1
|
Chen S, Zou L, Huang L, Li Z, Zeng H, Zeng Y, Wu J. SLC7A11 suppresses pyroptosis to alleviate rheumatoid arthritis development by modulating the IL-17 pathway. Int Immunopharmacol 2025; 147:114019. [PMID: 39798470 DOI: 10.1016/j.intimp.2025.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. This study aims to explore the potential mechanisms by which solute carrier family 7 member 11 (SLC7A11) influences RA development. METHODS Collagen-induced arthritis (CIA) mice were constructed to observe disease onset and pathological scores. Pathological changes were examined using Hematoxylin-eosin and Safranin O-Fast Green staining. Levels of lactate dehydrogenase (LDH), inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-18 and IL-1β), and oxidative stress (reactive oxygen species, malondialdehyde, and glutathione) were measured using ELISA. Western blotting was performed to detect the expression of pyroptosis- and pathway-related proteins. Fibroblast-like synoviocytes of RA (RA-FLS) were treated with TNF-α. Cell migration, invasion, and Caspase-1 levels were assessed through scratch assays, Transwell assays, and flow cytometry, respectively. The correlation between SLC7A11 and immune cell infiltration in RA was analyzed using bioinformatics. Additionally, downstream pathways of SLC7A11 in RA were screened, and the impacts of SLC7A11 on these pathways were validated in vitro. RESULTS CIA mice were successfully established, revealing significant downregulation of SLC7A11 in RA. Staining results indicated that overexpression of SLC7A11 significantly mitigated joint damage in CIA mice. In vitro experiments demonstrated that overexpression of SLC7A11 inhibited migration, invasion, and Caspase-1 expression levels in TNF-α-induced RA-FLSs. Furthermore, SLC7A11 suppressed inflammation, LDH release, and oxidative stress, while inhibiting pyroptosis. SLC7A11 expression was significantly different in multiple immune cells. The IL-17 pathway was identified as a downstream pathway of SLC7A11, and SLC7A11 inhibited the expression of IL-17 pathway proteins. Additionally, rhIL-17A, an activator of the IL-17 pathway, attenuated the inhibitory effects of SLC7A11 on inflammation, oxidative stress, and pyroptosis. CONCLUSION SLC7A11 suppresses pyroptosis to alleviate RA development by inhibiting the IL-17 pathway.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of Sports Medical Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China.
| | - Longqiang Zou
- Department of Sports Medical Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| | - Liangcai Huang
- Department of Sports Medical Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| | - Zhengnan Li
- Department of Sports Medical Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| | - Hui Zeng
- Department of Sports Medical Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| | - Yanmei Zeng
- Department of Clinical Laboatory Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| | - Juan Wu
- Department of Rheumatology Ganzhou People's Hospital/The Affiliated Ganzhou Hospital Jiangxi Medical College Nanchang University Ganzhou China
| |
Collapse
|
2
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2025; 39:189-232. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Yang J, Ma Y, Yu J, Liu Y, Xia J, Kong X, Jin X, Li J, Lin S, Ruan Y, Yang F, Pi J. Advancing Roles and Therapeutic Potentials of Pyroptosis in Host Immune Defenses against Tuberculosis. Biomolecules 2024; 14:1255. [PMID: 39456188 PMCID: PMC11505957 DOI: 10.3390/biom14101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, remains a deadly global public health burden. The use of recommended drug combinations in clinic has seen an increasing prevalence of drug-resistant TB, adding to the impediments to global control of TB. Therefore, control of TB and drug-resistant TB has become one of the most pressing issues in global public health, which urges the exploration of potential therapeutic targets in TB and drug-resistant TB. Pyroptosis, a form of programmed cell death characterized by cell swelling and rupture, release of cellular contents and inflammatory responses, has been found to promote pathogen clearance and adopt crucial roles in the control of bacterial infections. It has been demonstrated that Mtb can cause host cell pyroptosis, and these host cells, which are infected by Mtb, can kill Mtb accompanied by pyroptosis, while, at the same time, pyroptosis can also release intracellular Mtb, which may potentially worsen the infection by exacerbating the inflammation. Here, we describe the main pathways of pyroptosis during Mtb infection and summarize the identified effectors of Mtb that regulate pyroptosis to achieve immune evasion. Moreover, we also discuss the potentials of pyroptosis to serve as an anti-TB therapeutic target, with the aim of providing new ideas for the development of TB treatments.
Collapse
Affiliation(s)
- Jiayi Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yuhe Ma
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaqi Yu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yilin Liu
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China;
| | - Xinen Kong
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Xiaoying Jin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiaxiang Li
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Siqi Lin
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Yongdui Ruan
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Fen Yang
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| | - Jiang Pi
- Acupuncture and Moxibustion Department, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (J.Y.); (Y.M.); (J.Y.); (Y.L.); (X.K.); (X.J.); (J.L.); (S.L.); (Y.R.)
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Li X, Sun T, Li T, Li Q. Pyroptosis in myocardial ischemia/reperfusion and its therapeutic implications. Eur J Pharmacol 2024; 971:176464. [PMID: 38461908 DOI: 10.1016/j.ejphar.2024.176464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Ischemic heart disease, a prevalent cardiovascular disease with global significance, is associated with substantial morbidity. Timely and successful reperfusion is crucial for reducing infarct size and enhancing clinical outcomes. However, reperfusion may induce additional myocardium injury, manifesting as myocardial ischemia/reperfusion (MI/R) injury. Pyroptosis is a regulated cell death pathway, the signaling pathway of which is activated during MI/R injury. In this process, the inflammasomes are triggered, initiating the cleavage of gasdermin proteins and pro-interleukins, which results in the formation of membrane pores and the maturation and secretion of inflammatory cytokines. Numerous preclinical evidence underscores the pivotal role of pyroptosis in MI/R injury. Inhibiting pyroptosis is cardioprotective against MI/R injury. Although certain agents exhibiting promise in preclinical studies for attenuating MI/R injury through inhibiting pyroptosis have been identified, the suitability of these compounds for clinical trials remains untested. This review comprehensively summarizes the recent developments in this field, with a specific emphasis on the impact of pyroptosis on MI/R injury. Deciphering these findings not only sheds light on new disease mechanisms but also paves the way for innovative treatments. And then the exploration of the latest advances in compounds that inhibit pyroptosis in MI/R is discussed, which aims to provide insights into potential therapeutic strategies and identify avenues for future research in the pursuit of effective clinical interventions.
Collapse
Affiliation(s)
- Yin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tingting Sun
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Li YS, Xia J, Chen CY, Ren SH, He MR. Upregulated dual oxidase 1-induced oxidative stress and caspase-1-dependent pyroptosis reflect the etiologies of heart failure. BMC Mol Cell Biol 2024; 25:16. [PMID: 38750444 PMCID: PMC11094974 DOI: 10.1186/s12860-024-00506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1β, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1β, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.
Collapse
Affiliation(s)
- Yan Song Li
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China.
- Department of Cardiovasology, Shanghai Baoshan District Luodian Hospital, No. 88 Yongshun Road, Baoshan District, Shanghai, 201908, China.
| | - Jingwen Xia
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Chang Yuan Chen
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Shu Hong Ren
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| | - Mao Rong He
- Department of Cardiovasology, Shanghai Songjiang District Center Hospital, NO.748, Zhongshan Middle Road, Songjiang District, Shanghai, 201600, China
| |
Collapse
|
8
|
Ning J, Chen L, Zeng Y, Xiao G, Tian W, Wu Q, Tang J, He S, Tanzhu G, Zhou R. The scheme, and regulative mechanism of pyroptosis, ferroptosis, and necroptosis in radiation injury. Int J Biol Sci 2024; 20:1871-1883. [PMID: 38481804 PMCID: PMC10929204 DOI: 10.7150/ijbs.91112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/29/2024] [Indexed: 08/26/2024] Open
Abstract
Radiotherapy (RT) stands as the primary treatment for tumors, but it inevitably causes damage to normal cells. Consequently, radiation injury is a crucial consideration for radiation oncologists during therapy planning. Cell death including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis play significant roles in tumor treatment. While previous studies elucidated the induction of apoptosis and autophagy by ionizing radiation (IR), recent attention has shifted to pyroptosis, ferroptosis, and necroptosis, revealing their effects induced by IR. This review aims to summarize the strategies employed by IR, either alone or in combination therapy, to induce pyroptosis, ferroptosis, and necroptosis in radiation injury. Furthermore, we explore their effects and molecular pathways, shedding light on their roles in radiation injury. Finally, we summarize the regulative agents for these three types of cell death and their mechanisms. In summary, optimizing radiation dose, dose rate, and combined treatment plans to minimize radiation damage and enhance the killing effect of RT is a key focus.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Wu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Tang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
9
|
Zhang Q, Luo Y, Peng L, Rong X, Liu Y, Li J, Luo J. Ferroptosis in cardiovascular diseases: role and mechanism. Cell Biosci 2023; 13:226. [PMID: 38102663 PMCID: PMC10724928 DOI: 10.1186/s13578-023-01169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In multicellular organisms, regulatory cell death is a crucial aspect of growth and development. Ferroptosis, which was postulated roughly ten years ago, is a mode of cell death that differs from apoptosis, autophagy, and pyrodeath. This distinct pattern of cell death is triggered by an imbalance between oxidants and antioxidants and strongly associated with the metabolism of iron, lipids, amino acids, and glutathione. A growing body of research has implicated ferroptosis in the incidence and progression of many organ traumas and degenerative diseases. Recently, ferroptosis has gained attention as a crucial regulatory mechanism underlying the initiation and development of a variety of cardiovascular diseases, including myocardial ischemia/reperfusion injury, cardiomyopathy, arrhythmia, chemotherapy, and Corona Virus-2-induced cardiac injury. Pharmacological therapies that inhibit ferroptosis have great potential for the management of cardiovascular disorders. This review discusses the prevalence and regulatory mechanisms of ferroptosis, effect of ferroptosis on the immune system, significance of ferroptosis in cardiovascular diseases, and potential therapeutic value of regulating ferroptosis in a variety of heart diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Collaborative Innovation Centre for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
10
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|
11
|
An F, Sun B, Liu Y, Wang C, Wang X, Wang J, Liu Y, Yan C. Advances in understanding effects of miRNAs on apoptosis, autophagy, and pyroptosis in knee osteoarthritis. Mol Genet Genomics 2023; 298:1261-1278. [PMID: 37914978 DOI: 10.1007/s00438-023-02077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs. MicroRNAs-mediated signaling pathways play a critical regulatory role in inducing apoptosis, autophagy, and pyroptosis in developing knee osteoarthritis (KOA). Given this, we searched databases, such as PubMed, using keywords including "miRNA," "knee osteoarthritis," "apoptosis," "autophagy," "pyroptosis", and their combinations. Through an extensive literature review, we conclude that miRNAs can be modulated through various signaling pathways, such as Wnt/β-catenin, TGF-β, PI3K/AKT/mTOR, and NLRP3/Caspase-1, to regulate apoptosis, autophagy, and pyroptosis in KOA. Furthermore, we note that P2X7R and HMGB1 may be crucial regulatory molecules involved in the interconnected regulation of apoptosis, autophagy, and pyroptosis in KOA. Additionally, we describe that miR-140-5p and miR-107 can modulate the advancement of KOA chondrocytes by targeting distinct molecules involved in apoptosis, autophagy, and pyroptosis, respectively. Therefore, we conclude that miRNAs may be potential biomarkers and therapeutic targets for the early prediction, diagnosis, and effective therapeutic approaches of KOA.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
- Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, China.
| |
Collapse
|