1
|
Lian S, Liu S, Wu A, Yin L, Li L, Zeng L, Zhao M, Zhang L. Branched-Chain Amino Acid Degradation Pathway was Inactivated in Colorectal Cancer: Results from a Proteomics Study. J Cancer 2024; 15:3724-3737. [PMID: 38911385 PMCID: PMC11190764 DOI: 10.7150/jca.95454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Colorectal cancer (CRC) ranks third in terms of cancer incidence and fourth in terms of cancer-related deaths worldwide. Identifying potential biomarkers of CRC is crucial for treatment and drug development. Methods: In this study, we established a C57B/6N mouse model of colon carcinogenesis using azoxymethane-dextran sodium sulfate (AOM-DSS) treatment for 14 weeks to identify proteins associated with colon cancer. An isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted on the cell membrane components enriched in the colonic mucosa. Additionally, tumor tissues and adjacent normal colon tissues were collected from patients with colon cancer for comparative protein and metabolite analyses. Results: In total, 74 differentially expressed proteins were identified in the tumor tissue samples from AOM/DSS-treated mice compared to both the adjacent tissue samples from AOM/DSS-treated mice and tissue samples from saline-treated control mice. Bioinformatics analysis revealed eight downregulated proteins enriched in the branched-chain amino acids pathway (valine, leucine, and isoleucine degradation). Moreover, these proteins are already known to be associated with the survival rate of patients with cancer. Targeted metabolomics showed increased levels of valine, leucine, and isoleucine in tumor tissues compared to those in adjacent normal tissues in patients with colon cancer. Furthermore, a real-time PCR experiment demonstrated that Aldehyde dehydrogenase, mitochondrial (short protein name ALDH2, gene name Aldh2) and Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial (short protein name HCDH, gene name Hadh) (two genes) in the pathway of branched-chain amino acids) were downregulated in patients with colon cancer (colon tumor tissues vs. their adjacent colon tissues). ALDH2 expression was further validated by western blotting in AOM/DSS-treated mouse model and in clinical samples. Conclusion: This study highlighted the inactivation of the branched-chain amino acid degradation pathway in colon cancer and identified ALDH2 and HCDH as potential biomarkers for diagnosing colon cancer and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Shixian Lian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Siyuan Liu
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Ao Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mingkun Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
2
|
Yue Y, Su L, Wang Y, Li X, Xiao X, Xie J, Yan S. Banxia Xiexin Decoction inhibits colitis-associated colorectal cancer development by modulating STAT3 signaling and gut microbiota. CHINESE HERBAL MEDICINES 2024. [DOI: 10.1016/j.chmed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Yao J, Sun T, Zheng S, Ma J, Zeng Q, Liu K, Zhang W, Yu Y. The protective effect of teprenone in TNBS-induced ulcerative colitis rats by modulating the gut microbiota and reducing inflammatory response. Immunopharmacol Immunotoxicol 2024; 46:255-263. [PMID: 38252282 DOI: 10.1080/08923973.2024.2308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC), a chronic and refractory nonspecific inflammatory bowel disease, affects millions of patients worldwide and increases the risk of colorectal cancer. Teprenone is an acylic polyisoprenoid that exerts anti-inflammatory properties in rat models of peptic ulcer disease. This in vitro and in vivo study was designed to investigate the effects of teprenone on UC and to explore the underlying mechanisms. METHODS Human intestinal epithelial cells (Caco-2 cells) serve as the in vitro experimental model. Lipopolysaccharide (LPS, 1 μg/mL) was employed to stimulate the production of pro-inflammatory cytokines (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α), Toll-like receptor-4 (TLR4), MyD88 expression, and NF-κB activation. A trinitrobenzene sulfonic acid (TNBS)-induced chronic UC rat model was employed for the in vivo assay. RESULTS Pro-inflammatory cytokine stimulation by LPS in Caco-2 cells was inhibited by teprenone at 40 μg/mL through the TLR4/NF-κB signaling pathway. Teprenone attenuated TNBS-induced UC, decreased myeloperoxidase and malondialdehyde, induced TLR4 expression and NF-κB activation, and increased glutathione and zonula occludens-1 level in the rat colonic tissue. Moreover, Fusobacterium, Escherichia coli, Porphyromonas gingivalis elevation, and Mogibacterium timidum decline in UC rats were inhibited by teprenone. CONCLUSION Based on our results, the protective effects of teprenone for UC may be related to its ability to modulate the gut microbiota and reduce the inflammatory response.
Collapse
Affiliation(s)
- Jianfeng Yao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Tao Sun
- Department of Endoscopy, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Songbai Zheng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jianxia Ma
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinglian Zeng
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Kangwei Liu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yang Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhang Y, Wang Y, Xin E, Zhang Z, Ma D, Liu T, Gao F, Bian T, Sun Y, Wang M, Wang Z, Yan X, Li Y. Network pharmacology and experimental verification reveal the mechanism of Hedysari Radix and Curcumae Rhizoma with the optimal compatibility ratio against colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117555. [PMID: 38110130 DOI: 10.1016/j.jep.2023.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herb pair Astragali Radix (AR) and Curcumae Rhizoma (vinegar-processed, VPCR), derived from the traditional Chinese medicine (TCM) text 'Yixuezhongzhongcanxilu', have long been used to treat gastrointestinal diseases, notably colitis-associated colorectal cancer (CAC). Hedysari Radix (HR), belonging to the same Leguminosae family as AR but from a different genus, is traditionally used as a substitute for AR when paired with VPCR in the treatment of CAC. However, the optimal compatibility ratio for HR-VPCR against CAC and the underlying mechanisms remain unclear. AIM OF THE STUDY To investigate the optimal compatibility ratio and underlying mechanisms of HR-VPCR against CAC using a combination of comparative pharmacodynamics, network pharmacology, and experimental verification. MATERIALS AND METHODS The efficacy of different compatibility ratios of HR-VPCR against CAC was evaluated using various indicators, including the body weight, colon length, tumor count, survival rate, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, inflammation cytokines (IL-1β, IL-6, IL-10, TNF-α), tumor markers (K-Ras, p53), and intestinal permeability proteins (claudin-1, E-cadherin, mucin-2). Then, the optimal compatibility ratio of HR-VPCR against CAC was determined based on the fuzzy matter-element analysis by integrating the above indicators. After high-performance liquid chromatography (HPLC) analysis for the optimal compatibility ratio of HR-VPCR, potential active components of HR-VPCR were identified by TCMSP and the previous bibliographies. Swiss Targets and GeneCards were adopted to predict the targets of the active components and the targets of CAC, respectively. Then, the common targets of HR-VPCR against CAC were obtained by Venn analysis. PPI networks were constructed in STRING. GO and KEGG enrichments were visualized by the David database. Finally, the predicted pathway was experimentally validated via Western blot. RESULTS Various compatibility ratios of HR-VPCR demonstrated notable therapeutic effects to some extent, evidenced by improvements in body weight, colon length, tumor count, pathological symptoms (DAI score), colon and organ indexes, survival rate, and modulation of inflammation factors (IL-1β, IL-6, IL-10, TNF-α), as well as tumor markers (K-Ras, p53), and down-regulation of intestinal permeability proteins (claudin-1, E-cadherin, mucin-2) in CAC mice. Among these ratios, the ratio 4:1 represents the optimal compatibility ratio by the fuzzy matter-element analysis. Thirty active components of HR-VPCR were carefully selected, targeting 553 specific genes. Simultaneously, 2022 targets associated with CAC were identified. 88 common targets were identified after generating a Venn plot. Following PPI network analysis, 29 core targets were established, with AKT1 ranking highest among them. Further analysis via GO and KEGG enrichment identified the PI3K-AKT signaling pathway as a potential mechanism. Experimental validation confirmed that HR-VPCR intervention effectively reversed the activated PI3K-AKT signaling pathway. CONCLUSIONS The optimal compatibility ratio for the HR-VPCR herb pair in alleviating CAC is 4:1. HR-VPCR exerts its effects by alleviating intestinal inflammation, improving intestinal permeability, and regulating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yugui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yanjun Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Erdan Xin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Zhuanhong Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Dingcai Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Ting Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Feiyun Gao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Tiantian Bian
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yujing Sun
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Maomao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Zhe Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yuefeng Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Ma M, Zheng Z, Li J, He Y, Kang W, Ye X. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis. Front Microbiol 2024; 15:1309111. [PMID: 38562480 PMCID: PMC10982360 DOI: 10.3389/fmicb.2024.1309111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors primarily affecting individuals over the age of 50 years. Recent studies have suggested that the dysbiosis of the gut microbiota, a community of microorganisms in the human gut, is closely associated with the occurrence and development of CRC. Additionally, inflammatory factors (IFs) have also been reported to play a significant role in the development of CRC. However, the causal relationships between the gut microbiota, IFs, and CRC remain unclear. Methods In this study, we performed Mendelian randomization (MR) analysis using publicly available genome-wide association study (GWAS) data to explore the causal relationship between the gut microbiota, IFs, and CRC. The gut microbiota GWAS data were obtained from the MiBioGen study, while the IFs GWAS data were derived from the comprehensive analysis of three independent cohorts. Causal relationship analysis was conducted using appropriate instrumental variables (IVs) and statistical models. Results MR analysis of the gut microbiota and CRC revealed a negative correlation between the Lachnospiraceae species in the gut and CRC risk, while a positive correlation was observed between Porphyromonadaceae species, Lachnospiraceae UCG010 genus, Lachnospira genus, and Sellimonas genus in the gut, and CRC risk. Additionally, we observed a causal relationship between IL-10 and CRC risk. These findings suggest that the dysbiosis of the gut microbiota might be associated with an increased risk of CRC and that specific bacterial groups may play a crucial role in the occurrence and development of CRC. Conclusion Using MR analysis, this study revealed the causal relationships between the gut microbiota, IFs, and CRC. The negative correlation between the Lachnospiraceae species in the gut and CRC risk, as well as the causal relationship between IL-10 and CRC, provide important clues for the potential roles of gut microbiota regulation and inflammatory factor control in the prevention and treatment of CRC.
Collapse
Affiliation(s)
| | | | | | | | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Jiang N, Li S, Meng L, Zhang Y, Yu C, Xiao Y, Liu Y. Gamabufotalin inhibits colitis-associated colorectal cancer by suppressing transcription factor STAT3. Eur J Pharmacol 2024; 966:176372. [PMID: 38301817 DOI: 10.1016/j.ejphar.2024.176372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Constitutive activation of STAT3 plays important role in the pathogenesis of colorectal cancer (CRC). Inhibition of STAT3 has been proposed as a reasonable strategy to suppress CRC. Gamabufotalin (Gam), an effective bioactive compound of ChanChu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, its effect on CRC is still unclear. In this study, we found that Gam significantly inhibited the CRC in vitro and vivo. Furthermore, Gam induced apoptosis to inhibit the viability of HCT-116 and HT-29 cell lines in dose-dependent manner by suppressing the transcription factor STAT3. In addition, Gam was also found to inhibit carcinogenesis of colitis-associated cancer (CAC) in AOM/DSS mice model by inhibiting STAT3. Our findings suggest that Gam may be an effective way to prevent occurrence and development of CRC and CAC.
Collapse
Affiliation(s)
- Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Lingjie Meng
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yao Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China; School of Forensic Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
7
|
Laska E, Richter P. Incidence versus treatment outcomes and survival in patients before age 40 with colorectal cancer. POLISH JOURNAL OF SURGERY 2024; 96:9-17. [PMID: 38940247 DOI: 10.5604/01.3001.0054.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
<b><br>Introduction:</b> Colorectal cancer (CRC) was the third most common cancer and the second cause of cancer deaths worldwide in 2020. Its incidence has increased dramatically in people under 50 years of age (early-onset colorectal cancer; EOCRC).</br> <b><br>Aim:</b> The aim of this study was to compare two age groups of patients with colorectal cancer in terms of stage, prognostic factors, survival and incidence of recurrence.</br> <b><br>Materials and methods:</b> The study group consisted of 588 patients operated on between 1995 and 2005 at the University Hospital in Krakow in the Clinical Department of General, Oncological and Gastroenterological Surgery. A method of retrospective documentation analysis was used. Patients were divided into two age groups: up to forty years of age and between 45 and 65 years of age.</br> <b><br>Results:</b> Up to 40 years of age, stage IV colorectal cancer was diagnosed in 33.3% of patients, while between 45 and 65 years of age, it was diagnosed in 26.1%. Five-year survival differed according to tumour stage. In the two groups analysed, there was a significant difference between the survival curves (P = 0.00000). Also, comparing recurrence times in the paired group excluding cancer-independent deaths revealed a statistically significant difference between the groups (P = 0.006).</br> <b><br>Discussion:</b> The incidence of colorectal cancer has increased worldwide in young people under 50 years of age, and it is therefore recommended that the research presented here be studied, and that prognostic factors be analysed and multicentre prophylactic studies combined with health education of those at risk be encouraged. Cancer occurring in younger patients is characterized by advanced stage at diagnosis and five-year survival is lower and has a poorer prognosis. The availability is very important of early diagnosis to detect pre-cancerous and considered pre-cancerous conditions is important. This involves detecting lesions at a lower stage of the disease.</br> <b><br>Conclusions:</b> The availability of early diagnosis to detect precancerous and considered pre-cancerous conditions is very important. This involves detecting lesions at a lower stage of the disease. Diagnosing colorectal cancer at an early stage and treating the pre-cancerous lesions will improve treatment outcomes, resulting in fewer metastases and longer survival and recurrence times.</br>.
Collapse
Affiliation(s)
- Edyta Laska
- Department of Nursing, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Piotr Richter
- Medical College, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
10
|
Chen J, Li G, Sun D, Li H, Chen L. Research progress of hexokinase 2 in inflammatory-related diseases and its inhibitors. Eur J Med Chem 2024; 264:115986. [PMID: 38011767 DOI: 10.1016/j.ejmech.2023.115986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Hexokinase 2 (HK2) is a crucial enzyme involved in glycolysis, which converts glucose into glucose-6-phosphate and plays a significant role in glucose metabolism. HK2 can mediate glycolysis, which is linked to the release of inflammatory factors. The over-expression of HK2 increases the production of pro-inflammatory cytokines, exacerbating the inflammatory reaction. Consequently, HK2 is closely linked to various inflammatory-related diseases affecting multiple systems, including the digestive, nervous, circulatory, respiratory, reproductive systems, as well as rheumatoid arthritis. HK2 is regarded as a novel therapeutic target for inflammatory-related diseases, and this article provides a comprehensive review of its roles in these conditions. Furthermore, the development of potent HK2 inhibitors has garnered significant attention in recent years. Therefore, this review also presents a summary of potential HK2 inhibitors, offering promising prospects for the treatment of inflammatory-related diseases in the future.
Collapse
Affiliation(s)
- Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guirong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Zhang WJ, Zhang LP, Lin SJ, Wang CY, Le YG. P2 purinergic receptors regulate the progression of colorectal cancer. Purinergic Signal 2023:10.1007/s11302-023-09983-6. [PMID: 38153612 DOI: 10.1007/s11302-023-09983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang City, 343000, Jiangxi Province, China
| | - Li-Peng Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang City, 343000, Jiangxi Province, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang City, 343000, Jiangxi Province, China
| | - Yi-Guan Le
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, 343000, Jiangxi Province, China.
| |
Collapse
|
12
|
Iglesias González PA, Valdivieso ÁG, Santa-Coloma TA. The G protein-coupled receptor GPRC5A-a phorbol ester and retinoic acid-induced orphan receptor with roles in cancer, inflammation, and immunity. Biochem Cell Biol 2023; 101:465-480. [PMID: 37467514 DOI: 10.1139/bcb-2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Collapse
Affiliation(s)
- Pablo A Iglesias González
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Ángel G Valdivieso
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| | - Tomás A Santa-Coloma
- Laboratory of Cell and Molecular Biology, Institute for Biomedical Research (BIOMED), National Scientific and Technical Research Council (CONICET), Pontifical Catholic University of Argentina (UCA), Argentina
| |
Collapse
|
13
|
Gu M, Jin Y, Gao X, Xia W, Xu T, Pan S. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front Immunol 2023; 14:1278521. [PMID: 37928545 PMCID: PMC10623001 DOI: 10.3389/fimmu.2023.1278521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Interleukin-37 (IL-37) is a newly discovered member of IL-1 family. The cytokine was proved to have extensive protective effects in infectious diseases, allergic diseases, metabolic diseases, autoimmune diseases and tumors since its discovery. IL-37 was mainly produced by immune and some non-immune cells in response to inflammatory stimulus. The IL-37 precursors can convert into the mature forms after caspase-1 cleavage and activation intracellularly, and then bind to Smad-3 and transfer to the nucleus to inhibit the production and functions of proinflammatory cytokines; extracellularly, IL-37 binds to cell surface receptors to form IL-37/IL-18Rα/IL-1R8 complex to exert immunosuppressive function via inhibiting/activating multiple signal pathways. In addition, IL-37 can attenuate the pro-inflammatory effect of IL-18 through directly or forming an IL-37/IL-18BP/IL-18Rβ complex. Therefore, IL-37 has the ability to suppress innate and acquired immunity of the host, and effectively control inflammatory stimulation, which was considered as a new hallmark of cancer. Specifically, it is concluded that IL-37 can inhibit the growth and migration of tumor cells, prohibit angiogenesis and mediate the immunoregulation in tumor microenvironment, so as to exert effective anti-tumor effects. Importantly, latest studies also showed that IL-37 may be a novel therapeutic target for cancer monitoring. In this review, we summarize the immunoregulation roles and mechanisms of IL-37 in anti-tumor process, and discuss its progress so far and potential as tumor immunotherapy.
Collapse
Affiliation(s)
- Min Gu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
14
|
Shen J, Cao F, Huang Z, Ma X, Yang N, Zhang H, Zhang Y, Zhang Z. Chukrasia tabularis limonoid plays anti-inflammatory role by regulating NF- κB signaling pathway in lipopolysaccharide-induced macrophages. Food Nutr Res 2023; 67:9383. [PMID: 37533446 PMCID: PMC10392864 DOI: 10.29219/fnr.v67.9383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 08/04/2023] Open
Abstract
Background Chukrasia tabularisis, a well-known tropical tree native to southeastern China, has anti-inflammatory and antioxidant activities, and contains large amounts of limonoids and triterpenoids. Objective The aim of this study was to investigate the potential anti-inflammatory activity of limonoids from C. tabularis on lipopolysaccharide (LPS)-mediated RAW264.7 cells. Methods and results Using a bioassay-guided approach, the chemical fraction with high anti-inflammatory activity was found and its chemical constituents were investigated. Phytochemical studies on active extracts resulted in the separation of three novel phragmalin limonoids (1-3), together with two known limonoids (4-5) and 11 tirucallane triterpenes (6-16). The activity of these isolated compounds in the production of nitric oxide (NO) on LPS-reated macrophages was evaluated. Limonoid 2 indicated significant anti-inflammatory activities with IC50 value of 4.58 μM. Limonoid 2 notably inhibited the production of NO, interleukin- 6 and tumor necrosis factor-α on macrophage. Signal transduction and activation of STAT and NF-κB activators were effectively blocked by limonoid 2. Conclusions These results indicate that limonoid 2 has an anti-inflammatory effect by the inhibiting JAK2/STAT3, iNOS/eNOS, and NF-κB signaling pathways and regulating inflammatory mediators.
Collapse
Affiliation(s)
- Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fan Cao
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiyong Huang
- Department of Plastic Surgery, Dermatology Hospital of Fuzhou, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Nana Yang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Haitao Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhiqiang Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Gao Q, An K, Lv Z, Wang Y, Ding C, Huang W. E2F3 accelerates the stemness of colon cancer cells by activating the STAT3 pathway. Front Oncol 2023; 13:1203712. [PMID: 37456248 PMCID: PMC10346838 DOI: 10.3389/fonc.2023.1203712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Colon cancer is one of the most prevalent malignancies and causes of cancer-related deaths worldwide. Thus, further research is required to explicate the latent molecular mechanisms and look for novel biomarkers. E2F3 has been confirmed to be an oncogene in a variety of cancers. However, the particular regulation of E2F3 in colon cancer needs further investigation. Methods The self-renewal ability was detected through a sphere formation assay. The tumorigenic ability was measured through nude mice in vivo assay. The protein expression of genes was examined through a Western blot. The expression of E2F3 in tumor tissues was detected through an IHC assay. The resistance to cisplatin was assessed through the CCK-8 assay. The cell migration and invasion abilities were measured after upregulating or suppressing E2F3 through the Transwell assay. Results Results uncovered that E2F3 was upregulated in spheroid cells. In addition, E2F3 facilitates stemness in colon cancer. Moreover, E2F3 facilitated colon cancer cell migration and invasion. Finally, it was revealed that E2F3 affected the STAT3 pathway to modulate stemness in colon cancer. E2F3 served as a promoter regulator in colon cancer, aggravating tumorigenesis and stemness in colon cancer progression through the STAT3 pathway. Conclusion E2F3 may be a useful biomarker for anticancer treatment in colon cancer.
Collapse
|
16
|
Han B, Zhai Y, Li X, Zhao H, Sun C, Zeng Y, Zhang W, Lu J, Kai G. Total flavonoids of Tetrastigma hemsleyanum Diels et Gilg inhibits colorectal tumor growth by modulating gut microbiota and metabolites. Food Chem 2023; 410:135361. [PMID: 36610085 DOI: 10.1016/j.foodchem.2022.135361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a dietary supplement in southern China. The total flavonoids of T. hemsleyanum (THTF) can be used for gastrointestinal disease treatment. Colorectal cancer (CRC) is associated with gut microbiota dysbiosis. This study was designed to investigate the effect of THTF on CRC from gut microbiota and fecal metabolomics. THTF (120 mg/kg) oral gavage reduced tumor growth and protected intestinal function (p-p65/p65, ZO-1) in HCT116 xenografts. THTF increased probiotics Bifidobacteriales, Bifidobacteriaceae, Bifidobacterium, Bifidobacterium pseudolongum, and decreased "harmful" bacteria Bacteroidota, Firmicutes, Bacteroidia, Rikenellaceae, Odoribacter, Alistipes richness. Furthermore, THTF restored abnormal fecal metabolite levels. It showed a strong correlation among gut microbiota, metabolites, and tumor weight. Finally, THTF promoted Bifidobacterium pseudolongum growth in vitro, whose cell-free supernatant further inhibited HCT116 cell proliferation and clonogenicity. Together, THTF delays CRC tumor growth by maintaining microbiota homeostasis, restoring fecal metabolites, and protecting intestinal function.
Collapse
Affiliation(s)
- Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuqing Zeng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weiping Zhang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Kang M, Su Z. Increased expression of GIPC2 in colon adenocarcinoma is associated with a favorable prognosis and high levels of immune cell infiltration. Oncol Rep 2023; 49:66. [PMID: 36799193 PMCID: PMC9996678 DOI: 10.3892/or.2023.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/08/2022] [Indexed: 02/17/2023] Open
Abstract
Gα‑interacting protein C‑terminus PDZ‑domain‑containing family member 2 (GIPC2) serves an important role in the development of digestive tract tumors; however, its role in colon adenocarcinoma (COAD) has yet to be elucidated. In the present study, data were retrieved from The Cancer Genome Atlas database to investigate the association between GIPC2 expression and prognosis, as well as the levels of tumor‑infiltrating immune cells. Immunohistochemical analysis was subsequently performed on 22 pairs of COAD and adjacent normal colon tissues, which were collected during surgery, to verify GIPC2 protein expression. The results showed that the positive rate in the normal intestinal mucosa group (18/22, 81.82%) was significantly higher than that in the COAD group (3/22, 13.64%, χ2=20.497, P<0.001). Gene set enrichment analysis was used to predict the signaling pathways regulated by GIPC2 in COAD, whereas the CIBERSORT algorithm was used to analyze the association between GIPC2 expression and immune cell infiltration. The expression levels of GIPC2 were revealed to be significantly downregulated in COAD compared with in normal colon tissues (P<0.05). Notably, the overall survival (P=0.004), disease‑specific survival (P=0.003) and progression‑free interval (P=0.011) rates of the group with high GIPC2 expression were higher compared with those in the group with low GIPC2 expression. In addition, the results of the regression analysis suggested that GIPC2 was an independent prognostic factor for COAD (P=0.007). The expression levels of GIPC2 were significantly associated with tumor stage, lymph node status and lymphatic invasion, and GIPC2 expression was enriched in 'cell cycle checkpoints', 'DNA replication' and 'mitosis‑associated signaling pathways'. In addition, a positive association was observed between high GIPC2 expression and levels of infiltrating immune cells. Moreover, the expression of immune checkpoint‑associated genes was significantly higher in the group with low GIPC2 expression. Taken together, the findings of the present study demonstrated that high expression levels of GIPC2 were associated with a favorable prognosis and increased infiltration of immune cells in COAD; therefore, GIPC2 may serve as a biomarker to assess prognosis and the level of immune cell infiltration in patients with COAD.
Collapse
Affiliation(s)
- Min Kang
- Department of Pathology, People's Hospital of Tongling City, Tongling, Anhui 244000, P.R. China
| | - Zhaoran Su
- Department of Gastrointestinal Surgery, People's Hospital of Tongling City, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
18
|
Huang YY, Bao TY, Huang XQ, Lan QW, Huang ZM, Chen YH, Hu ZD, Guo XG. Machine learning algorithm to construct cuproptosis- and immune-related prognosis prediction model for colon cancer. World J Gastrointest Oncol 2023; 15:372-388. [PMID: 37009317 PMCID: PMC10052662 DOI: 10.4251/wjgo.v15.i3.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Over the past few years, research into the pathogenesis of colon cancer has progressed rapidly, and cuproptosis is an emerging mode of cellular apoptosis. Exploring the relationship between colon cancer and cuproptosis benefits in identifying novel biomarkers and even improving the outcome of the disease.
AIM To look at the prognostic relationship between colon cancer and the genes associated with cuproptosis and the immune system in patients. The main purpose was to assess whether reasonable induction of these biomarkers reduces mortality among patients with colon cancers.
METHOD Data obtained from The Cancer Genome Atlas and Gene Expression Omnibus and the Genotype-Tissue Expression were used in differential analysis to explore differential expression genes associated with cuproptosis and immune activation. The least absolute shrinkage and selection operator and Cox regression algorithm was applied to build a cuproptosis- and immune-related combination model, and the model was utilized for principal component analysis and survival analysis to observe the survival and prognosis of the patients. A series of statistically meaningful transcriptional analysis results demonstrated an intrinsic relationship between cuproptosis and the micro-environment of colon cancer.
RESULTS Once prognostic characteristics were obtained, the CDKN2A and DLAT genes related to cuproptosis were strongly linked to colon cancer: The first was a risk factor, whereas the second was a protective factor. The finding of the validation analysis showed that the comprehensive model associated with cuproptosis and immunity was statistically significant. Within the component expressions, the expressions of HSPA1A, CDKN2A, and UCN3 differed markedly. Transcription analysis primarily reflects the differential activation of related immune cells and pathways. Furthermore, genes linked to immune checkpoint inhibitors were expressed differently between the subgroups, which may reveal the mechanism of worse prognosis and the different sensitivities of chemotherapy.
CONCLUSION The prognosis of the high-risk group evaluated in the combined model was poorer, and cuproptosis was highly correlated with the prognosis of colon cancer. It is possible that we may be able to improve patients’ prognosis by regulating the gene expression to intervene the risk score.
Collapse
Affiliation(s)
- Yuan-Yi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ting-Yu Bao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Xu-Qi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Sixth Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Qi-Wen Lan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Medical Imageology, The Second Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Yu-Han Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010010, Inner Mongolia Autonomous Region, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong Province, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, Guangdong Province, China
| |
Collapse
|
19
|
Kimura Y, Taniguchi M, Okuda T. Acertannin prevents azoxymethane/dextran sulfate sodium-induced colon cancer growth by inhibiting the colonic expression of interleukin-1β, monocyte chemoattractant protein-1, cyclooxygenase-2, and thymocyte selection-associated high mobility group box proteins (TOX)/TOX2 in C57BL/6J mice. Eur J Pharmacol 2023; 947:175680. [PMID: 36990263 DOI: 10.1016/j.ejphar.2023.175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Colon cancer was the second leading cause of cancer-related death in 2019. We herein investigated the effects of acertannin containing Acer species on azoxymethane (AOM)/dextran sulfate sodium (DDS)-induced colon cancer growth and changes in the colonic levels of interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, IL-10, and programmed cell death-1 (PD-1). Colorectal carcinogenesis was induced by an intraperitoneal injection of AOM (10 mg/kg) on days 0 and 27. Mice were given 1% (w/v) DSS drinking water ad libitum on days 7-14, 32-33, and 35-38. Acertannin (30 and 100 mg/kg) was orally administered on days 1-16, discontinued for 11 days (days 16-26), and then administered again on days 27-41. The colonic levels of cytokines, a chemokine, and PD-1 were measured using the respective ELISA kits. The number and area of tumors in mice treated with acertannin (100 mg/kg) decreased by 53.9 and 63.1%, respectively. Furthermore, the colonic levels of IL-1β, MCP-1, IL-10, and PD-1 showed reductions of 57.3, 62.9, 62.8, and 100%, respectively, while the numbers of cyclooxygenase-2 (COX-2)-, thymocyte selection-associated high mobility group box proteins (TOX)/TOX2-, PD-1-, and signal transducer and activator of transcription 3 (STAT3) phosphorylation-positive numbers decreased by 79.6, 77.9, 93.8, and 100%, respectively. In conclusion, the inhibitory effects of acertannin on AOM/DSS-induced colon tumor growth appear to be associated with reductions in the colonic levels of IL-1β, MCP-1, IL-10, and PD-1 through the down-regulated expression of COX-2 and TOX/TOX2 in the tumor microenvironment.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki City, Osaka, 569-1094, Japan.
| | - Masahiko Taniguchi
- Faculty of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, Nasahara, Takatsuki City, Osaka, 569-1094, Japan
| | - Takuo Okuda
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, 700-0083, Japan
| |
Collapse
|
20
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
21
|
Suman S, Moon BH, Datta K, Kallakury BVS, Fornace AJ. Heavy-ion radiation-induced colitis and colorectal carcinogenesis in Il10-/- mice display co-activation of β-catenin and NF-κB signaling. PLoS One 2022; 17:e0279771. [PMID: 36584137 PMCID: PMC9803147 DOI: 10.1371/journal.pone.0279771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Space radiation-induced gastrointestinal (GI) cancer risk models for future interplanetary astronauts are being developed that primarily rely on quantitative animal model studies to assess radiation-quality effects of heavy-ion space radiation exposure in relation to γ-rays. While current GI-cancer risk estimation efforts are focused on sporadic GI-cancer mouse models, emerging in-vivo data on heavy-ion radiation-induced long-term GI-inflammation are indicative of a higher but undetermined risk of GI-inflammation associated cancers, such as colitis-associated cancer (CAC). Therefore, we aimed to assess radiation quality effects on colonic inflammation, colon cancer incidence, and associated signaling events using an in-vivo CAC model i.e., Il10-/- mice. Male Il10-/- mice (8-10 weeks, n = 12/group) were irradiated with either sham, γ-rays or heavy-ions (28Si or 56Fe), and histopathological assessments for colitis and CAC were conducted at 2.5 months post-exposure. qPCR analysis for inflammation associated gene transcripts (Ptges and Tgfb1), and in-situ staining for markers of cell-proliferation (phospho-histone H3), oncogenesis (active-β-catenin, and cyclin D1), and inflammation (phospho-p65NF-κB, iNOS, and COX2) were performed. Significantly higher colitis and CAC frequency were noted after heavy-ion exposure, relative to γ and control mice. Higher CAC incidence after heavy-ion exposure was associated with greater activation of β-catenin and NF-κB signaling marked by induced expression of common downstream inflammatory (iNOS and COX2) and pro-proliferative (Cyclin D1) targets. In summary, IR-induced colitis and CAC incidence in Il10-/- mice depends on radiation quality and display co-activation of β-catenin and NF-κB signaling.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- * E-mail:
| | - Bo-Hyun Moon
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kamal Datta
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bhaskar V. S. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Albert J. Fornace
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
22
|
Ren Y, Nie L, Luo C, Zhu S, Zhang X. Advancement in Therapeutic Intervention of Prebiotic-Based Nanoparticles for Colonic Diseases. Int J Nanomedicine 2022; 17:6639-6654. [PMID: 36582460 PMCID: PMC9793785 DOI: 10.2147/ijn.s390102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora has become a therapeutic target for the intervention of colonic diseases (CDs) with better understanding of the interplay between microbiota and CDs. Depending on unique properties and prominent ability of regulating the intestinal flora, prebiotics can not only achieve a colon-specific drug delivery but also maintain the intestinal homeostasis, thus playing a positive role in the intervention of CDs. Currently, different studies on prebiotic-based nanoparticles have been contrived for colonic drug delivery and have shown great potential in curing various CDs, such as colitis and colorectal cancer. Nevertheless, there is a lack of systematic survey on the use of prebiotic nanoparticles for the treatment of CDs. This review aims to generalize the state-of-the-art of prebiotic nanomedicines specific for CDs. The species and function of intestinal flora and various kinds of prebiotics available as well as their regulating effects on intestinal flora were expounded. A variety of prebiotic nanoparticles pertinent to colon-targeted drug delivery systems were illustrated with particular emphasis on their curative activities on CDs. The efficacy and safety of prebiotic-based colonic drug delivery systems (p-CDDs) were also analyzed. In conclusion, the synergy between prebiotic nanoparticles and their cargos may hold promise for the treatment and intervention of CDs.
Collapse
Affiliation(s)
- Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Linghui Nie
- ASD Medical Rehabilitation Center, the Second People’s Hospital of Guangdong Province, Guangzhou, People’s Republic of China
| | - Chunhua Luo
- Newborn Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, People’s Republic of China
| | - Shiping Zhu
- Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China,Shiping Zhu, Department of Chinese Traditional Medicine, the First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, 513630, People’s Republic of China, Email
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China,Correspondence: Xingwang Zhang, Department of Pharmaceutics, College of Pharmacy, Jinan University, No. 855 East Xingye Avenue, Guangzhou, 511443, People’s Republic of China, Email
| |
Collapse
|
23
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
24
|
Xu R, Wu X, Du A, Zhao Q, Huang H. Identification of cuproptosis-related long non-coding ribonucleic acid signature as a novel prognosis model for colon cancer. Am J Cancer Res 2022; 12:5241-5254. [PMID: 36504883 PMCID: PMC9729908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
Cuproptosis is a novel type of cell death that may play a vital role in preventing various types of cancer. Studies examining cuproptosis are limited, and the cuproptosis-related lncRNAs (long non-Coding ribonucleic acids) involved in the regulation of colon cancer remain unclear. This study aimed to identify the prognostic signature of cupronosis-related lncRNAs and explore their potential molecular functions in colon cancer. Data on the clinical correlation were obtained from The Cancer Genome Atlas (TCGA) database. The differentially expressed cuproptosis-related long non-coding ribonucleic acids (lncRNAs) were analyzed using the "limma" package. Then, the prognostic cuproptosis-related lncRNA signature (CupRLSig) was identified through univariate Cox and co-expression analyses, and a prognostic model was constructed based on CupRLSig using the least absolute shrinkage selection operator (LASSO) algorithm and Cox regression analysis. The Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used for evaluating the model's capacity for prognosis prediction. In addition, the immune landscape, and drug sensitivity of CupRLSig were analyzed. Finally, the functions of AL512306.3 and ZEB1-AS1 were verified through in vitro experiments. The high- or low-risk groups were classified according to the risk score. The signature-based risk score showed a stronger ability to predict patient's survival compared with the traditional clinicopathological features. In addition, immune responses, such as inflammation-promoting response and T-cell co-inhibition, were significantly different between the two groups. Moreover, chemotherapy drugs or inhibitors, such as axitinib, cisplatin, doxorubicin, and elesclomol, may be considered as potential therapeutic drugs for patients in high-risk groups. Finally, inhibition of AL512306.3 and ZEB1-AS1 significantly suppressed the cell proliferation in colon cancer cells. These results provide novel insights into the pathogenesis of colon cancer and offer promising biomarkers with the potential to guide research on carcinogenesis and cancer treatment.
Collapse
Affiliation(s)
- Rong Xu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, China,Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Ashuai Du
- Department of Cell Biology, School of Life Sciences, Central South UniversityChangsha 410013, Hunan, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s HospitalXining 810007, Qinghai, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, China,Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
25
|
Ma Y, Zhang Y, Bi Y, He L, Li D, Wang D, Wang M, Wang X. Diagnostic value of carcinoembryonic antigen combined with cytokines in serum of patients with colorectal cancer. Medicine (Baltimore) 2022; 101:e30787. [PMID: 36123861 PMCID: PMC9478299 DOI: 10.1097/md.0000000000030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In clinical practice, colorectal cancer (CRC) is difficult to distinguish from ulcerative colitis and colon polyps. Practical markers are useful for diagnosing and treating patients with CRC. Carcinoembryonic antigen (CEA) is a biomarker for diagnosing patients with CRC. However, the diagnostic sensitivity and specificity of CEA are not high. Interleukin (IL)-10, IL-17A, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and transforming growth factor beta (TGF-β) are assumed to be closely related to the occurrence and development of human cancer. Some have been used as diagnostic markers in CRC. It remains unclear whether cytokines in combination with CEA could be used as biomarkers for the diagnosis of CRC. Serum levels of IL-10, IL-17, TNF-α, IFN-γ, and TGF-β in patients with CRC, ulcerative colitis, colonic polyps, stomach cancer, and healthy controls were measured by enzyme-linked immunosorbent assay. The serum level of CEA was detected using electrochemiluminescence. The value of the cytokines combined with CEA as a biomarker panel for the diagnosis of CRC was assessed. CEA, IL-10, IL-17A, TNF-α, and TGF-β levels were significantly increased in CRC. CEA displayed a higher specificity than the other cytokines. IL-17A, TNF-α, and TGF-β displayed higher sensitivities than CEA, IL-10, and IFN-γ in the diagnosis of CRC. The combination of serum CEA, IL-17A, and TNF-α achieved higher diagnostic efficacy for CRC (area under the curve = 0.935). The combination of CEA, IL-17, and TNF-α has better diagnostic efficacy than CEA alone in CRC. A panel containing IL-17A, TNF-α, and CEA could be a promising molecular biomarker panel to diagnostically differentiate CRC from ulcerative colitis, colon polyps, and stomach cancer.
Collapse
Affiliation(s)
- Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
- *Correspondence: Yunfeng Ma, Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 76 West Yanta Road, Xi’an, Shaanxi, Province, 710061, China (e-mail: )
| | - Ya Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
- Department of Clinical Laboratory, An’kang Central Hospital, An’kang, Shaanxi Province, China
| | - Yu Bi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Longmei He
- Department of Clinical Laboratory, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Dandan Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Dan Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Mengying Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi Province, China
| | - Xiaoqin Wang
- The Clinical Laboratory, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
26
|
Zhang Z, Zhu Q, Wang S, Shi C. Epigallocatechin-3-gallate inhibits the formation of neutrophil extracellular traps and suppresses the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 pathway. Mol Cell Biochem 2022; 478:887-898. [PMID: 36112238 DOI: 10.1007/s11010-022-04550-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1β, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1β and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.
Collapse
Affiliation(s)
- Zhuoxian Zhang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiuli Zhu
- Department of Genetics, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Siya Wang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
27
|
Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Dis 2022; 8:338. [PMID: 35896522 PMCID: PMC9329358 DOI: 10.1038/s41420-022-01101-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis, a type of inflammatory programmed cell death, is triggered by caspase cleavage of gasdermin family proteins. Based on accumulating evidence, pyroptosis is closely associated with tumour development, but the molecular mechanism underlying pyroptosis activation and the signalling pathways regulated by pyroptosis remain unclear. In this review, we first briefly introduce the definition, morphological characteristics, and activation pathways of pyroptosis and the effect of pyroptosis on anticancer immunity. Then we review recent progress concerning the complex role of pyroptosis in various tumours. Importantly, we summarise various FDA-approved chemotherapy drugs or natural compounds that exerted antitumor properties by inducing pyroptosis of cancer cells. Moreover, we also focus on the current application of nanotechnology-induced pyroptosis in tumour therapy. In addition, some unsolved problems and potential future research directions are also raised.
Collapse
|
28
|
Berberine Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis and Inhibits the Secretion of Gut Lysozyme via Promoting Autophagy. Metabolites 2022; 12:metabo12080676. [PMID: 35893243 PMCID: PMC9394306 DOI: 10.3390/metabo12080676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is one of the primary types of inflammatory bowel disease, the occurrence of which has been increasing worldwide. Research in recent years has found that the level of lysozyme in the feces and blood of UC patients is abnormally elevated, and the bacterial product after the action of lysozyme can be used as an agonist to recognize different cell pattern receptors, thus regulating the process of intestinal inflammation. Berberine (BBR), as a clinical anti-diarrhea and anti-inflammatory drug, has been used in China for hundreds of years. In this study, results showed that BBR can significantly inhibit the expression and secretion of lysozyme in mice. Therefore, we try to investigate the mechanism behind it and elucidate the new anti-inflammatory mechanism of BBR. In vitro, lipopolysaccharide (LPS) was used to establish an inflammatory cell model, and transcriptomic was used to analyze the differentially expressed genes (DEGs) between the LPS group and the LPS + BBR treatment group. In vivo, dextran sulfate sodium salt (DSS) was used to establish a UC mice model, and histologic section and immunofluorescence trails were used to estimate the effect of BBR on UC mice and the expression of lysozyme in Paneth cells. Research results showed that BBR can inhibit the expression and secretion of lysozyme by promoting autophagy via the AMPK/MTOR/ULK1 pathway, and BBR promotes the maturation and expression of lysosomes. Accordingly, we conclude that inhibiting the expression and secretion of intestinal lysozyme is a new anti-inflammatory mechanism of BBR.
Collapse
|
29
|
Huang Y, Zhang X, PengWang, Li Y, Yao J. Identification of hub genes and pathways in colitis-associated colon cancer by integrated bioinformatic analysis. BMC Genom Data 2022; 23:48. [PMID: 35733095 PMCID: PMC9219145 DOI: 10.1186/s12863-022-01065-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Background Colitis-associated colon cancer (CAC) patients have a younger age of onset, more multiple lesions and invasive tumors than sporadic colon cancer patients. Early detection of CAC using endoscopy is challenging, and the incidence of septal colon cancer remains high. Therefore, identifying biomarkers that can predict the tumorigenesis of CAC is in urgent need. Results A total of 275 DEGs were identified in CAC. IGF1, BMP4, SPP1, APOB, CCND1, CD44, PTGS2, CFTR, BMP2, KLF4, and TLR2 were identified as hub DEGs, which were significantly enriched in the PI3K-Akt pathway, stem cell pluripotency regulation, focal adhesion, Hippo signaling, and AMPK signaling pathways. Sankey diagram showed that the genes of both the PI3K-AKT signaling and focal adhesion pathways were upregulated (e.g., SPP1, CD44, TLR2, CCND1, and IGF1), and upregulated genes were predicted to be regulated by the crucial miRNAs: hsa-mir-16-5p, hsa-mir-1-3p, et al. Hub gene-TFs network revealed FOXC1 as a core transcription factor. In ulcerative colitis (UC) patients, KLF4, CFTR, BMP2, TLR2 showed significantly lower expression in UC-associated cancer. BMP4 and IGF1 showed higher expression in UC-Ca compared to nonneoplastic mucosa. Survival analysis showed that the differential expression of SPP1, CFRT, and KLF4 were associated with poor prognosis in colon cancer. Conclusion Our study provides novel insights into the mechanism underlying the development of CAC. The hub genes and signaling pathways may contribute to the prevention, diagnosis and treatment of CAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01065-7.
Collapse
Affiliation(s)
- Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Department of Pathology and Institute of Precision Medicine, Taibai Lake New Area, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong Province, China
| | - PengWang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Yansen Li
- Department of General Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Jie Yao
- Department of Oncology, Jining Hospital of Traditional Chinese Medicine, 3 Huancheng North Road, Jining, 272000, Shandong Province, China.
| |
Collapse
|
30
|
Kimura Y, Sumiyoshi M. Two hydroxyflavanones isolated from Scutellaria baicalensis roots prevent colitis-associated colon cancer in C57BL/6 J mice by inhibiting programmed cell death-1, interleukin 10, and thymocyte selection-associated high mobility group box proteins TOX/TOX2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154076. [PMID: 35378414 DOI: 10.1016/j.phymed.2022.154076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Colorectal cancer was the second leading cause of mortality in 2019 and the number of new colorectal cancer cases was the highest in 2018 and 2019 in Japan. PURPOSE The present study investigated the inhibitory effects of 2(S)-2',5,6',7-tetrahydroxyflavanone and 2 (R), 3(R)-2',3,5,6'-7-pentahydroxyflavanone on the incidence and growth of tumors in azoxymethane (AOM) plus dextran sulfate sodium (DSS)-treated mice. METHODS The intraperitoneal administration of AOM (10 mg/kg) on day 0 induced colorectal carcinogenesis. Mice were given free and unlimited access to drinking water containing 1.5% (w/v) DSS on days 5 - 8, 30 - 33, and 56 - 57. They were orally administered tetra- and penta-hydroxyflavanones (10 and 30 mg/kg) for 10, 11, and 14 days followed by discontinuation intervals of 20 and 15 days. Cytokine, chemokine, programmed cell death-1 (PD-1), cyclooxygenase (COX)-2, and thymocyte selection-associated high mobility group box protein (TOX)/TOX2 expression levels were measured using their respective ELISA kits and an immunohistochemical analysis. RESULTS The number and area of tumors decreased by 60.6 and 72.9% in mice administered 10 mg/kg tetra- and pentahydroxyflavanones, respectively, with reductions of 95.0 and 87.0% in Ki-67-positive cells, 91.7 and 92.7% in COX-2-postive cells, and 83.1 and 93.8% in TOX/TOX2-positive cells, respectively, in the colon. On the other hand, two tera- and pentahydroxyflavanone had no effect on p53 (a tumor suppressor by cell cycle arrest and apoptosis)-positive cells. The administration of 10 mg/kg tetra- and pentahydroxyflavanones to AOM/DSS-treated mice also resulted in decreases of 59.5 and 42.5% in IL-10 levels and 58.1 and 93.9% in PD-1 levels, respectively, in the colon. CONCLUSION The inhibitory effects of tetra- and pentahydroxyflavanones on the growth of colon tumors in AOM/DSS-treated mice appear to be associated with decreases in the colon levels of IL-10 and PD-1 through the down-regulated expression of COX-2 and CD8+ T-cell exhaustion by TOX/TOX2 in the tumor microenvironment.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Department of Functional Biomedicine, Graduate School of Medicine, Ehime University, Toon city, Ehime 791-0295, Japan.
| | - Maho Sumiyoshi
- Department of Functional Biomedicine, Graduate School of Medicine, Ehime University, Toon city, Ehime 791-0295, Japan
| |
Collapse
|
31
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
32
|
Hakura A, Koyama N, Seki Y, Sonoda J, Asakura S. o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea, which are mutagenic but not carcinogenic in the colon, rapidly induce colonic tumors in mice with dextran sulfate sodium-induced colitis. Genes Environ 2022; 44:11. [PMID: 35351212 PMCID: PMC8966303 DOI: 10.1186/s41021-022-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several rodent models with chemically induced colon cancer have been developed. Among these models, dextran sulfate sodium (DSS), a colitis inducer, combined with azoxymethane as a colon mutagenic carcinogen, is commonly used. We previously reported that although benzo [a] pyrene (BP) is mutagenic but not carcinogenic in the colon, it rapidly develops colon tumors at a high incidence/multiplicity after treatment with DSS. In the present study, we examined whether other colon-mutagenic non-carcinogens (CMNCs) induced colon tumors after treatment with DSS. RESULTS o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea were selected as CMNCs. Male CD2F1 mice were orally administered CMNC for 5 consecutive days. After a 9-day dose-free period, mice were treated with 4% DSS in drinking water for 1 week. Three months after DSS treatment, colon samples were collected for histopathology and β-catenin immunohistochemistry analyses. All CMNCs in combination with DSS induced colonic adenocarcinomas at a high incidence/multiplicity in the distal and middle parts of the colon, coinciding with the location of colitis. Unlike in normal cells where β-catenin is exclusively located on the cell membrane, in adenocarcinoma cells, it was translocated to both the nucleus and cytoplasm or only to cytoplasm. The translocation of β-catenin is closely associated with colon carcinogenesis in rodents and humans. No colonic tumors or dysplastic lesions were found after exposure to either CMNC or DSS alone. CONCLUSION We provided further evidence clearly showing that CMNCs can rapidly induce colonic tumors in mice with DSS-induced colitis, even if they are not colonic carcinogens.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Naoki Koyama
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety (present affiliation, Advanced Data Assurance), Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
33
|
Jiang L, Chi C, Yuan F, Lu M, Hu D, Wang L, Liu X. Anti-inflammatory effects of anemonin on acute ulcerative colitis via targeted regulation of protein kinase C-θ. Chin Med 2022; 17:39. [PMID: 35346284 PMCID: PMC8962473 DOI: 10.1186/s13020-022-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease that causes continuous mucosal inflammation. Anemonin is a natural molecule from the Ranunculaceae and Gramineae plants that exerts anti-inflammatory properties. This study aimed to explore the effects and mechanisms of anemonin on UC. Methods C57BL/6 mice were administered dextran sulphate sodium (DSS; 3% [w/v]) to establish an animal model of UC. Mice were treated with an intraperitoneal injection of anemonin. Body weight and the disease activity index (DAI) were recorded. Haematoxylin and eosin staining, RT-qPCR, ELISA, and western blotting were performed to evaluate the histopathological changes and tissue inflammation. HT-29 cells were treated with lipopolysaccharide (LPS) and anemonin. Cell inflammation was evaluated using RT-qPCR and western blotting. The target proteins of anemonin were predicted using bioinformatics analysis and confirmed in vitro and in vivo. Results Anemonin improved DSS-induced body weight loss, shortened colon length, increased DAI, and induced pathological changes in the colon tissue of mice. Anemonin inhibited DSS-induced colon tissue inflammation as the release of IL-1β, TNF-α, and IL-6 was significantly suppressed. Additionally, anemonin attenuated LPS-induced cytokine production in HT-29 cells. PKC-θ was predicted as a target protein of anemonin. Anemonin did not affect PRKCQ gene transcription, but inhibited its translation. PRKCQ overexpression partially reversed the protective effects of anemonin on HT-29 cells. Adeno-associated virus delivery of the PRKCQ vector significantly reversed the protective effects of anemonin on the mouse colon. Conclusions Anemonin has the potential to treat UC. The anti-inflammatory effects of anemonin may be mediated through targeting PKC-θ.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China.
| | - Chunhua Chi
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Fang Yuan
- Department of Gastrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Meiqi Lu
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Lin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Xiaoming Liu
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua west road, Jinan, 250011, Shandong, China.
| |
Collapse
|
34
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
35
|
Celecoxib-Induced Modulation of Colon Cancer CD133 Expression Occurs through AKT Inhibition and Is Monitored by 89Zr Immuno-PET. Mol Imaging 2022; 2022:4906934. [PMID: 35115900 PMCID: PMC8791662 DOI: 10.1155/2022/4906934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/21/2023] Open
Abstract
We developed an immuno-PET technique that monitors modulation of tumor CD133 expression, which is required for the success of CD133-targeted therapies. Methods. Anti-CD133 antibodies were subjected to sulfhydryl moiety-specific 89Zr conjugation. 89Zr-CD133 IgG was evaluated for specific activity and radiolabel stability. Colon cancer cells underwent binding assays and Western blotting. Biodistribution and PET studies were performed in mice. Results. 89Zr-CD133 IgG showed excellent target specificity with 97.2 ± 0.7% blocking of HT29 cell binding by an excess antibody. Intravenous 89Zr-CD133 IgG followed biexponential blood clearance and showed CD133-specific uptake in HT29 tumors. 89Zr-CD133 IgG PET/CT and biodistribution studies confirmed high HT29 tumor uptake with lower activities in the blood and normal organs. In HT29 cells, celecoxib dose-dependently decreased CD133 expression and 89Zr-CD133 IgG binding that reached 19.9 ± 2.1% (P < 0.005) and 50.3 ± 10.9% (P < 0.001) of baseline levels by 50 μM, respectively. Celecoxib treatment of mice significantly suppressed tumor CD133 expression to 67.5 ± 7.8% of controls (P < 0.005) and reduced tumor 89Zr-CD133 IgG uptake from 15.5 ± 1.4% at baseline to 12.3 ± 2.0%ID/g (P < 0.01). Celecoxib-induced CD133 reduction in HT29 cells and tumors was associated with substantial suppression of AKT activation. There were also reduced HIF-1α accumulation and IκBα/NFκB phosphorylation. Conclusion. 89Zr-CD133 IgG PET provides high-contrast tumor imaging and monitors celecoxib treatment-induced modulation of tumor CD133 expression, which was found to occur through AKT inhibition. This technique may thus be useful for screening drugs that can effectively suppress colon cancer stem cells.
Collapse
|
36
|
Wang L, Zhu H, Sun W, Liang L, Li H, Han C, Huang W, Zhao B, Peng P, Qin M, Shi L, Mo Y, Huang J. Low expression of bestrophin-2 is associated with poor prognosis in colon cancer. Gene 2021; 813:146117. [PMID: 34902511 DOI: 10.1016/j.gene.2021.146117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this research was to confirm the prognostic value of bestrophin-2 (BEST2), one of the hub genes in colon cancer, via bioinformatics analysis and validation in public databases and immunohistochemistry detection. METHODS The GEO2R online tool and Venn diagram software were utilized to identify differentially expressed genes (DEGs) from expression profiles, including GSE20916, GSE44861 and GSE74602, from the Gene Expression Omnibus (GEO). The overall survival (OS) and disease-free survival (DFS) of colon cancer patients from The Cancer Genome Atlas (TCGA) were analyzed through Kaplan-Meier survival curves. Verification of the significance of BEST2 in colon cancer was based on TCGA, Genotype Tissue Expression (GTEx) and 10 datasets from GEO. BEST2 expression was detected with immunohistochemistry (IHC) in 330 colon tissue samples on microarrays including 165 colon cancerand 165 adjacent normal tissues. For further validation, comprehensive analysis from tissue microarrays and multiple datasets was performed by the summarizing of receiver operating characteristic (SROC) curves and the standard mean differences (SMDs). BEST2 expression in various kinds of colon cancer tissues and cell lines in the context of pancancer was obtained from the Expression Atlas database. The CBioPortal database was queried to identify BEST2 gene alterations and mutation status in colon cancer. Correlated genes (CEGs) with BEST2 and DEGs from public database data were assembled for functional and pathway enrichment analysis. RESULTS We identified 85 DEGs from the three datasets and screened out BEST2 as a prognostic predictor via the TCGA database. Colon cancer patients with high expression of BEST2 had better survival than patients with low BEST2 (HR = 0.5, P = 0.006) as shown in Kaplan-Meier survival curves in GEPIA. In all, 1463 colon cancer tissues and 1023 colon normal tissues were gathered via public databases as well as in-house tissue microarrays. The comprehensiveexpression analysis suggested low-expression of BEST2 in colon cancer (SMD = -2.48, 95% CI [-3.15- -1.80]) and the notable efficacy of BEST2 expression in differentiating colon cancer from noncancer samples (AUC = 0.97). Gene alteration status of BEST2 occurred in 5% of colon cancer cases, mostly missense mutations and deep deletions. Genes positively correlated with BEST2 and DEGs primarily aggregated in pathways such as anion absorption, digestive juice secretion, cAMP signaling and so on (P < 0.05). CONCLUSION Ampleevidencesupportsthe role of BEST2 in distinguishing colon cancer from normal tissues in this research. Low expression of BEST2 is correlated with a shorter OS, which implies that BEST2 can be employed as a potential biomarker and therapeutictarget in colon cancer.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Huawei Zhu
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Weiliang Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Li Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Hui Li
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Chenglong Han
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Wenfeng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Bi Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Ling Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yueqing Mo
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
37
|
Chen K, Zhang B, Li J, Pan A, Cao L, Zhao X, Huang S, Chen L. TiaochangXiaoliu decoction inhibits azomethane (AOM)/dextran sulfate sodium (DSS)-induced colorectal cancer by regulating immune response. J Gastrointest Oncol 2021; 12:2223-2231. [PMID: 34790387 DOI: 10.21037/jgo-21-580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Abstract
Background TiaochangXiaoliu decoction (TXD) has an anti-tumor effect in clinical practice. We further investigated the role of TXD in colorectal cancer (CRC). Methods Mouse models of CRC were induced by azomethane (AOM)/dextran sulfate sodium (DSS), with sixty male C57BL/6 mice randomly divided into six groups (10 mice/group): a control group, AOM/DSS group, TXD at low dose (L-dose) group, middle dose (M-dose) group, high dose (H-dose) group, and Celecoxib (Cel) group. The colorectum, serum, and plasma of mice in each group was collected following sacrifice to record the number of tumors. HE staining was utilized for observing pathological damage to colorectal tissues, ELISA used for detecting INF-γ, IL-2, and TNF-α expression in serum, and flow cytometry used for measuring the proportion of CD4+, CD8+, CD4+/CD8+, and NK cells in plasma. Results Compared with the control group, the AOM/DSS group showed tumor masses in the colorectum and different degrees of pathological damage in the intestine. AOM/DSS induction also resulted in an increase in INF-γ, IL-2, and TNF-α expression in serum, and a decrease in the percentages of CD4+, CD8+, CD4+/CD8+, and NK cells(P<0.05). In comparison with the AOM/DSS group, with the increase of TXD dose, the number of tumors decreased significantly, and intestinal structure and mucosal inflammatory cell infiltration also improved. Further, in comparison with the AOM/DSS group, all three doses of TXD and celecoxib caused an increase in the contents of CD4+, CD8+, CD4+/CD8+, and NK cells in plasma. In addition, in the M-dose, H-dose, and Cel groups, INF-γ, IL-2, and TNF-α expression showed a marked decrease, and the reduction in these two groups treated with TXD was dose-dependent. Conclusions TXD leads to a marked reduction in the number of tumors and inflammatory cell infiltration in CRC mice. This decoction significantly decreased the levels of INF-γ, IL-2, and TNF-α in serum, and increased the contents of CD4+, CD8+, CD4+/CD8+, and NK cell in the plasma of mice with AOM/DSS-induced CRC.
Collapse
Affiliation(s)
- Kefang Chen
- Department of Spleen and Stomach Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Beiping Zhang
- Department of Spleen and Stomach Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aizhen Pan
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhui Cao
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiying Zhao
- Department of Spleen and Stomach Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suiping Huang
- Department of Spleen and Stomach Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liudan Chen
- Department of Acupuncture and Moxibustion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Boccarelli A, Del Buono N, Esposito F. Analysis of fibroblast genes selected by NMF to reveal the potential crosstalk between ulcerative colitis and colorectal cancer. Exp Mol Pathol 2021; 123:104713. [PMID: 34666047 DOI: 10.1016/j.yexmp.2021.104713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Patients with ulcerative colitis (UC) have an increased risk of developing colorectal cancer (CRC). The CRC risk extent raises with increasing age, duration of symptoms, severity of inflammation and dysplasia. CRC is a complex multi-stage process and associated with UC represents 2% of all colon cancers. With the aim of clarifying some aspects of the evolution of UC towards CRC, we characterized the phenotype of fibroblasts present in the mucosa of subjects affected by UC to verify whether they can contribute to the genesis of a microenvironment favorable to tumor transformation. The fibroblast phenotype was obtained with the help of transcriptome analysis adopting a novel framework based on Nonnegative Matrix Factorization (NMF) which automatically extracts a limited number of genes from fibroblast gene expression profiles of patients with UC and CRC. These genes may be considered possible candidates in generating a permissive microenvironment for the evolution of disease under study.
Collapse
Affiliation(s)
- Angelina Boccarelli
- Department of Biomedical Science and Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, Bari, Italy.
| | - Nicoletta Del Buono
- Department of Mathematics, University of Bari Aldo Moro, via E. Orabona 4, Bari 70125, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, Roma 00185, Italy.
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, via E. Orabona 4, Bari 70125, Italy; INDAM-GNCS Research Group, Piazzale Aldo Moro, 5, Roma 00185, Italy.
| |
Collapse
|
39
|
Kimura Y. Long-Term Oral Administration of Piceatannol (3,5,3',4'-Tetrahydroxystilbene) Attenuates Colon Tumor Growth Induced by Azoxymethane Plus Dextran Sulfate Sodium in C57BL/6J Mice. Nutr Cancer 2021; 74:2184-2195. [PMID: 34622729 DOI: 10.1080/01635581.2021.1985532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The effects of 3,5,3',4'-tetrahydroxystilbene (piceatannol) on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer growth and changes in IL-1β, IL-6, tumor necrosis factor-α (cytokines), MCP-1, vascular endothelial growth factor, and PD-1 colon levels were investigated herein. METHODS AOM (10 mg/kg, i.p.) on day 0 induced colorectal carcinogenesis. On day 3, mice were provided with water containing 1.5% (w/v) DSS ad libitum for 3 day, and this 3-day drinking protocol was repeated twice. Piceatannol (5 and 12.5 mg/kg, twice daily) was orally administered to mice for 7-, 7-, 7-, and 6-day and then discontinued for 14-, 15-, and 16-day. Cytokines, chemokine, and PD-1 colon levels were measured by the respective ELISA kits. RESULTS In mice administered piceatannol (12.5 mg/kg), the tumor number, tumor area, and Ki-67-positive cell numbers decreased by 30.1%, 57.2%, and 89.1%, respectively, colon MCP-1 and PD-1 levels showed reductions of 43.8% and 70.9%, respectively, and COX-2-positive cell numbers declined by 60.2%. CONCLUSIONS The inhibitory effects of piceatannol on AOM/DSS-induced colon tumor growth appear to be associated with reductions in colon MCP-1 and PD-1 levels through the downregulated expression of COX-2 in the tumor microenvironment.
Collapse
Affiliation(s)
- Yoshiyuki Kimura
- Department of Functional Biomedicine, Graduate School of Medicine, Ehime University, Toon City, Ehime, Japan
| |
Collapse
|
40
|
Huang L, Zhang H, Zhao D, Hu H, Lu Z. Interleukin-38 Suppresses Cell Migration and Proliferation and Promotes Apoptosis of Colorectal Cancer Cell Through Negatively Regulating Extracellular Signal-Regulated Kinases Signaling. J Interferon Cytokine Res 2021; 41:375-384. [PMID: 34612721 DOI: 10.1089/jir.2021.0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammatory cytokines has been of great interest in the field of colorectal cancer (CRC) tumor immunology in recent years. As an anti-inflammatory interleukin (IL), IL-38 may contribute to the early diagnosis of CRC and improve the prognosis of CRC patients. This study was designed to investigate the role of circulating IL-38 and the regulatory mechanism of IL-38 in CRC. Expression of IL-38 were detected by ELISA and immunohistochemical staining. The influence of IL-38 on CRC were evaluated by Western blot and cell biology assays after CRC cells were treated by rhIL-38 or LM22B-10. We also verified the anti-tumor activity of IL-38 in transgenic mouse model. The expression of IL-38 was found to be correlated with progression of CRC. IL-38 inhibits CRC metastasis, proliferation and facilitates apoptosis through suppressing the activation of extracellular signal-regulated kinases (ERK) signaling pathway inducing the decrease of downstream genes, which were partially abrogated by ERK activator LM22B-10 in vitro. We also found that IL-38 overexpression inhibits tumorigenesis in vivo. Our findings indicate that IL-38 may serve as a serum prediction marker to identify the prognosis of CRC patients. IL-38 may inhibit the progression of CRC by negatively regulation on ERK signaling pathway.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhao
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Hu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Chen Y, Hou W, Zhong M, Wu B. Comprehensive Proteomic Analysis of Colon Cancer Tissue Revealed the Reason for the Worse Prognosis of Right-Sided Colon Cancer and Mucinous Colon Cancer at the Protein Level. Curr Oncol 2021; 28:3554-3572. [PMID: 34590603 PMCID: PMC8482240 DOI: 10.3390/curroncol28050305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
To clarify the molecular mechanisms underlying the poor prognosis of right-sided and mucinous colon cancer at the proteomic level. A tandem mass tag-proteomics approach was used to identify differentially expressed proteins (DEPs) in colon carcinoma tissues from different locations and with different histological types to reveal the underlying mechanisms of these differences at the protein level. In additional, the DEPs were analyzed using bioinformatics methods. The proteomics profiles among colon cancers with different tumor locations and histological types were dramatically distinguished. In terms of tumor locations, the right-sided carcinoma specific DEPs may promote the tumor progression via activating inflammation, metastasis associated pathways. When referring to histological types, the mucinous colon cancers perhaps increased the invasion and metastasis through distinct mechanisms in different tumor locations. For mucinous cancer located in right-sided colon, the mucinous specific DEPs were mainly associated with ECM-related remodeling and the IL-17 signal pathway. For mucinous cancer located in left-sided colon, the mucinous specific DEPs showed a strong relationship with ACE2/Ang-(1–7)/MasR axis. The proteomics profiles of colon cancers showed distinct differences related to locations and histological types. These results suggested a distinct mechanism underlying the diverse subtypes of colon cancers.
Collapse
Affiliation(s)
- Yanyu Chen
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Wenyun Hou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.H.); (M.Z.)
| | - Miner Zhong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.H.); (M.Z.)
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (W.H.); (M.Z.)
- Correspondence: ; Tel.: +86-010-69156470
| |
Collapse
|
42
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
43
|
Li LC, Ning DS, Fu YX, Pan ZH. Structure elucidation and anti-inflammatory mechanism of difengpienol C, a new neolignan isolated from Illicium difengpi. Fitoterapia 2021; 153:104949. [PMID: 34087408 DOI: 10.1016/j.fitote.2021.104949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Illicium difengpi is well-known as its stem barks that have been widely used in the Traditional Chinese Medicine (TCM) for therapy rheumatoid arthritis and traumatic injury. To comprehensive utilization of resources, the phytochemical investigation on the branches and leaves of this plant was carried out, which led to the isolation of an undescribed neolignan along with three known lignans. Their structures were elucidated on the basis of extensive spectroscopic data and the new compound was elucidated as a neolignan possessing a dihydropyran ring formed by a unique conjugation way and named difengpienol C. Difengpienol C showed the strongest anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, which powerfully inhibited nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) production and suppressed the mRNA transcription of inducible nitric oxide synthase (iNOS), IL-6 and TNF-α. Besides, difengpienol C blocked the activation of TLR4/MyD88/NF-κB signaling pathway. Therefore, difengpienol C might be a potent agent for anti-inflammatory drug development, and the non-traditional medicinal parts of Illicium difengpi can be identified as the source of natural anti-inflammatory molecules.
Collapse
Affiliation(s)
- Lian-Chun Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China.
| | - De-Sheng Ning
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China.
| | - Yu-Xia Fu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Zheng-Hong Pan
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China.
| |
Collapse
|
44
|
Tao J, Tu Y, Liu P, Tang Y, Wang F, Li Z, Li C, Li Y, Ma Y, Gu Y. Detection of colorectal cancer using a small molecular fluorescent probe targeted against c-Met. Talanta 2021; 226:122128. [DOI: 10.1016/j.talanta.2021.122128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
|
45
|
Lu S, Liu Z, Wang B, Li F, Meng Y, Wang J, Wang Y, Wang H, Zhou X, Fu W. High CFP score indicates poor prognosis and chemoradiotherapy response in LARC patients. Cancer Cell Int 2021; 21:205. [PMID: 33849545 PMCID: PMC8045186 DOI: 10.1186/s12935-021-01903-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Preoperative tumor markers, inflammation, and nutritional status are considered important predictors of prognosis and tumor response in locally advanced rectal cancer (LARC) patients. This study aims to explore the prognostic and predictive role of carcinoembryonic antigen (CEA), the Fibrinogen-Albumin Ratio Index (FARI), the Prognostic Nutritional Index (PNI) in LARC patients and compared them with a novel combined CEA-FARI-PNI (CFP) scoring system. METHODS A total of 138 LARC patients undergoing radical surgery following neoadjuvant chemoradiotherapy (NCRT) between January 2012 and March 2019 were enrolled. The X-tile program was used to determine the optimal cut-off values of CEA, FARI, and PNI, and CFP scoring system was constructed accordingly. The prognostic ability of these factors was assessed by the time-dependent receiver operating characteristic (ROC) curve, Kaplan-Meier, Cox regression, and logistic regression. Nomogram was established to evaluate the predictive role of these factors in tumor response. RESULTS The optimal cut-off values of CEA, FARI, and PNI were 5.15 ng/l, 10.56%, and 42.25 g/L, respectively. The time-dependent ROC curve showed that compared to CEA, FARI, and PNI, CFP showed stable predictive efficacy for overall survival (OS) and disease-free survival (DFS). In multivariate analysis, CFP was the only factor that could independently predict OS (HR = 8.117, p = 0.001) and DFS (HR = 4.994, p < 0.001). Moreover, high CFP (OR = 3.693, p = 0.002) was also an independent risk factor of poor response. The area under the ROC curve (AUC) of the nomograms for predicting tumor response was better including CFP (0.717) than without CFP (0.656) (p < 0.05). CONCLUSIONS The CFP score was a more reliable marker for predicting OS, DFS, and NCRT efficacy in LARC patients, and the score could apparently improve predicted efficacy of the nomogram.
Collapse
Affiliation(s)
- Siyi Lu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhenzhen Liu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Bingyan Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Li
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Meng
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Junwei Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yuxia Wang
- Department of Radiotherapy, Peking University Third Hospital, Beijing, 100191, China
| | - Hao Wang
- Department of Radiotherapy, Peking University Third Hospital, Beijing, 100191, China.
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
46
|
Ya-ying L, Di W, Huan-gan W, Mu-en G, Qi L, Zhe M, Yan H, Yuan L, Kun-shan L, Lu-yi W. Effects of moxibustion on the P2X7R/STAT3/VEGF pathway in rats with colitis-associated colon cancer. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Xu Y, Xu X, Ocansey DKW, Cao H, Qiu W, Tu Q, Mao F. CircRNAs as promising biomarkers of inflammatory bowel disease and its associated-colorectal cancer. Am J Transl Res 2021; 13:1580-1593. [PMID: 33841681 PMCID: PMC8014397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
In recent years, research on the pathogenesis of inflammatory bowel disease (IBD) and its associated-colorectal cancer has been well documented to involve environmental, genetic, immune, and intestinal microbiota factors. Evidence indicates that, regardless of the current high global incidence of IBD with over 3.5 million cases in Europe and North America only, it continues to emerge in newly industrialized countries across Asia, Middle East, and South America. Individuals with IBD have significant increased risk of gastrointestinal and extra-intestinal malignancies, particularly, colorectal cancer (CRC) and lymphomas. Among the significant areas of exploration in IBD and its associated-CRC is the search for effective and reliable diagnostic and prognostic markers, and treatment targets. To this effect, the role of non-coding RNAs in IBD and its associated-CRC has attracted research attention, among which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) get more detailed exploration while little is known about circular RNAs (circRNAs). This review focuses on the emerging role of circRNAs in the diagnosis, prognosis, and treatment of IBD and its associated-CRC. It introduces the biogenesis of circRNAs and brings an up-to-date report on those found within IBD and CRC environment, as well as their participation toward the promotion or suppression of the conditions, and their diagnostic potentials.
Collapse
Affiliation(s)
- Yuting Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Directorate of University Health Services, University of Cape CoastGhana
| | - Hua Cao
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Wei Qiu
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Qiang Tu
- Nanjing Jiangning HospitalNanjing 211100, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
48
|
Uludag SS, Sanli AN, Zengin AK, Ozcelik MF. Systemic Inflammatory Biomarkers as Surrogate Markers for Stage in Colon Cancer. Am Surg 2021; 88:1256-1262. [PMID: 33596111 DOI: 10.1177/0003134821995059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND This study aimed to investigate whether the systemic inflammatory parameters currently in use in staging the disease can be used as biomarker tests operated colon cancer patients. Neutrophil, lymphocyte, monocyte, platelet, neutrophil/lymphocyte ratio (NLR), lymphocyte/monocyte ratio (LMR), platelet/lymphocyte ratio (PLR), neutrophil/monocyte ratio (NMR), CRP, albumin, lymphocyte/CRP ratio, CRP/albumin ratio, and neutrophil/albumin ratio as systemic inflammatory biomarkers and prognostic nutritional index (PNI) were evaluated. METHODS This retrospective study included 592 patients. Patients with colon cancer in the cohort were divided into 2 subgroups: Tumor, nodes, metastases (TNM) stage 0, TNM stage 1, and TNM stage 2; early stage (n: 332) and TNM stage 3 and TNM stage 4; late stage (n: 260) colon cancer patients. RESULTS LDH (P < .001), NLR (P < .001), PLR (P < .05), CRP/albumin (P < .01), and neutrophil/albumin (P < .01) were significantly higher, while monocyte count (P < .05) and PNI (P < .01) were found to be significantly lower in late stage colon cancer patients than in early stage colon cancer patients. Moderate negative correlation was found between the PNI and the neutrophil/albumin ratio in late stage colon cancer patients (r: -.568, P < .001). CONCLUSIONS Our data suggest that high serum LDH, NLR, PLR, CRP/albumin, and neutrophil/albumin may be useful predictive markers for advanced stage in colon cancer. According to the receiver operating characteristic analysis results, CRP/albumin ratio can be used to discriminate early from late stage. Preoperative low monocyte count and PNI are associated with postoperative staging patients with colon cancer.
Collapse
Affiliation(s)
- Server Sezgin Uludag
- Department of Surgery, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Necati Sanli
- Department of Surgery, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdullah Kagan Zengin
- Department of Surgery, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Faik Ozcelik
- Department of Surgery, Cerrahpasa Medicine Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
49
|
Han YM, Koh J, Kim JH, Lee J, Im JP, Kim JS. Astragalin Inhibits Nuclear Factor-κB Signaling in Human Colonic Epithelial Cells and Attenuates Experimental Colitis in Mice. Gut Liver 2021; 15:100-108. [PMID: 32390406 PMCID: PMC7817923 DOI: 10.5009/gnl19268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background/Aims Astragalin (kaempferol-3-O-β-D-glucoside) is a flavonoid isolated from the leaves of persimmon or Rosa agrestis. Astragalin exhibits various anti-inflammatory properties; however, little is known about its therapeutic potential for inflammatory bowel disease (IBD). This study aims to investigate the anti-inflammatory effect of astragalin via blockade of the nuclear factor κB (NF-κB) signaling pathway in human colonic epithelial cells and a murine colitis model. Methods HCT-116 and HT-29 human colonic epithelial cells were pretreated with astragalin and stimulated with tumor necrosis factor-α (TNF-α). Cell viability was assessed by the MTS assay. Real-time reverse transcription polymerase chain reaction was used to analyze the messenger RNA expression of the inflammatory cytokines interleukin (IL)-6 and IL-8. The effect of astragalin on the NF-κB pathway was evaluated by Western blot analysis of inhibitor of NF-κB alpha (IκBα) phosphorylation/degradation and by electrophoretic mobility shift assay. Dextran sulfate sodium (DSS)-induced acute murine colitis model was used for in vivo experiments. Results Astragalin strongly suppressed the expression of proinflammatory cytokines in human colonic epithelial cells in a dose-dependent manner. Western blot analysis showed that astragalin inhibited IκBα phosphorylation/degradation. Additionally, astragalin reduced the DNA binding activity of NF-κB. Astragalin alleviated colon shortening and improved the pathologic scores in DSS-induced acute murine colitis model. Furthermore, astragalin reduced the level of phosphorylated IκBα and decreased the production of the inflammatory cytokines IL-6, IL-8, and TNF-α in the DSS-treated colon mucosa. Conclusions Astragalin exerted an anti-inflammatory effect through NF-κB pathway inhibition and attenuated murine colitis. Astragalin is thus a potential therapeutic agent for IBD.
Collapse
Affiliation(s)
- Yoo Min Han
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul, Korea
| |
Collapse
|
50
|
Wang H, Wang DH, Yang X, Sun Y, Yang CS. Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis 2020; 42:557-569. [PMID: 33196831 DOI: 10.1093/carcin/bgaa122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis increases the risk of colorectal cancer; however, the mechanism of the association between colitis and cancer remains largely unknown. To identify colitis-associated cancer promoting factors, we investigated gene expression changes caused by dextran sulfate sodium (DSS)-induced colitis in mice. By analyzing gene expression profiles, we found that IL11 was upregulated in DSS-induced colitis tissue and 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP)/DSS-induced colon tumours in mice as well as in human colorectal cancer. By characterizing the activation/phosphorylation of STAT3 (pSTAT3), we found that pSTAT3 was induced transiently in colitis, but maintained at higher levels from hyper-proliferative dysplastic lesions to tumours. Using the IL11 receptor (IL11Rα1) knockout mice, we found that pSTAT3 in the newly regenerated crypt epithelial cells in colitis is abolished in IL11Rα1+/- and -/- mice, suggesting that colitis-induced IL11 activates STAT3 in colon crypt epithelial cells. Moreover, colitis-promoted colon carcinogenesis was significantly reduced in IL11Rα1+/- and -/- mice. To determine the roles of the IL11 in colitis, we found that the inhibition of IL11 signalling by recombinant IL11 antagonist mutein during colitis was sufficient to attenuate colitis-promoted carcinogenesis. Together, our results demonstrated that colitis-induced IL11 plays critical roles in creating cancer promoting microenvironment to facilitate the development of colon cancer from dormant premalignant cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David H Wang
- Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuhai Sun
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|