1
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2024. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
2
|
Huang S, Li B, Mu P, Zhang W, Liu Y, Xiao Q. Highly sensitive detection of microRNA-21 by nitrogen-doped carbon dots-based ratio fluorescent probe via nuclease-assisted rolling circle amplification strategy. Anal Chim Acta 2023; 1273:341533. [PMID: 37423665 DOI: 10.1016/j.aca.2023.341533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
Highly sensitive and selective detection of microRNA-21 (miRNA-21) in biological samples is critical for the disease diagnosis and cancer treatment. In this study, a nitrogen-doped carbon dots (N-CDs)-based ratio fluorescence sensing strategy was constructed for miRNA-21 detection with high sensitivity and excellent specificity. Bright-blue N-CDs (λex/λem = 378 nm/460 nm) were synthesized by facile one-step microwave-assisted pyrolysis method by using uric acid as the single precursor, and the absolute fluorescence quantum yield and fluorescence lifetime of N-CDs were 35.8% and 5.54 ns separately. The padlock probe hybridized with miRNA-21 firstly and then was cyclized by T4 RNA ligase 2 to form a circular template. At the present of dNTPs and phi29 DNA polymerase, the oligonucleotide sequence in miRNA-21 was prolonged to hybridize with the surplus oligonucleotide sequences in circular template, generating long and reduplicated oligonucleotide sequences containing abundant guanine nucleotides. Separate G-quadruplex sequences were generated after the addition of Nt.BbvCI nicking endonuclease, and then hemin bound with G-quadruplex sequence to construct the G-quadruplex DNAzyme. Such G-quadruplex DNAzyme catalyzed the redox reaction of o-phenylenediamine (OPD) with H2O2, finally producing the yellowish-brown 2,3-diaminophenazine (DAP) (λem = 562 nm). Due to the inner filter effect between N-CDs and DAP, the ratio fluorescence signal of DAP with N-CDs was utilized for sensitive detection of miRNA-21 with detection limit of 0.87 pM. Such approach has practical feasibility and excellent specificity for miRNA-21 analysis during highly homological miRNA family in HeLa cell lysates and human serum samples.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, PR China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
3
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Mohan B, Kumar S, Xi H, Ma S, Tao Z, Xing T, You H, Zhang Y, Ren P. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron 2022; 197:113738. [PMID: 34740120 DOI: 10.1016/j.bios.2021.113738] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
In the health domain, a major challenge is the detection of diseases using rapid and cost-effective techniques. Most of the existing cancer detection methods show poor sensitivity and selectivity and are time consuming with high cost. To overcome this challenge, we analyzed porous fabricated metal-organic frameworks (MOFs) that have better structures and porosities for enhanced biomarker sensing. Here, we summarize the use of fabricated MOF luminescence and electrochemical sensors in devices for cancer biomarker detection. Various strategies of fabrication and the role of fabricated materials in sensing cancer biomarkers have been studied and described. The structural properties, sensing mechanisms, roles of noncovalent interactions, limits of detection, modeling, advantages, and limitations of MOF sensors have been well-discussed. The study presents an innovative technique to detect the cancer biomarkers by the use of luminescence and electrochemical MOF sensors. In addition, the potential association studies have been opening the way for personalized patient treatments and the development of new cancer-detecting devices.
Collapse
Affiliation(s)
- Brij Mohan
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Sandeep Kumar
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hui Xi
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Shixuan Ma
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Zhiyu Tao
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Tiantian Xing
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| | - Peng Ren
- Laboratory of Coordination Chemistry and Functional Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; School of Science, Harbin Institute of Technology (Shezhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Na HK, Ki J, Le MU, Kim KS, Lee CH, Lee TG, Wi JS. Analyte-Induced Desert Rose-like Ag Nanostructures for Surface-Enhanced Raman Scattering-Based Biomolecule Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58393-58400. [PMID: 34846139 DOI: 10.1021/acsami.1c18815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecule detection based on surface-enhanced Raman scattering (SERS) for application to biosensors and bio-imaging requires the fabrication of SERS nanoprobes that can generate strong Raman signals as well as surface modifications for analyte-specific recognition and binding. Such requirements lead to disadvantages in terms of reproducibility and practicality, and thus, it has been difficult to apply biomolecule detection utilizing the advantages of the SERS phenomenon to actual clinically relevant analysis. To achieve reproducible and practical SERS signal generation in a biomolecule-specific manner without requiring the synthesis of nanostructures and their related surface modification to introduce molecules for specific recognition, we developed a new type of SERS probe formed by enzyme reactions in the presence of Raman reporters. By forming unique plasmonic structures, our method achieves the detection of biomolecules on chips with uniform and stable signals over long periods. To test the proposed approach, we applied it to a SERS-based immunohistochemistry assay and found successful multiplexed protein detection in brain tissue from transgenic mice.
Collapse
Affiliation(s)
- Hee-Kyung Na
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jisun Ki
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Minh-Uyen Le
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| |
Collapse
|
7
|
Cavallaro S, Hååg P, Sahu SS, Berisha L, Kaminskyy VO, Ekman S, Lewensohn R, Linnros J, Viktorsson K, Dev A. Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosens Bioelectron 2021; 193:113568. [PMID: 34428672 DOI: 10.1016/j.bios.2021.113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Petra Hååg
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
8
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Ma RN, Zhang M, Hu CL, Pan HJ, Si L, Wang H. A novel ratiometric MALDI-MS quantitation strategy for alkaline phosphatase activity with a homogeneous reaction and a tunable dynamic range. Chem Commun (Camb) 2021; 57:8885-8888. [PMID: 34486626 DOI: 10.1039/d1cc03863j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A unique ratiometric MALDI-MS strategy is proposed for the convenient and reliable quantitation of alkaline phosphatase based on the homogeneous enzymatic cleavage of a coded phosphopeptide (CPP)-triggered double-signal output. The dynamic range can be tuned by simply adjusting the primary concentration of CPP. The proposed strategy is also capable of being challenged by real human serum, and thus it may offer a wonderful approach for the convenient identification and quantitation of various enzyme activities in clinical diagnosis.
Collapse
Affiliation(s)
- Rong-Na Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Chao-Long Hu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Hui-Jing Pan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| | - Lei Si
- Department of Clinical Laboratory, Liaocheng People's Hospital, Shandong First Medical University, Liaocheng 252000, Shandong, P. R. China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
| |
Collapse
|