgA and IgG production in rabbits, prolonged rabbit survival post-challenge, and reduced RHDV copies in organs. In summary, the DC-targeting peptide KC1 exhibited robust binding to raMoDCs, and recombinant Lactobacillus expressing KC1-VP60 protein antigens efficiently induced systemic and mucosal immune responses in rabbits, conferring protective efficacy against RHDV. This study offers valuable insights for the development of novel RHDV vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Lingxiang Xin
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| |
Collapse
|
2
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
3
|
Tian T, Zhu Y, Shi J, Shang K, Yin Z, Shi H, He Y, Ding J, Zhang F. The development of a human Brucella mucosal vaccine: What should be considered? Life Sci 2024; 355:122986. [PMID: 39151885 DOI: 10.1016/j.lfs.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Brucellosis is a chronic infectious disease that is zoonotic in nature. Brucella can infect humans through interactions with livestock, primarily via the digestive tract, respiratory tract, and oral cavity. This bacterium has the potential to be utilized as a biological weapon and is classified as a Category B pathogen by the Centers for Disease Control and Prevention. Currently, there is no approved vaccine for humans against Brucella, highlighting an urgent need for the development of a vaccine to mitigate the risks posed by this pathogen. Brucella primarily infects its host by adhering to and penetrating mucosal surfaces. Mucosal immunity plays a vital role in preventing local infections, clearing microorganisms from mucosal surfaces, and inhibiting the spread of pathogens. As mucosal vaccine strategies continue to evolve, the development of a safe and effective mucosal vaccine against Brucella appears promising.This paper reviews the immune mechanism of mucosal vaccines, the infection mechanism of Brucella, successful Brucella mucosal vaccines in animals, and mucosal adjuvants. Additionally, it elucidates targeting and optimization strategies for mucosal vaccines to facilitate the development of human vaccines against Brucella.
Collapse
Affiliation(s)
- Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Afffliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Yueyue He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated hospital of Xinjiang Medical University, China; Department of Clinical laboratory, The First Affiliated hospital of Xinjiang Medical University, China.
| |
Collapse
|
4
|
Rappuoli R, Alter G, Pulendran B. Transforming vaccinology. Cell 2024; 187:5171-5194. [PMID: 39303685 DOI: 10.1016/j.cell.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
The COVID-19 pandemic placed the field of vaccinology squarely at the center of global consciousness, emphasizing the vital role of vaccines as transformative public health tools. The impact of vaccines was recently acknowledged by the award of the 2023 Nobel Prize in Physiology or Medicine to Katalin Kariko and Drew Weissman for their seminal contributions to the development of mRNA vaccines. Here, we provide a historic perspective on the key innovations that led to the development of some 27 licensed vaccines over the past two centuries and recent advances that promise to transform vaccines in the future. Technological revolutions such as reverse vaccinology, synthetic biology, and structure-based design transformed decades of vaccine failures into successful vaccines against meningococcus B and respiratory syncytial virus (RSV). Likewise, the speed and flexibility of mRNA vaccines profoundly altered vaccine development, and the advancement of novel adjuvants promises to revolutionize our ability to tune immunity. Here, we highlight exciting new advances in the field of systems immunology that are transforming our mechanistic understanding of the human immune response to vaccines and how to predict and manipulate them. Additionally, we discuss major immunological challenges such as learning how to stimulate durable protective immune response in humans.
Collapse
Affiliation(s)
| | - Galit Alter
- Moderna Therapeutics, Cambridge, MA 02139, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Zheng J, Wang M, Pang L, Wang S, Kong Y, Zhu X, Zhou X, Wang X, Chen C, Ning H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. J Control Release 2024; 373:568-582. [PMID: 39067792 DOI: 10.1016/j.jconrel.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Zhuo Y, Zeng H, Su C, Lv Q, Cheng T, Lei L. Tailoring biomaterials for vaccine delivery. J Nanobiotechnology 2024; 22:480. [PMID: 39135073 PMCID: PMC11321069 DOI: 10.1186/s12951-024-02758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Biomaterials are substances that can be injected, implanted, or applied to the surface of tissues in biomedical applications and have the ability to interact with biological systems to initiate therapeutic responses. Biomaterial-based vaccine delivery systems possess robust packaging capabilities, enabling sustained and localized drug release at the target site. Throughout the vaccine delivery process, they can contribute to protecting, stabilizing, and guiding the immunogen while also serving as adjuvants to enhance vaccine efficacy. In this article, we provide a comprehensive review of the contributions of biomaterials to the advancement of vaccine development. We begin by categorizing biomaterial types and properties, detailing their reprocessing strategies, and exploring several common delivery systems, such as polymeric nanoparticles, lipid nanoparticles, hydrogels, and microneedles. Additionally, we investigated how the physicochemical properties and delivery routes of biomaterials influence immune responses. Notably, we delve into the design considerations of biomaterials as vaccine adjuvants, showcasing their application in vaccine development for cancer, acquired immunodeficiency syndrome, influenza, corona virus disease 2019 (COVID-19), tuberculosis, malaria, and hepatitis B. Throughout this review, we highlight successful instances where biomaterials have enhanced vaccine efficacy and discuss the limitations and future directions of biomaterials in vaccine delivery and immunotherapy. This review aims to offer researchers a comprehensive understanding of the application of biomaterials in vaccine development and stimulate further progress in related fields.
Collapse
Affiliation(s)
- Yanling Zhuo
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chunyu Su
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Intelligent Agriculture, Yulin Normal University, Yulin, 537000, China.
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China.
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
7
|
Yanik S, Venkatesh V, Gordy JT, Gabriel-Alameh M, Meza J, Li Y, Glass E, Flores-Garcia Y, Tam Y, Chaiyawong N, Sarkar D, Weissman D, Markham R, Srinivasan P. Immature dendritic cell-targeting mRNA vaccine expressing PfCSP enhances protective immune responses against Plasmodium liver infection. RESEARCH SQUARE 2024:rs.3.rs-4656309. [PMID: 39041038 PMCID: PMC11261966 DOI: 10.21203/rs.3.rs-4656309/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Resurgence in malaria has been noted in 2022 with 249 million clinical cases resulting in 608,000 deaths, mostly in children under five. Two vaccines, RTS, S, and more recently R21, targeting the circumsporozoite protein (CSP) are recommended by the WHO but are not yet widely available. Strong humoral responses to neutralize sporozoites before they can infect the hepatocytes are important for vaccine-mediated protection. Suboptimal protection conferred by these first-generation vaccines highlight the need for approaches to improve vaccine-induced immune responses. With the recent success of mRNA-LNP vaccines against COVID-19, there is growing interest in leveraging this approach to enhance malaria vaccines. Here, we present the development of a novel chemokine fusion mRNA vaccine aimed at boosting immune responses to PfCSP by targeting the immunogen to immature dendritic cells (iDC). Vaccination of mice with mRNA encoding full-length CSP fused to macrophage inflammatory protein 3 alpha (MIP3α) encapsulated within lipid nanoparticles (LNP) elicited robust CD4+ T cell responses and enhanced antibody titers against NANP repeat epitopes compared to a conventional CSP mRNA-LNP vaccine. Importantly, the CSP-MIP3α fusion vaccine provided significantly greater protection against liver infection upon challenge with P. berghei PfCSP transgenic sporozoites. This enhanced protection was associated with multifunctional CD4+ T cells levels and anti-NANP repeat titers. This study highlights the potential to augment immune responses to PfCSP through iDC targeting and bolster protection against malaria liver infection.
Collapse
Affiliation(s)
- Sean Yanik
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Varsha Venkatesh
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James T Gordy
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | | | - Jacob Meza
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yangchen Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Elizabeth Glass
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Nattawat Chaiyawong
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Deepti Sarkar
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Sun J, Ma J, Chen L, Xiao S, Xiao X, Fang L. Orf virus as an adjuvant enhances the immune response to a PCV2 subunit vaccine. Vet Microbiol 2024; 293:110088. [PMID: 38640639 DOI: 10.1016/j.vetmic.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1β, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.
Collapse
Affiliation(s)
- Jie Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Longfei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
9
|
Gong L, Zhang Y, Wang L, Zhao X, Wang L, Qiu X, Yang X, Zhu W, Lv L, Kang Y, Wu Y, Zhang A, Du Y, Wang X, Zhang G, Sun A, Zhuang G. Advancing vaccine development: Evaluation of a mannose-modified lipid nanoparticle-based candidate for African swine fever p30 mRNA vaccine eliciting robust immune response in mice. Int J Biol Macromol 2024; 270:132432. [PMID: 38761609 DOI: 10.1016/j.ijbiomac.2024.132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The African swine fever virus (ASFV) continues to pose significant economic and pandemic risks. Consequently, discovering new, efficient vaccines is crucial. Messenger RNA (mRNA) vaccines have emerged as promising candidates, providing minimal risk of insertional mutagenesis, high safety profiles, effectiveness, rapid scalability in production, and cost-effectiveness. In this study, we have developed an ASF p30 mRNA vaccine candidate (mRNA/Man-LNP) employing mannose-modified lipid nanoparticles (LNPs). The mRNA/Man-LNP exhibited effective antigen presentation and facilitated dendritic cells (DCs) maturation. Notably, it elicited strong IgG titers and activated CD4+ and CD8+ T-cells in immunized mice, all while adhering to stringent biosafety standards. This investigation demonstrates that mRNA/Man-LNP can trigger both humoral and cellular immune responses, suggesting its potential as a potent and promising vaccine candidate for controlling African swine fever (ASF).
Collapse
Affiliation(s)
- Lele Gong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lucai Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xilong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
10
|
Liao J, Zhang X, Zeng X, Zhao Z, Sun T, Xia Z, Jing H, Yuan Y, Chen Z, Gou Q, Zhao L, Zhang W, Zou Q, Zhang J. A rational designed multi-epitope vaccine elicited robust protective efficacy against Klebsiella pneumoniae lung infection. Biomed Pharmacother 2024; 174:116611. [PMID: 38643540 DOI: 10.1016/j.biopha.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.
Collapse
Affiliation(s)
- Jingwen Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xi Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China; Department of Phamacy, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Tianjun Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhenping Xia
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Hartmeier PR, Ostrowski SM, Busch EE, Empey KM, Meng WS. Lymphatic distribution considerations for subunit vaccine design and development. Vaccine 2024; 42:2519-2529. [PMID: 38494411 DOI: 10.1016/j.vaccine.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Sarah M Ostrowski
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15213, USA
| | - Emelia E Busch
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Kerry M Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, PA 15213, USA; Department of Immunology, School of Medicine University of Pittsburgh, PA 15213, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA 15219, USA.
| |
Collapse
|
12
|
Macri C, Paxman M, Jenika D, Lin XP, Elahi Z, Gleeson PA, Caminschi I, Lahoud MH, Villadangos JA, Mintern JD. FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. NPJ Vaccines 2024; 9:76. [PMID: 38594284 PMCID: PMC11003989 DOI: 10.1038/s41541-024-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Matthew Paxman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Xiao Peng Lin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Zhang Y, Song Z, Zhang Z, Zhang T, Gu P, Feng Z, Xu S, Yang Y, Wang D, Liu Z. Preparation and characterization of pickering emulsion stabilized by lovastatin nanoparticles for vaccine adjuvants. Int J Pharm 2024; 653:123901. [PMID: 38368969 DOI: 10.1016/j.ijpharm.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
While research on mevalonate inhibitors as vaccine adjuvants has made great progress to enhance the effectiveness of the vaccine, co delivery of lovastatin and antigens (OVA) remains an enormous challenge. Here, we encapsulated lovastatin into PLGA nanoparticles. PLGA loading lovastatin was further emulsified with squalene to prepare Pickering emulsion. The emulsification conditions of Pickering emulsion were optimized, and the optimal preparation conditions were obtained. After loading lovastatin and OVA, the size and zeta potential of LS-PPAS/OVA was 1043.33 nm and -22.07 mv, the adsorption rate of OVA was 63.34 %. The adsorbing of LS-PLGA nanoparticles on the surface of squalene in Pickering emulsions was demonstrated by Fluorescent confocal microscopy. After immunization, LS-PPAS enhanced the activation of dendritic cells in lymph nodes, further study found LS-PPAS not only elicited elevated levels of OVA-specific IgG and its subtypes, but also promoted the secretion of TNF-α, IFN-γ, and IL-6 in serum as a marker of cellular immunity. Importantly, LS-PPAS showed sufficient security through monitoring levels of biochemical parameters in serum and pathological observation of organ following vaccinations. LS-PPAS may act as a promising vaccine carrier to produce strong humoral and cellular immunity with acceptable safety.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhimin Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zian Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
14
|
Steffens RC, Folda P, Fendler NL, Höhn M, Bücher-Schossau K, Kempter S, Snyder NL, Hartmann L, Wagner E, Berger S. GalNAc- or Mannose-PEG-Functionalized Polyplexes Enable Effective Lectin-Mediated DNA Delivery. Bioconjug Chem 2024; 35:351-370. [PMID: 38440876 DOI: 10.1021/acs.bioconjchem.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.
Collapse
Affiliation(s)
- Ricarda C Steffens
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Paul Folda
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Nikole L Fendler
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
| | - Katharina Bücher-Schossau
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Susanne Kempter
- Faculty of Physics, LMU Munich, 80539 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg im Breisgau, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany
- Center for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| |
Collapse
|
15
|
Zhang K, Wuri Q, Cai Z, Qu X, Zhang S, Wu H, Wu J, Wang C, Yu X, Kong W, Zhang H. The XCL1-Mediated DNA Vaccine Targeting Type 1 Conventional Dendritic Cells Combined with Gemcitabine and Anti-PD1 Antibody Induces Potent Antitumor Immunity in a Mouse Lung Cancer Model. Int J Mol Sci 2024; 25:1880. [PMID: 38339158 PMCID: PMC10855623 DOI: 10.3390/ijms25031880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
With the advent of cancer immunotherapy, there is a growing interest in vaccine development as a means to activate the cellular immune system against cancer. Despite the promise of DNA vaccines in this regard, their effectiveness is hindered by poor immunogenicity, leading to modest therapeutic outcomes across various cancers. The role of Type 1 conventional dendritic cells (cDC1), capable of cross-presenting vaccine antigens to activate CD8+T cells, emerges as crucial for the antitumor function of DNA vaccines. To address the limitations of DNA vaccines, a promising approach involves targeting antigens to cDC1 through the fusion of XCL1, a ligand specific to the receptor XCR1 on the surface of cDC1. Here, female C57BL/6 mice were selected for tumor inoculation and immunotherapy. Additionally, recognizing the complexity of cancer, this study explored the use of combination therapies, particularly the combination of cDC1-targeted DNA vaccine with the chemotherapy drug Gemcitabine (Gem) and the anti-PD1 antibody in a mouse lung cancer model. The study's findings indicate that fusion antigens with XCL1 effectively enhance both the immunogenicity and antitumor effects of DNA vaccines. Moreover, the combination of the cDC1-targeted DNA vaccine with Gemcitabine and anti-PD1 antibody in the mouse lung cancer model demonstrates an improved antitumor effect, leading to the prolonged survival of mice. In conclusion, this research provides important support for the clinical investigation of cDC1-targeting DNA vaccines in combination with other therapies.
Collapse
Affiliation(s)
- Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Qimuge Wuri
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, China; (K.Z.); (Q.W.); (Z.C.); (X.Q.); (S.Z.); (H.W.); (J.W.); (C.W.); (X.Y.); (W.K.)
| |
Collapse
|
16
|
Tao F, Ye Q, Chen Y, Luo L, Xu H, Xu J, Feng Z, Wang C, Li T, Wen Y, Hu Y, Dong H, Zhao X, Wu J. Antigen-loaded flagellate bacteria for enhanced adaptive immune response by intradermal injection. J Control Release 2023; 364:562-575. [PMID: 37926245 DOI: 10.1016/j.jconrel.2023.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Since the skin limits the distribution of intradermal vaccines, a large number of dendritic cells in the skin cannot be fully utilized to elicit a more effective immune response. Here, we loaded the antigen to the surface of the flagellate bacteria that was modified by cationic polymer, thus creating antigen-loaded flagellate bacteria (denoted as 'FB-Ag') to overcome the skin barrier and perform the active delivery of antigen in the skin. The FB-Ag showed fast speed (∼0.2 μm s-1) and strong dendritic cell activation capabilities in the skin model in vitro. In vivo, the FB-Ag promoted the spread of antigen in the skin through active movement, increased the contact between Intradermal dendritic cells and antigen, and effectively activated the internal dendritic cells in the skin. In a mouse of pulmonary metastatic melanoma and in mice bearing subcutaneous melanoma tumor, the FB-Ag effectively increased antigen-specific therapeutic efficacy and produced long-lasting immune memory. More importantly, the FB-Ag also enhanced the level of COVID-19 specific antibodies in the serum and the number of memory B cells in the spleen of mice. The movement of antigen-loaded flagellate bacteria to overcome intradermal constraints may enhance the activation of intradermal dendritic cells, providing new ideas for developing intradermal vaccines.
Collapse
Affiliation(s)
- Feng Tao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China; State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yimiao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Lifeng Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Jialong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Tao Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yuxuan Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China; Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China.
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Jinhui Wu
- Department of Andrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China; State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Zeyn Y, Hobernik D, Wilk U, Pöhmerer J, Hieber C, Medina-Montano C, Röhrig N, Strähle CF, Thoma-Kress AK, Wagner E, Bros M, Berger S. Transcriptional Targeting of Dendritic Cells Using an Optimized Human Fascin1 Gene Promoter. Int J Mol Sci 2023; 24:16938. [PMID: 38069260 PMCID: PMC10706967 DOI: 10.3390/ijms242316938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Caroline F. Strähle
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| |
Collapse
|
18
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
19
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
20
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Zeng B, Moi D, Tolley L, Molotkov N, Frazer IH, Perry C, Dolcetti R, Mazzieri R, Cruz JLG. Skin-Grafting and Dendritic Cell "Boosted" Humanized Mouse Models Allow the Pre-Clinical Evaluation of Therapeutic Cancer Vaccines. Cells 2023; 12:2094. [PMID: 37626903 PMCID: PMC10453599 DOI: 10.3390/cells12162094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Vaccines have been hailed as one of the most remarkable medical advancements in human history, and their potential for treating cancer by generating or expanding anti-tumor T cells has garnered significant interest in recent years. However, the limited efficacy of therapeutic cancer vaccines in clinical trials can be partially attributed to the inadequacy of current preclinical mouse models in recapitulating the complexities of the human immune system. In this study, we developed two innovative humanized mouse models to assess the immunogenicity and therapeutic effectiveness of vaccines targeting human papillomavirus (HPV16) antigens and delivering tumor antigens to human CD141+ dendritic cells (DCs). Both models were based on the transference of human peripheral blood mononuclear cells (PBMCs) into immunocompromised HLA-A*02-NSG mice (NSG-A2), where the use of fresh PBMCs boosted the engraftment of human cells up to 80%. The dynamics of immune cells in the PBMC-hu-NSG-A2 mice demonstrated that T cells constituted the vast majority of engrafted cells, which progressively expanded over time and retained their responsiveness to ex vivo stimulation. Using the PBMC-hu-NSG-A2 system, we generated a hyperplastic skin graft model expressing the HPV16-E7 oncogene. Remarkably, human cells populated the skin grafts, and upon vaccination with a DNA vaccine encoding an HPV16-E6/E7 protein, rapid rejection targeted to the E7-expressing skin was detected, underscoring the capacity of the model to mount a vaccine-specific response. To overcome the decline in DC numbers observed over time in PBMC-hu-NSG-A2 animals, we augmented the abundance of CD141+ DCs, the specific targets of our tailored nanoemulsions (TNEs), by transferring additional autologous PBMCs pre-treated in vitro with the growth factor Flt3-L. The Flt3-L treatment bolstered CD141+ DC numbers, leading to potent antigen-specific CD4+ and CD8+ T cell responses in vivo, which caused the regression of pre-established triple-negative breast cancer and melanoma tumors following CD141+ DC-targeting TNE vaccination. Notably, using HLA-A*02-matching PBMCs for humanizing NSG-A2 mice resulted in a delayed onset of graft-versus-host disease and enhanced the efficacy of the TNE vaccination compared with the parental NSG strain. In conclusion, we successfully established two humanized mouse models that exhibited strong antigen-specific responses and demonstrated tumor regression following vaccination. These models serve as valuable platforms for assessing the efficacy of therapeutic cancer vaccines targeting HPV16-dysplastic skin and diverse tumor antigens specifically delivered to CD141+ DCs.
Collapse
Affiliation(s)
- Bijun Zeng
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Davide Moi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Lynn Tolley
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Natalie Molotkov
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ian Hector Frazer
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Christopher Perry
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jazmina L. G. Cruz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
22
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|