1
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Zhou S, Zhao Y, Xun Y, Wei Z, Yang Y, Yan W, Ding J. Programmable and Modularized Gas Sensor Integrated by 3D Printing. Chem Rev 2024; 124:3608-3643. [PMID: 38498933 DOI: 10.1021/acs.chemrev.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhicheng Wei
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yong Yang
- Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
3
|
Chen W, Zhou H, Wu S, Liao D. Influence of Coal-Fired Fly Ash on Measurement Error of NO 2 Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:900. [PMID: 38339616 PMCID: PMC10856826 DOI: 10.3390/s24030900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
To overcome the limitations of NO2 electrochemical sensors, including their inaccurate measurements and short working life, when used around coal-fired power plants, we investigated the influence of coal-fired fly ash deposition on the measurement error of NO2 electrochemical sensors through experimental tests. The morphological characteristics and pellet diameter distribution of coal-fired fly ash pellets were determined via scanning electron microscopy. The sedimentation velocity of coal-fired fly ash pellets in the air was determined through theoretical calculations of aerodynamics and hydrodynamics. Additionally, the effect of the deposition of coal-fired fly ash on the measurement error of NO2 electrochemical sensors was determined through experimental tests. The test results show that the minimum and maximum measurement errors of the NO2 electrochemical gas sensor were 8.015% and 30.35%, respectively, after a deposition duration of 30 days with 30 mg/m3 coal-fired fly ash. This demonstrates that coal-fired fly ash deposition is the cause of the inaccurate measurements and short working life of these sensors. Coal-fired fly ash causes a decrease in the gas diffusion area of the sensor and the diffusion coefficient, thus increasing the sensor measurement error.
Collapse
Affiliation(s)
- Wei Chen
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (W.C.); (D.L.)
| | - Hui Zhou
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
| | - Shijing Wu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (W.C.); (D.L.)
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
| | - Dongmei Liao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (W.C.); (D.L.)
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
4
|
Tang G, Zhao X, Ji Y, Mei D, Zhao C, Tang Z, Ru J, Li L, Wang Y. Performance Optimization of Ionic Polymer Sensors through Characteristic Regulation of Chemically Prepared Interfacial Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1837-1845. [PMID: 38114422 DOI: 10.1021/acsami.3c14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ionic polymer sensors (IPSs) have broad application prospects in health monitoring, environmental perception, and human-computer interaction. The performance of IPSs with chemically prepared electrodes is generally superior to that with physically prepared electrodes due to the area difference of the electric double layer (EDL), but the effects of the electrode characteristics prepared by chemical methods on the performance of IPSs have not been revealed. Therefore, in this paper, we studied the impact of the characteristics of chemically prepared electrodes on the performance of IPSs and realized the performance optimization of IPSs through electrode characteristic regulation. By controlling the matrix surface roughening, immersion reduction plating (IRP) cycles, and electroplating (EP) time, the sensing performances of IPS samples with different electrode interface roughnesses, electrode penetration depths, and surface resistances were investigated, respectively. The experimental results indicated that the response voltage of the IPS can be improved by increasing the electrode interface roughness and the electrode penetration depth and reducing the surface resistance. In addition, we have proven that the sensing performance of the IPS is determined by its intrinsic capacitance characteristics. Through coupling electrode characteristic regulations such as roughening and increasing IRP cycles and EP time, a high-performance IPS was obtained, and its response amplitude was improved by 237.8%. The obtained high-performance sensor has been applied in human motion detection, which has good potential to develop wearable devices with high stability for physiological activity monitoring.
Collapse
Affiliation(s)
- Gangqiang Tang
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Xin Zhao
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Yujun Ji
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Dong Mei
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Chun Zhao
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Zirong Tang
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| | - Jie Ru
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Lijie Li
- College of Engineering, Swansea University, Swansea SA1 8EN, U.K
| | - Yanjie Wang
- Jiangsu Provincial Key Laboratory of Special Robot Technology, Hohai University, Changzhou Campus, Changzhou 213022, China
| |
Collapse
|
5
|
Zhang W, Chen X, Xing Y, Chen J, Guo L, Huang Q, Li H, Liu H. Design and Construction of Enzyme-Based Electrochemical Gas Sensors. Molecules 2023; 29:5. [PMID: 38202588 PMCID: PMC10780131 DOI: 10.3390/molecules29010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The demand for the ubiquitous detection of gases in complex environments is driving the design of highly specific gas sensors for the development of the Internet of Things, such as indoor air quality testing, human exhaled disease detection, monitoring gas emissions, etc. The interaction between analytes and bioreceptors can described as a "lock-and-key", in which the specific catalysis between enzymes and gas molecules provides a new paradigm for the construction of high-sensitivity and -specificity gas sensors. The electrochemical method has been widely used in gas detection and in the design and construction of enzyme-based electrochemical gas sensors, in which the specificity of an enzyme to a substrate is determined by a specific functional domain or recognition interface, which is the active site of the enzyme that can specifically catalyze the gas reaction, and the electrode-solution interface, where the chemical reaction occurs, respectively. As a result, the engineering design of the enzyme electrode interface is crucial in the process of designing and constructing enzyme-based electrochemical gas sensors. In this review, we summarize the design of enzyme-based electrochemical gas sensors. We particularly focus on the main concepts of enzyme electrodes and the selection and design of materials, as well as the immobilization of enzymes and construction methods. Furthermore, we discuss the fundamental factors that affect electron transfer at the enzyme electrode interface for electrochemical gas sensors and the challenges and opportunities related to the design and construction of these sensors.
Collapse
Affiliation(s)
- Wenjian Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Xinyi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Yingying Xing
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Jingqiu Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Lanpeng Guo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| | - Huayao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute of HUST, 1085 Meiquan Road, Wenzhou 325035, China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (W.Z.); (X.C.); (Y.X.); (J.C.); (L.G.); (Q.H.); (H.L.)
| |
Collapse
|
6
|
Baharfar M, Lin J, Kilani M, Zhao L, Zhang Q, Mao G. Gas nanosensors for health and safety applications in mining. NANOSCALE ADVANCES 2023; 5:5997-6016. [PMID: 37941945 PMCID: PMC10629029 DOI: 10.1039/d3na00507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The ever-increasing demand for accurate, miniaturized, and cost-effective gas sensing systems has eclipsed basic research across many disciplines. Along with the rapid progress in nanotechnology, the latest development in gas sensing technology is dominated by the incorporation of nanomaterials with different properties and structures. Such nanomaterials provide a variety of sensing interfaces operating on different principles ranging from chemiresistive and electrochemical to optical modules. Compared to thick film and bulk structures currently used for gas sensing, nanomaterials are advantageous in terms of surface-to-volume ratio, response time, and power consumption. However, designing nanostructured gas sensors for the marketplace requires understanding of key mechanisms in detecting certain gaseous analytes. Herein, we provide an overview of different sensing modules and nanomaterials under development for sensing critical gases in the mining industry, specifically for health and safety monitoring of mining workers. The interactions between target gas molecules and the sensing interface and strategies to tailor the gas sensing interfacial properties are highlighted throughout the review. Finally, challenges of existing nanomaterial-based sensing systems, directions for future studies, and conclusions are discussed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Liang Zhao
- Azure Mining Technology Pty Ltd Sydney New South Wales 2067 Australia
| | - Qing Zhang
- CCTEG Changzhou Research Institute Changzhou 213015 China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| |
Collapse
|
7
|
Zhu X, Li Y, Cao P, Li P, Xing X, Yu Y, Guo R, Yang H. Recent Advances of Graphene Quantum Dots in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2880. [PMID: 37947725 PMCID: PMC10647816 DOI: 10.3390/nano13212880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles have been provided on various other sensing principles of GQDs, such as fluorescence-based ion-sensing, bio-sensing, bio-imaging, and electrochemical, photoelectrochemical, and electrochemiluminescence sensing, and therapeutic, energy and catalysis applications. However, so far, there is no single review article on the application of GQDs in the field of chemiresistive gas sensing. This is our primary inspiration for writing this review, with a focus on the chemiresistive gas sensors reported using GQD-based composites. In this review, the various synthesized strategies of GQDs and its composites, gas sensing enhancement mechanisms, and the resulting sensing characteristics are presented. Finally, the current challenges and future prospects of GQDs in the abovementioned application filed have been discussed for the more rational design of advanced GQDs-based gas-sensing materials and innovative gas sensors with novel functionalities.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yongzhen Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Pei Cao
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Peng Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Xinzhu Xing
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yue Yu
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Ruihua Guo
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Hui Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
8
|
Iqbal MM, Muhammad G, Hussain MA, Hanif H, Raza MA, Shafiq Z. Recent trends in ozone sensing technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2798-2822. [PMID: 37287375 DOI: 10.1039/d3ay00334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The harmful impact of ozone on humans and the environment makes the development of economical, accurate, and efficient ozone monitoring technologies necessary. Therefore, in the present review, we critically discuss developments in the methods for the synthesis of ozone sensing materials such as metal oxides (Ni, Co, Pd, In, Cu, Zn, Fe, Sn, W, Ti and Mo), carbon nanotubes, organic compounds, perovskites, and quartz. Additionally, the recent advancements and innovations in ozone technology will be discussed. In this review, we focus on assembling ozone-sensing devices and developing related wireless communication, data transferring, and analyzing technologies together with satellite, airborne, and ground-based novel ozone-sensing strategies for monitoring the atmosphere, urban areas, and working environments. Furthermore, the developments in ozone-monitoring miniaturized devices technology will be considered. The effects of different factors, such as spatial-temporal variation, humidity, and calibration, on ozone measurements will also be discussed. It is anticipated that this review will bridge the knowledge gaps among materials chemists, engineers, and industry.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | | | - Hina Hanif
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Zahid Shafiq
- Institute of Chemical Sciences, BZ University, Multan, 60800, Pakistan.
| |
Collapse
|
9
|
Zhu LY, Ou LX, Mao LW, Wu XY, Liu YP, Lu HL. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. NANO-MICRO LETTERS 2023; 15:89. [PMID: 37029296 PMCID: PMC10082150 DOI: 10.1007/s40820-023-01047-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Wen Mao
- School of Opto-Electronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yi-Ping Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
10
|
Saggu IS, Singh S, Chen K, Xuan Z, Swihart MT, Sharma S. Ultrasensitive Room-Temperature NO 2 Detection Using SnS 2/MWCNT Composites and Accelerated Recovery Kinetics by UV Activation. ACS Sens 2023; 8:243-253. [PMID: 36647806 DOI: 10.1021/acssensors.2c02104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High performance with lower power consumption is one among the essential features of a sensing device. Minute traces of hazardous gases such as NO2 are difficult to detect. Tin disulfide (SnS2) nanosheets have emerged as a promising NO2 sensor. However, their poor room-temperature conductivity gives rise to inferior sensitivity and sluggish recovery rates, thereby hindering their applications. To mitigate this problem, we present a low-cost ultrasensitive NO2 gas sensor with tin disulfide/multiwalled carbon nanotube (SnS2/MWCNT) nanocomposites, prepared using a single-step hydrothermal method, as sensing elements. Relative to pure SnS2, the conductivity of nanocomposites improved significantly. The sensor displayed a decrease in resistance when exposed to NO2, an oxidizing gas, and exhibited p-type conduction, also confirmed in separate Mott-Schottky measurements. At a temperature of 20 °C, the sensor device has a relative response of about ≈5% (3%) for 25 ppb (1 ppb) of NO2 with complete recovery in air (10 min) and excellent recovery rates with UV activation (0.3 min). A theoretical lower limit of detection (LOD) of 7 ppt implies greater sensitivity than all previously reported SnS2-based gas sensors, to the best of our knowledge. The improved sensing characteristics were attributed to the formation of nano p-n heterojunctions, which enhances the charge transport and gives rise to faster response. The composite sensor also demonstrated good NO2 selectivity against a variety of oxidizing and reducing gases, as well as excellent stability and long-term durability. This work will provide a fresh perspective on SnS2-based composite materials for practical gas sensors.
Collapse
Affiliation(s)
- Imtej Singh Saggu
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Sukhwinder Singh
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Sandeep Sharma
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab143005, India
| |
Collapse
|
11
|
Lee K, Cho I, Kang M, Jeong J, Choi M, Woo KY, Yoon KJ, Cho YH, Park I. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning. ACS NANO 2023; 17:539-551. [PMID: 36534781 DOI: 10.1021/acsnano.2c09314] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As interests in air quality monitoring related to environmental pollution and industrial safety increase, demands for gas sensors are rapidly increasing. Among various gas sensor types, the semiconductor metal oxide (SMO)-type sensor has advantages of high sensitivity, low cost, mass production, and small size but suffers from poor selectivity. To solve this problem, electronic nose (e-nose) systems using a gas sensor array and pattern recognition are widely used. However, as the number of sensors in the e-nose system increases, total power consumption also increases. In this study, an ultra-low-power e-nose system was developed using ultraviolet (UV) micro-LED (μLED) gas sensors and a convolutional neural network (CNN). A monolithic photoactivated gas sensor was developed by depositing a nanocolumnar In2O3 film coated with plasmonic metal nanoparticles (NPs) directly on the μLED. The e-nose system consists of two different μLED sensors with silver and gold NP coating, and the total power consumption was measured as 0.38 mW, which is one-hundredth of the conventional heater-based e-nose system. Responses to various target gases measured by multi-μLED gas sensors were analyzed by pattern recognition and used as the training data for the CNN algorithm. As a result, a real-time, highly selective e-nose system with a gas classification accuracy of 99.32% and a gas concentration regression error (mean absolute) of 13.82% for five different gases (air, ethanol, NO2, acetone, methanol) was developed. The μLED-based e-nose system can be stably battery-driven for a long period and is expected to be widely used in environmental internet of things (IoT) applications.
Collapse
Affiliation(s)
- Kichul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mingu Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeseok Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Minho Choi
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kie Young Woo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kuk-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Ratschmeier B, Roß G, Kemna A, Braunschweig B. Influence of interfacial water and cations on the oxidation of CO at the platinum/ionic liquid interface. Phys Chem Chem Phys 2023; 25:1014-1022. [PMID: 36533703 DOI: 10.1039/d2cp05178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CO oxidation is fundamental to the development of new catalyst materials for fuel cells and key for complete oxidation of small alcohols like methanol or ethanol on Pt catalysts. So far, room-temperature ionic liquids (RTIL) have been used to modify the selectivity and activity in electrocatalysis. In order to understand the mechanism of CO oxidation in RTIL in more detail we have investigated this reaction at the Pt(111)/1-butyl-3-methylimidazolium trifluorosulfonylimide [BMIM][NTf2] electrode/electrolyte interface as a function of H2O concentration and electrode potential with in situ sum-frequency generation (SFG) spectroscopy and infrared absorption spectroscopy (IRAS). Using SFG spectroscopy, we address the changes of linearly bonded CO molecules on Pt(111), while we monitor the changes in the bulk electrolyte with IRAS through vibrational bands from H2O, CO2 and CO. The presence of water in [BMIM][NTf2] shifts the onset potential for CO oxidation by more than 200 mV when the water concentration is increased from 0.01 to 1.5 M, which we relate to the incorporation and the availability of water at the electrode/electrolyte interface. The nature of the RTIL cation has also a large effect on the surface excess of H2O since RTILs like [BMMIM][NTf2] and [BMPyrr][NTf2] which are prone to form closed-packed structures, can block the incorporation of water and lead to more sluggish CO oxidation with larger overpotentials and oxidation in a much wider potential range for which we provide evidence by additional SFG measurements. These results clearly show that the choice of the RTIL is important for CO oxidation on Pt(111) electrode surfaces - an observation that is likely highly relevant also to other catalysts and catalytic reactions that require the presence of interfacial water.
Collapse
Affiliation(s)
- Björn Ratschmeier
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28/30, 48149, Münster, Germany.
| | - Gina Roß
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28/30, 48149, Münster, Germany.
| | - Andre Kemna
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28/30, 48149, Münster, Germany.
| | - Björn Braunschweig
- Institute of Physical Chemistry, Westfälische Wilhelms University Münster, Corrensstraße 28/30, 48149, Münster, Germany.
| |
Collapse
|
13
|
Metal oxide nanofibers based chemiresistive H2S gas sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Feng C, Giglio M, Li B, Sampaolo A, Patimisco P, Spagnolo V, Dong L, Wu H. Detection of Hydrogen Sulfide in Sewer Using an Erbium-Doped Fiber Amplified Diode Laser and a Gold-Plated Photoacoustic Cell. Molecules 2022; 27:molecules27196505. [PMID: 36235042 PMCID: PMC9572964 DOI: 10.3390/molecules27196505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
A photoacoustic detection module based on a gold-plated photoacoustic cell was reported in this manuscript to measure hydrogen sulfide (H2S) gas in sewers. A 1582 nm distributed feedback (DFB) diode laser was employed as the excitation light source of the photoacoustic sensor. Operating pressure within the photoacoustic cell and laser modulation depth were optimized at room temperature, and the long-term stability of the photoacoustic sensor system was analyzed by an Allan-Werle deviation analysis. Experimental results showed that under atmospheric pressure and room temperature conditions, the photoacoustic detection module exhibits a sensitivity of 11.39 μV/ppm of H2S and can reach a minimum detection limit (1σ) of 140 ppb of H2S with an integration time of 1 s. The sensor was tested for in-field measurements by sampling gas in the sewer near the Shanxi University canteen: levels of H2S of 81.5 ppm were measured, below the 100 ppm limit reported by the Chinese sewer bidding document.
Collapse
Affiliation(s)
- Chaofan Feng
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Marilena Giglio
- PolySense Lab—Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Amendola 173, 70126 Bari, Italy
| | - Biao Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Angelo Sampaolo
- PolySense Lab—Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Amendola 173, 70126 Bari, Italy
- PolySense Innovations Srl, Amendola 173, 70126 Bari, Italy
| | - Pietro Patimisco
- PolySense Lab—Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Amendola 173, 70126 Bari, Italy
- PolySense Innovations Srl, Amendola 173, 70126 Bari, Italy
| | - Vincenzo Spagnolo
- PolySense Lab—Dipartimento Interateneo di Fisica, University and Politecnico of Bari, Amendola 173, 70126 Bari, Italy
- PolySense Innovations Srl, Amendola 173, 70126 Bari, Italy
| | - Lei Dong
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Correspondence: (L.D.); (H.W.)
| | - Hongpeng Wu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Correspondence: (L.D.); (H.W.)
| |
Collapse
|
15
|
Fanti G, Spinazzè A, Borghi F, Rovelli S, Campagnolo D, Keller M, Borghi A, Cattaneo A, Cauda E, Cavallo DM. Evolution and Applications of Recent Sensing Technology for Occupational Risk Assessment: A Rapid Review of the Literature. SENSORS (BASEL, SWITZERLAND) 2022; 22:4841. [PMID: 35808337 PMCID: PMC9269318 DOI: 10.3390/s22134841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 05/19/2023]
Abstract
Over the last decade, technological advancements have been made available and applied in a wide range of applications in several work fields, ranging from personal to industrial enforcements. One of the emerging issues concerns occupational safety and health in the Fourth Industrial Revolution and, in more detail, it deals with how industrial hygienists could improve the risk-assessment process. A possible way to achieve these aims is the adoption of new exposure-monitoring tools. In this study, a systematic review of the up-to-date scientific literature has been performed to identify and discuss the most-used sensors that could be useful for occupational risk assessment, with the intent of highlighting their pros and cons. A total of 40 papers have been included in this manuscript. The results show that sensors able to investigate airborne pollutants (i.e., gaseous pollutants and particulate matter), environmental conditions, physical agents, and workers' postures could be usefully adopted in the risk-assessment process, since they could report significant data without significantly interfering with the job activities of the investigated subjects. To date, there are only few "next-generation" monitors and sensors (NGMSs) that could be effectively used on the workplace to preserve human health. Due to this fact, the development and the validation of new NGMSs will be crucial in the upcoming years, to adopt these technologies in occupational-risk assessment.
Collapse
Affiliation(s)
- Giacomo Fanti
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Davide Campagnolo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Marta Keller
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Borghi
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| | - Emanuele Cauda
- Center for Direct Reading and Sensor Technologies, National Institute for Occupational Safety and Health, Pittsburgh, PA 15236, USA;
- Centers for Disease Control and Prevention, Pittsburgh, PA 15236, USA
| | - Domenico Maria Cavallo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy; (A.S.); (F.B.); (S.R.); (D.C.); (M.K.); (A.B.); (A.C.); (D.M.C.)
| |
Collapse
|
16
|
Isaac NA, Pikaar I, Biskos G. Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Mikrochim Acta 2022; 189:196. [PMID: 35445855 PMCID: PMC9023411 DOI: 10.1007/s00604-022-05254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
To meet requirements in air quality monitoring, sensors are required that can measure the concentration of gaseous pollutants at concentrations down to the ppb and ppt levels, while at the same time they exhibiting high sensitivity, selectivity, and short response/recovery times. Among the different sensor types, those employing metal oxide semiconductors (MOSs) offer great promises as they can be manufactured in easy/inexpensive ways, and designed to measure the concentration of a wide range of target gases. MOS sensors rely on the adsorption of target gas molecules on the surface of the sensing material and the consequent capturing of electrons from the conduction band that in turn affects their conductivity. Despite their simplicity and ease of manufacturing, MOS gas sensors are restricted by high limits of detection (LOD; which are typically in the ppm range) as well as poor sensitivity and selectivity. LOD and sensitivity can in principle be addressed by nanostructuring the MOSs, thereby increasing their porosity and surface-to-volume ratio, whereas selectivity can be tailored through their chemical composition. In this paper we provide a critical review of the available techniques for nanostructuring MOSs using chemiresistive materials, and discuss how these can be used to attribute desired properties to the end gas sensors. We start by describing the operating principles of chemiresistive sensors, and key material properties that define their performance. The main part of the paper focuses on the available methods for synthesizing nanostructured MOSs for use in gas sensors. We close by addressing the current needs and provide perspectives for improving sensor performance in ways that can fulfill requirements for air quality monitoring.
Collapse
Affiliation(s)
- N A Isaac
- Fachgebiet Nanotechnologie, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - I Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - G Biskos
- Climate and Atmosphere Research Center, The Cyprus Institute, 2121, Nicosia, Cyprus.
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CN, The Netherlands.
| |
Collapse
|
17
|
Rashed M, Faisal M, Ahmed J, Alsareii S, Jalalah M, Harraz FA. Highly sensitive and selective amperometric hydrazine sensor based on Au nanoparticle-decorated conducting polythiophene prepared via oxidative polymerization and photo-reduction techniques. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Multiparametric Sensor Node for Environmental Monitoring Based on Energy Harvesting. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heterogeneity and levels of chemicals released into the environment have dramatically grown in the last few years. Therefore, new low-cost tools are increasingly required to monitor pollution and follow its trends over time. Recent approaches in electronics and wireless communications permit the expansion of low-power, low-cost, and multiparametric sensor nodes that are limited in size and communicate untethered in small distances. For such a monitoring system to be ultimately feasible, a suitable power source for these nodes must be found. The present research falls within the frame of this global effort. The study sits within the context discussed above with the particular aim of developing groundbreaking technology-based solutions by means of efficient environmentally powered wireless smart sensors. This paper presents a multiparametric sensor node for indoor/outdoor air quality monitoring, able to work without battery and human intervention, harvesting energy from the surrounding environment for perpetual operation. The complete system design of the sensor and experimental results are reported. The evaluation of the energy-harvesting blocks with a budget allocation of the power consumption is also discussed.
Collapse
|
19
|
Yin W, Zhang M, Liu J, Alali KT, Yu J, Zhu J, Liu P, Li R, Wang J. MOF-derived electrochemical catalyst Cu-N/C for the enhancement of amperometric oxygen detection. NANOSCALE 2022; 14:1796-1806. [PMID: 35029625 DOI: 10.1039/d1nr06758c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical sensors using ionic liquids as electrolytes for oxygen detection are now getting more and more attention. Recently, an ionic liquid combined with an electrochemically active catalyst system has become popular for boosting the sensing performance of oxygen sensors. In this work, the imidazolyl-based ionic liquid 1-butyl-2,3-dimethylimidazole bis((trifluoromethyl)sulfonyl)imide [Bmmim][TFSI] is first prepared by a facile two-step method. Subsequently, a transition metal and N-codoped porous carbon oxygen reduction electrochemical catalyst Cu-N/C is synthesized by calcining the Cu-doped ZIF-8 precursor and then blending it in different ratios with the ionic liquid [Bmmim][TFSI] as composite electrolytes for oxygen detection. The composite electrolyte Cu-N/C/[Bmmim][TFSI] exhibits increased responses in cyclic voltammetry (CV) and chronoamperometry (CA) relative to that of the pure ionic liquid. Furthermore, the CV and CA data show that 6% Cu-N/C/[Bmmim][TFSI] has the optimum oxygen sensing response with an enhanced reduction peak current, a sensitivity of 0.1678 μA/[% O2] and a good linear fitting coefficient of 0.9991. In conclusion, the results confirm the success of using Cu-N/C as an electrochemical catalyst composed of the Cu-N/C/[Bmmim][TFSI] electrolyte for improving the responsivity, stability and sensitivity towards a wide range of oxygen concentrations.
Collapse
Affiliation(s)
- Wenyan Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Milin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of science, Heihe University, Heihe 164300, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Khaled Tawfik Alali
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
| | - Rumin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
20
|
Lee DY, Yu JB, Byun HG, Kim HJ. Chemoresistive Sensor Readout Circuit Design for Detecting Gases with Slow Response Time Characteristics. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22031102. [PMID: 35161847 PMCID: PMC8839109 DOI: 10.3390/s22031102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 06/02/2023]
Abstract
Based on an analysis of the signal characteristics of gas sensors, this work presents a chemoresistive sensor readout circuit design for detecting gases with slow response time characteristics. The proposed readout circuit directly generates a reference voltage corresponding to the initial value of the gas sensor and extracts only the amount of gas concentration change in the sensor. Because the proposed readout circuit can adaptively regenerate the suitable reference voltage under various changing ambient conditions, it can alleviate the variation in output values at the same gas concentration caused by non-uniformities among gas sensors. Furthermore, this readout circuit effectively eliminates the initial value shifts due to the poor reproducibility of the gas sensor itself without requiring complex digital signal calibrations. This work focuses on a commercially viable readout circuit structure that can effectively obtain slow response gas information without requiring a large capacitor. The proposed readout circuit operation was verified by simulations using spectre in cadence simulation software. It was then implemented on a printed circuit board with discrete components to confirm the effectiveness with existing gas sensor systems and its commercial viability.
Collapse
Affiliation(s)
| | | | - Hyung-Gi Byun
- Correspondence: (H.-G.B.); (H.-J.K.); Tel.: +82-33-570-6401 (H.-G.B.); +82-33-570-6536 (H.-J.K.)
| | - Hyeon-June Kim
- Correspondence: (H.-G.B.); (H.-J.K.); Tel.: +82-33-570-6401 (H.-G.B.); +82-33-570-6536 (H.-J.K.)
| |
Collapse
|
21
|
Al-Okby MFR, Neubert S, Roddelkopf T, Thurow K. Mobile Detection and Alarming Systems for Hazardous Gases and Volatile Chemicals in Laboratories and Industrial Locations. SENSORS (BASEL, SWITZERLAND) 2021; 21:8128. [PMID: 34884132 PMCID: PMC8662412 DOI: 10.3390/s21238128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are significant to keep the safety conditions for the people and life forms who are work in and live around these places. In this paper, we investigate the available mobile detection and alarming systems for toxic, hazardous gases and volatile chemicals, especially in the laboratory environment. We included papers from January 2010 to August 2021 which may have the newest used sensors technologies and system components. We identified (236) papers from Clarivate Web of Science (WoS), IEEE, ACM Library, Scopus, and PubMed. Paper selection has been done based on a fast screening of the title and abstract, then a full-text reading was applied to filter the selected papers that resulted in (42) eligible papers. The main goal of this work is to discuss the available mobile hazardous gas detection and alarming systems based on several technical details such as the used gas detection technology (simple element, integrated, smart, etc.), sensor manufacturing technology (catalytic bead, MEMS, MOX, etc.) the sensor specifications (warm-up time, lifetime, response time, precision, etc.), processor type (microprocessor, microcontroller, PLC, etc.), and type of the used communication technology (Bluetooth/BLE, Wi-Fi/RF, ZigBee/XBee, LoRa, etc.). In this review, attention will be focused on the improvement of the detection and alarming system of hazardous gases with the latest invention in sensors, processors, communication, and battery technologies.
Collapse
Affiliation(s)
- Mohammed Faeik Ruzaij Al-Okby
- Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Kufa 54003, Iraq
- Center for Life Science Automation (Celisca), University of Rostock, 18119 Rostock, Germany;
| | - Sebastian Neubert
- Institute of Automation, University of Rostock, 18119 Rostock, Germany; (S.N.); (T.R.)
| | - Thomas Roddelkopf
- Institute of Automation, University of Rostock, 18119 Rostock, Germany; (S.N.); (T.R.)
| | - Kerstin Thurow
- Center for Life Science Automation (Celisca), University of Rostock, 18119 Rostock, Germany;
| |
Collapse
|
22
|
|
23
|
Gautam YK, Sharma K, Tyagi S, Ambedkar AK, Chaudhary M, Pal Singh B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: progress and challenges. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201324. [PMID: 33959316 PMCID: PMC8074944 DOI: 10.1098/rsos.201324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Climate change and global warming have been two massive concerns for the scientific community during the last few decades. Anthropogenic emissions of greenhouse gases (GHGs) have greatly amplified the level of greenhouse gases in the Earth's atmosphere which results in the gradual heating of the atmosphere. The precise measurement and reliable quantification of GHGs emission in the environment are of the utmost priority for the study of climate change. The detection of GHGs such as carbon dioxide, methane, nitrous oxide and ozone is the first and foremost step in finding the solution to manage and reduce the concentration of these gases in the Earth's atmosphere. The nanostructured metal oxide semiconductor (NMOS) based technologies for sensing GHGs emission have been found most reliable and accurate. Owing to their fascinating structural and morphological properties metal oxide semiconductors become an important class of materials for GHGs emission sensing technology. In this review article, the current concentration of GHGs in the Earth's environment, dominant sources of anthropogenic emissions of these gases and consequently their possible impacts on human life have been described briefly. Further, the different available technologies for GHG sensors along with their principle of operation have been largely discussed. The advantages and disadvantages of each sensor technology have also been highlighted. In particular, this article presents a comprehensive study on the development of various NMOS-based GHGs sensors and their performance analysis in order to establish a strong detection technology for the anthropogenic GHGs. In the last, the scope for improved sensitivity, selectivity and response time for these sensors, their future trends and outlook for researchers are suggested in the conclusion of this article.
Collapse
Affiliation(s)
- Yogendra K. Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Kavita Sharma
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Shrestha Tyagi
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Anit K. Ambedkar
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Manika Chaudhary
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensor Laboratory, Department of Physics, CCS University, Meerut, Uttar Pradesh 250004, India
| |
Collapse
|
24
|
Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have applied spark ablation technology for producing nanoparticles from platinum ingots (purity of 99.97 wt. %) as a feed material by using air as a carrier gas. A maximum production rate of about 400 mg/h was achieved with an energy per pulse of 0.5 J and a pulse repetition rate of 250 Hz. The synthesized nanomaterial, composed of an amorphous platinum oxide PtO (83 wt. %) and a crystalline metallic platinum (17 wt. %), was used for formulating functional colloidal ink. Annealing of the deposited ink at 750 °C resulted in the formation of a polycrystalline material comprising 99.7 wt. % of platinum. To demonstrate the possibility of application of the formulated ink in printed electronics, we have patterned conductive lines and microheaters on alumina substrates and 20 μm thick low-temperature co-fired ceramic (LTCC) membranes with the use of aerosol jet printing technology. The power consumption of microheaters fabricated on LTCC membranes was found to be about 140 mW at a temperature of the hot part of 500 °C, thus allowing one to consider these structures as promising micro-hotplates for metal oxide semiconductor (MOS) gas sensors. The catalytic activity of the synthesized nanoparticles was demonstrated by measuring the resistance transients of the non-sintered microheaters upon exposure to 2500 ppm of hydrogen.
Collapse
|
25
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
26
|
Sun Q, Wang J, Wang X, Dai J, Wang X, Fan H, Wang Z, Li H, Huang X, Huang W. Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. NANOSCALE 2020; 12:16987-16994. [PMID: 32780062 DOI: 10.1039/c9nr08350b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes, a rapidly developing family of two-dimensional materials possessing tunable electronic properties and abundant surface functional groups, are promising gas-sensing materials. Ti2CTx, with a thinner unit cell thickness compared to its compositional analogue Ti3C2Tx and thus more profound surface-dependent properties, has been less explored over the past years. Herein, by etching the precursor Ti2AlC with a concentrated HF or LiF/HCl mixture, semiconducting Ti2CTx (HF) nanosheets and metallic Ti2CTx (LiF/HCl) nanosheets were obtained, respectively, arising from their treatment-dependent surface functionalization. In addition, the resulting metallic nanosheets were partially oxidized into TiO2/Ti2CTx (LiF/HCl) hybrid, which exhibited superior sensitivity toward NH3 gas as compared with Ti2CTx (HF) and Ti2CTx (LiF/HCl). Detailed analysis suggests that a high concentration of surface oxygen containing species, such as -Ox, -(OH)x and Ti-O-Ti, is generally beneficial for NH3 sensing, and a relatively higher -Ox concentration allows rapid gas desorption and sensor recovery.
Collapse
Affiliation(s)
- Qian Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives. INVENTIONS 2020. [DOI: 10.3390/inventions5030028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methane, the primary component of natural gas, is a significant contributor to global warming and climate change. It is a harmful greenhouse gas with an impact 28 times greater than carbon dioxide over a 100-year period. Preventing methane leakage from transmission pipelines and other oil and gas production activities is a possible solution to reduce methane emissions. In order to detect and resolve methane leaks, reliable and cost-effective sensors need to be researched and developed. This paper provides a comprehensive review of different types of methane detection sensors, including optical sensors, calorimetric sensors, pyroelectric sensors, semiconducting oxide sensors, and electrochemical sensors. The discussed material includes the definitions, mechanisms and recent developments of these sensors. A comparison between different methods, highlighting the advantages and disadvantages of each, is also presented to help address future research needs.
Collapse
|
28
|
Zeng X, Liu L, Lv Y, Zhao B, Ju X, Xu S, Zhang J, Tian C, Sun D, Tang X. Ultra-sensitive and fast response formaldehyde sensor based on La2O3-In2O3 beaded nanotubes at low temperature. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Hu S, Wang L, Chen X, Wei X, Tong Z, Yin L. The conversion of α-pinene to cis-pinane using a nickel catalyst supported on a discarded fluid catalytic cracking catalyst with an ionic liquid layer. RSC Adv 2019; 9:5978-5986. [PMID: 35517281 PMCID: PMC9060876 DOI: 10.1039/c9ra00675c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
The concept of a solid catalyst coated with a thin ionic liquid layer (SCILL) was applied to the stereoselective hydrogenation of α-pinene. Nickel, a non-noble metal, was supported on a discarded fluid catalytic cracking catalyst (DF3C) and then modified with different loadings of the ionic liquid 1-ethanol-3-methylimidazolium tetrafluoroborate ([C2OHmim][BF4]). The resulting catalysts showed a range of conversions and selectivities for the hydrogenation of α-pinene. The SCILL catalysts afforded cis-pinane with high selectivity and their activity depended on the ionic liquid loading. For an ionic liquid loading of 10 wt%, although the catalytic activity was suppressed, the selectivity and conversion could reach above 98% and 99%, respectively. In addition, the catalyst remained stable after 13 runs and the activity was almost unchanged with the conversion maintained at approximately 99%. Thus, the ionic liquid layer not only improved the selectivity for cis-pinane but also protected the active site of the catalyst and prolonged the service lifetime of the catalyst. The SCILL catalytic system provides an example of an ionic liquid catalytic system which eliminates organic solvents from the catalytic process.
Collapse
Affiliation(s)
- Shunyou Hu
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
| | - Linlin Wang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Nanning 530004 P. R. China
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Nanning 530004 P. R. China
| | - Xiaojie Wei
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Nanning 530004 P. R. China
| | - Zhangfa Tong
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Nanning 530004 P. R. China
| | - Lijiang Yin
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 P. R. China +86-771-323-3718 +86-771-3272702
| |
Collapse
|
30
|
Dosi M, Lau I, Zhuang Y, Simakov DSA, Fowler MW, Pope MA. Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6166-6173. [PMID: 30648868 DOI: 10.1021/acsami.8b22310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases.
Collapse
|
31
|
Abstract
Abstract
A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.
Collapse
|
32
|
Toniolo R, Dossi N, Bortolomeazzi R, Bonazza G, Daniele S. Volatile aldehydes sensing in headspace using a room temperature ionic liquid-modified electrochemical microprobe. Talanta 2019; 197:522-529. [PMID: 30771971 DOI: 10.1016/j.talanta.2019.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/15/2023]
Abstract
The cyclic voltammetric behaviour of propionaldehyde (PA) and hexanaldehyde (HA), in 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTF2]), 1-butyl-3-methylimidazolium hydrogen sulphate ([BMIM][HSO4]) and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) was investigated at a platinum microelectrode. A clear oxidation process for both aldehydes was recorded only in [BMIM][OH]. On the basis of these evidences, an electrochemical microprobe (EMP), incorporating [BMIM][OH] as electrolyte, was assembled for sensing these aldehydes in gaseous phases. The EMP exposed in the headspace of the liquid aldehydes displayed voltammetric and amperometric responses, which depended on the aldehyde vapour pressures and, consequently, on the temperature employed. The usefulness of the [BMIM][OH] coated EMP for practical applications was assessed in the detection of HA vapour released from squalene (i.e., a lipid simulant matrix) samples spiked with known amounts of the aldehyde. Calibration plots were constructed at 40 °C, 50 °C and 60 °C, using both voltammetry and chronoamperometry. In both cases, good linearity between current and HA concentration in squalene was obtained over the range 3-300 ppm, with correlation coefficients higher than 0.991. Reproducibility, evaluated from at least three replicates, was within 5%. Detection limits, evaluated for a signal-to-noise ratio of 3, were in any case lower than 1.7 ppm. These analytical performances are suitable for monitoring VAs coming from lipid oxidation processes in food. An application concerning the determination of VAs in headspace of sunflower oil during an induced oxidative test to establish its thermal stability was also performed.
Collapse
Affiliation(s)
- Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Renzo Bortolomeazzi
- Department of Agrifood, Environmental and Animal Sciences,University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Gregorio Bonazza
- Department of Molecular Sciences and Nanosystems, University Cà Foscari Venice, via Torino, 155, I-30137 Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Cà Foscari Venice, via Torino, 155, I-30137 Mestre-Venezia, Italy.
| |
Collapse
|
33
|
Yin H, Mu X, Li H, Liu X, Mason AJ. CMOS Monolithic Electrochemical Gas Sensor Microsystem Using Room Temperature Ionic Liquid. IEEE SENSORS JOURNAL 2018; 18:7899-7906. [PMID: 30930698 PMCID: PMC6438391 DOI: 10.1109/jsen.2018.2863644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The growing demand for personal healthcare monitoring requires a challenging combination of performance, size, power, and cost that is difficult to achieve with existing gas sensor technologies. This paper presents a new CMOS monolithic gas sensor microsystem that meets these requirements through a unique combination of electrochemical readout circuits, post-CMOS planar electrodes, and room temperature ionic liquid (RTIL) sensing materials. The architecture and design of the CMOS-RTIL-based monolithic gas sensor are described. The monolithic device occupies less than 0.5mm2 per sensing channel and incorporates electrochemical biasing and readout functions with only 1.4mW of power consumption. Oxygen was tested as an example gas, and results show that the microsystem demonstrates a highly linear response (R2 = 0.995) over a 0 - 21% oxygen concentration range, with a limit of detection of 0.06% and a 1 second response time. Monolithic integration reduces manufacturing cost and is demonstrated to improve limits of detection by a factor of five compared to a hybrid implementation. The combined characteristics of this device offer an ideal platform for portable/wearable gas sensing in applications such as air pollutant monitoring.
Collapse
Affiliation(s)
- Heyu Yin
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoyi Mu
- Apple Inc., 1 Infinite Loop, Cupertino, CA 95014, USA;
| | - Haitao Li
- Maxim Integrated Products, Inc., 160 Rio Robles, San Jose, CA 95034
| | | | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Lin L, Zhao P, Mason AJ, Zeng X. Characterization of the Ionic Liquid/Electrode Interfacial Relaxation Processes Under Potential Polarization for Ionic Liquid Amperometric Gas Sensor Method Development. ACS Sens 2018; 3:1126-1134. [PMID: 29781608 PMCID: PMC7192316 DOI: 10.1021/acssensors.8b00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical amperometric sensors require a constant or varying potential at the working electrode that drives redox reactions of the analyte for detection. The interfacial redox reaction(s) can result in the formation of new chemical products that could change the initial condition of the electrode/electrolyte interface. If the products are not inert and/or cannot be removed from the system such that the initial condition of the electrode/electrolyte interface cannot be restored, the sensor signal baseline would consequently drift, which is problematic for the continuous and real-time sensors. By setting the electrode potential with the periodical ON-OFF mode, electrolysis can be forestalled during the off mode which can minimize the sensor signal baseline drift and reduce the power consumption of the sensor. However, it is known that the relaxation of the structure in the electrical double layer at the ionic liquid/electrode interface to the steps of the electrode potential is slow. This work characterized the electrode/electrolyte interfacial relaxation process of an ionic liquid based electrochemical gas (IL-EG) sensor by performing multiple potential step experiments in which the potential is stepped from an open circuit potential (OCP) to the amperometric sensing potential at various frequencies with different time periods. Our results showed that by shortening the sensing period as well as extending the idle period (i.e., enlarge the ratio of idle period versus sensing period) of the potential step experiments, the electrode/electrolyte interface is prone to relax to its original state, and thus reduces the baseline drift. Additionally, the high viscosity of the ionic liquids is beneficial for electrochemical regeneration via the implementation of a conditioning step at zero volts at the electrode/electrolyte. By setting the working electrode at zero volts instead of OCP, our results showed that it could further minimize the baseline drift, enhance the sensing signal stability, and extend the functioning lifetime of a continuous IL-EG oxygen sensor.
Collapse
Affiliation(s)
- Lu Lin
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Peng Zhao
- Department of Mechanical Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Andrew J. Mason
- Department of Electrical Engineering and Computer Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|