1
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
2
|
Dash MK, Joshi N, Dwivedi L, Dubey VS, Dwivedi KN. Characterization of lead sulfide obtained from Naga Bhasma. J Ayurveda Integr Med 2024; 15:100864. [PMID: 38527393 PMCID: PMC10979094 DOI: 10.1016/j.jaim.2023.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Lead sulfide nanoparticles were manufactured from lead oxide using a procedure described in the Ayurveda formulary of India, which involved using a quantum of the heat of up to 60 puta, which is officially known as the Shasti puta Naga Bhasma. OBJECTIVE The study shows sulfurization of nanoparticles decreased their toxicity due to the lower solubility. MATERIALS AND METHODS The present work used the arsenic sulfide media and traditional puta for processing and the characterization of the same has been conducted. Different analytical techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-Ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and thermo-gravimetry analysis (TGA) were used. RESULTS Powder x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Thermogravimetric analysis, and differential thermal analysis all showed that the produced nanoparticles are lead sulfide nanoparticles with a particle size of an average of 84.60 and the crystalline average size of 69.06 nm. CONCLUSION The rounded, rod, oval, cubic, and circular morphology of the produced lead sulfide nanoparticles can be seen in the SEM image. The stretching and bending functional groups in the sample were alkanes, alkenes, aromatic hydrocarbons, carboxylic acids, alkyl carboxylic acids, alkyl alpha, beta-unsaturated, aldehydes, ketones, carboxylic acid, aliphatic amines, primary amines, secondary amines, alkyl halides, are studied through the FTIR spectrum.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- Dept. of Rasashastra, Govt. Ayurveda College, Raipur, C.G, India.
| | - Namrata Joshi
- Dept. of Rasashastra, Faculty of Ayurveda, IMS, Banaras Hindu University, Varanasi, 221005, India
| | | | - Vd Sushil Dubey
- Dept. of Kriya Sarira, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | | |
Collapse
|
3
|
Shin S, Kim S, Choi W, Do J, Son J, Kim K, Jang S, Lee JS. Sensing Characteristics of SARS-CoV-2 Spike Protein Using Aptamer-Functionalized Si-Based Electrolyte-Gated Field-Effect Transistor (EGT). BIOSENSORS 2024; 14:124. [PMID: 38534231 DOI: 10.3390/bios14030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Seonghwan Shin
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangwon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Wonyeong Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeonghyeon Do
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jongmin Son
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kihyun Kim
- Division of Electronics Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sungkey Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong-Soo Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
5
|
Wang Z, Zhang C, He S, Xu D. An ultrasensitive fluorescence aptasensor for SARS-CoV-2 antigen based on hyperbranched rolling circle amplification. Talanta 2023; 255:124221. [PMID: 36608425 PMCID: PMC9792189 DOI: 10.1016/j.talanta.2022.124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and accurate diagnosis of SARS-CoV-2 infection at early stages can help to attenuate the effects of the COVID-19. Compared to RNA and antibodies detection, direct detection of viral antigens could reflect infectivity more appropriately. However, it is still a great challenge to construct a convenient, accurate and sensitive biosensor with a suitable molecular recognition element for SARS-CoV-2 antigens. Herein, we report a HRCA-based aptasensor for simple, ultrasensitive and quantitative detection of SARS-CoV-2 S1 protein and pseudovirus. The aptamer sequence used here is selected from several published aptamers by enzyme-linked oligonucleotide assay and molecular docking simulation. The sensor forms an antibody-target-aptamer sandwich complex on the surface of microplates and elicits HRCA for fluorescent detection. Without complicated operations or special instruments and reagents, the aptasensor can detect S1 protein with a LOD of 89.7 fg/mL in the linear range of 100 fg/mL to 1 μg/mL. And it can also detect SARS-CoV-2 spike pseudovirus in artificial saliva with a LOD of 51 TU/μL. Therefore, this simple and ultrasensitive aptasensor has the potential to detect SARS-CoV-2 infection at early stages. It may improve the timeliness and accuracy of SARS-CoV-2 diagnosis and demonstrate a strategy to conduct aptasensors for other targets.
Collapse
|
6
|
Xie L, Li J, Ai Y, He H, Chen X, Yin M, Li W, Huang W, Luo MY, He J. Current strategies for SARS-CoV-2 molecular detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4625-4642. [PMID: 36349688 DOI: 10.1039/d2ay01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular detection of SARS-CoV-2 is extremely important for the discovery and prevention of pandemic dissemination. Because SARS-CoV-2 is not always present in the samples that can be collected, the sample chosen for testing has inevitably become the key to the SARS-CoV-2 positive cases screening. The nucleotide amplification strategy mainly includes Q-PCR assays and isothermal amplification assays. The Q-PCR assay is the most used SARS-CoV-2 detection assay. Due to heavy expenditures and other drawbacks, isothermal amplification cannot replace the dominant position of the Q-PCR assay. The antibody-based detection combined with Q-PCR can help to find more positive cases than only using nucleotide amplification-based assays. Pooled testing based on Q-PCR significantly increases efficiency and reduces the cost of massive-scale screening. The endless stream of variants emerging across the world poses a great challenge to SARS-CoV-2 molecular detection. The multi-target assays and several other strategies have proved to be efficient in the detection of mutated SARS-CoV-2 variants. Further research work should concentrate on: (1) identifying more ideal sample plucking strategies, (2) ameliorating the Q-PCR primer and probes targeted toward mutated SARS-CoV-2 variants, (3) exploring more economical and precise isothermal amplification assays, and (4) developing more advanced strategies for antibody/antigen or engineered antibodies to ameliorate the antibody/antigen-based strategy.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou 510080, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Min-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| |
Collapse
|