1
|
Yadav D, Dutruel SP, O'Dwyer E, Ricaurte-Fajardo A, Upadhyay R, Palmer JD, Pannullo SC, Tagawa ST, Knisely JPS, Brandmaier A, Osborne JR, Ivanidze J. PSMA PET improves characterization of dural-based intracranial lesions in patients with metastatic prostate cancer. Eur J Radiol 2024; 180:111711. [PMID: 39226675 DOI: 10.1016/j.ejrad.2024.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Theranostic approaches combining prostate-specific membrane antigen (PSMA)-PET/CT or PET/MRI with PSMA-targeted radionuclide therapy have improved clinical outcomes in patients with prostate cancer (PCa) especially metastatic castrate resistant prostate cancer. Dural metastases in PCa are rare but can pose a diagnostic challenge, as meningiomas, a more common dural based lesions have been shown to express PSMA. The aim of this study is to compare PSMA PET parameters between brain lesions classified as dural metastases and meningiomas in prostate cancer patients. METHODS A retrospective analysis of PSMA PET/CT scans in patients with PCa and intracranial lesions was conducted. Brain lesions were categorized as dural metastases or meningiomas based on MRI characteristics, longitudinal follow-up, and histopathological characteristics. Standardized uptake values (SUVmax) of each brain lesion were measured, along with SUV ratio referencing parotid gland (SUVR). SUVs between lesions classified as metastases and meningiomas, respectively, were compared using Mann-Whitney-test. Diagnostic accuracy was evaluated using ROC analysis. RESULTS 26 male patients (median age: 76.5 years, range: 59-96 years) met inclusion criteria. A total of 44 lesions (7 meningiomas and 37 metastases) were analyzed. Median SUVmax and SUVR were significantly lower in meningiomas compared to metastases (SUVmax: 2.7 vs. 11.5, p = 0.001; SUVR: 0.26 vs. 1.05, p < 0.001). ROC analysis demonstrated AUC 0.903; the optimal cut-off value for SUVR was 0.81 with 81.1 % sensitivity and 100 % specificity. CONCLUSION PSMA PET has the potential to differentiate meningiomas from dural-based metastases in patients with PCa, which can optimize clinical management and thus improve patient outcomes.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Radiology, Weill Cornell Medicine, NY, United States
| | | | | | | | - Rituraj Upadhyay
- Department of Radiation Oncology, James Cancer Center, Ohio State University, OH, United States
| | - Joshua D Palmer
- Department of Radiation Oncology, James Cancer Center, Ohio State University, OH, United States
| | - Susan C Pannullo
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Scott T Tagawa
- Department of Medical Oncology and Urology, Weill Cornell Medicine, NY, United States
| | | | - Andrew Brandmaier
- Department of Radiation Oncology, Weill Cornell Medicine, NY, United States
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, NY, United States.
| |
Collapse
|
2
|
Ghaderi S, Mohammadi S, Fatehi F. Diffusion Tensor Imaging (DTI) Biomarker Alterations in Brain Metastases and Comparable Tumors: A Systematic Review of DTI and Tractography Findings. World Neurosurg 2024; 190:113-129. [PMID: 38986953 DOI: 10.1016/j.wneu.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Brain metastases (BMs) are the most frequent tumors of the central nervous system. Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides insights into brain microstructural alterations and tensor metrics and generates tractography to visualize white matter fiber tracts based on diffusion directionality. This systematic review assessed evidence from DTI biomarker alterations in BMs and comparable tumors such as glioblastoma. METHODS PubMed, Scopus, and Web of Science were searched, and published between January 2000 and August 2023. The key inclusion criteria were studies reporting DTI metrics in BMs and comparisons with other tumors. Data on study characteristics, tumor types, sample details, and main DTI findings were extracted. RESULTS Fifty-seven studies with 1592 BM patients and 1578 comparable brain tumors were included. Peritumoral fractional anisotropy (FA) consistently differentiates BMs from primary brain tumors, whereas intratumoral FA shows limited discriminatory power. Mean diffusivity increased in BMs versus comparators. Intratumoral metrics were less consistent but revealed differences in BM origin. Axial and radial diffusivity have provided insights into the effects of radiation, tumor origin, and infiltration. Axial diffusivity/radial diffusivity differentiated tumor infiltration from vasogenic edema. Tractography revealed anatomical relationships between white matter tracts and BMs. In addition, tractography-guided BM surgery and radiotherapy planning are required. Machine learning models incorporating DTI biomarkers/metrics accurately classified BMs versus comparators and improved diagnostic classification. CONCLUSIONS DTI metrics provide noninvasive biomarkers for distinguishing BMs from other tumors and predicting outcomes. Key metrics included peritumoral FA and mean diffusivity.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom.
| |
Collapse
|
3
|
Esmaeilzadeh M, Atallah O, Müller JA, Bengel F, Polemikos M, Heissler HE, Krauss JK. Brain Metastases from Thyroid Carcinoma: Prognostic Factors and Outcomes. Cancers (Basel) 2024; 16:2371. [PMID: 39001433 PMCID: PMC11240759 DOI: 10.3390/cancers16132371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Intracranial metastases from thyroid cancer are rare. Although the prognosis of thyroid cancer patients is generally favorable, the prognosis of patients with intracranial metastases from thyroid cancer has been considered unfavorable owing to lower survival rates among such patients compared to those without intracranial involvement. Many questions about their management remain unclear. The aim of the present study was to analyze the characteristics, treatment modalities, and outcomes of patients with brain metastases from thyroid cancer. Among 4320 patients with thyroid cancer recorded in our institutional database over a 30-year period, the data of 20 patients with brain metastasis were retrospectively collected and analyzed. The clinical characteristics, histological type of primary cancer and metastatic brain tumor, additional previous distant metastasis, treatment modalities, locations and characteristics on radiologic findings, time interval between the first diagnosis of primary thyroid cancer and brain metastasis, and survival were analyzed. Among our patient cohort, the mean age at initial diagnosis was 59.3 ± 14.1 years, and at the manifestation of diagnosis of cerebral metastasis, the mean age was found to be 64.8 ± 14.9 years. The histological types of primary thyroid cancer were identified as papillary in ten patients, follicular in seven, and poorly differentiated carcinoma in three. The average interval between the diagnosis of thyroid cancer and brain metastasis was 63.4 ± 58.4 months (range: 0-180 months). Ten patients were identified as having a single intracranial lesion, and ten patients were found to have multiple lesions. Surgical resection was primarily performed in fifteen patients, and whole-brain radiotherapy, radiotherapy, or tyrosine kinase inhibitors were applied in the remaining five patients. The overall median survival time was 15 months after the diagnosis of BMs from TC (range: 1-252 months). Patients with thyroid cancer can develop brain metastasis even many years after the diagnosis of the primary tumor. The results of our study demonstrate increased overall survival in patients younger than 60 years of age at the time of diagnosis of brain metastasis. There was no difference in survival between patients with brain metastasis from papillary carcinoma and those with follicular thyroid carcinoma.
Collapse
Affiliation(s)
- Majid Esmaeilzadeh
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Jörg Andreas Müller
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frank Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Manolis Polemikos
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Hans E Heissler
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
4
|
Palmer JD, Perlow HK, Lehrer EJ, Wardak Z, Soliman H. Novel radiotherapeutic strategies in the management of brain metastases: Challenging the dogma. Neuro Oncol 2024; 26:S46-S55. [PMID: 38437668 PMCID: PMC10911796 DOI: 10.1093/neuonc/noad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The role of radiation therapy in the management of brain metastasis is evolving. Advancements in machine learning techniques have improved our ability to both detect brain metastasis and our ability to contour substructures of the brain as critical organs at risk. Advanced imaging with PET tracers and magnetic resonance imaging-based artificial intelligence models can now predict tumor control and differentiate tumor progression from radiation necrosis. These advancements will help to optimize dose and fractionation for each patient's lesion based on tumor size, histology, systemic therapy, medical comorbidities/patient genetics, and tumor molecular features. This review will discuss the current state of brain directed radiation for brain metastasis. We will also discuss future directions to improve the precision of stereotactic radiosurgery and optimize whole brain radiation techniques to improve local tumor control and prevent cognitive decline without forming necrosis.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Pospisil P, Hynkova L, Hnidakova L, Maistryszinova J, Slampa P, Kazda T. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review. Front Oncol 2024; 14:1298605. [PMID: 38327742 PMCID: PMC10847587 DOI: 10.3389/fonc.2024.1298605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background The landscape of brain metastases radiotherapy is evolving, with a shift away from whole-brain radiotherapy (WBRT) toward targeted stereotactic approaches aimed at preserving neurocognitive functions and maintaining overall quality of life. For patients with multiple metastases, especially in cases where targeted radiotherapy is no longer feasible due to widespread dissemination, the concept of hippocampal sparing radiotherapy (HA_WBRT) gains prominence. Methods In this narrative review we explore the role of the hippocampi in memory formation and the implications of their postradiotherapy lateral damage. We also consider the potential advantages of selectively sparing one hippocampus during whole-brain radiotherapy (WBRT). Additionally, by systematic evaluation of relevant papers published on PubMed database over last 20 years, we provide a comprehensive overview of the various changes that can occur in the left or right hippocampus as a consequence of radiotherapy. Results While it is important to note that various neurocognitive functions are interconnected throughout the brain, we can discern certain specialized roles of the hippocampi. The left hippocampus appears to play a predominant role in verbal memory, whereas the right hippocampus is associated more with visuospatial memory. Additionally, the anterior part of the hippocampus is more involved in episodic memory and emotional processing, while the posterior part is primarily responsible for spatial memory and pattern separation. Notably, a substantial body of evidence demonstrates a significant correlation between post-radiotherapy changes in the left hippocampus and subsequent cognitive decline in patients. Conclusion In the context of individualized palliative radiotherapy, sparing the unilateral (specifically, the left, which is dominant in most individuals) hippocampus could expand the repertoire of strategies available for adapted WBRT in cases involving multiple brain metastases where stereotactic radiotherapy is not a viable option. Prospective ongoing studies assessing various memory-sparing radiotherapy techniques will define new standard of radiotherapy care of patients with multiple brain metastases.
Collapse
Affiliation(s)
- Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ludmila Hynkova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Hnidakova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Maistryszinova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Holikova K, Selingerova I, Pospisil P, Bulik M, Hynkova L, Kolouskova I, Hnidakova L, Burkon P, Slavik M, Sana J, Holecek T, Vanicek J, Slampa P, Jancalek R, Kazda T. Hippocampal subfield volumetric changes after radiotherapy for brain metastases. Neurooncol Adv 2024; 6:vdae040. [PMID: 38645488 PMCID: PMC11032105 DOI: 10.1093/noajnl/vdae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Background Changes in the hippocampus after brain metastases radiotherapy can significantly impact neurocognitive functions. Numerous studies document hippocampal atrophy correlating with the radiation dose. This study aims to elucidate volumetric changes in patients undergoing whole-brain radiotherapy (WBRT) or targeted stereotactic radiotherapy (SRT) and to explore volumetric changes in the individual subregions of the hippocampus. Method Ten patients indicated to WBRT and 18 to SRT underwent brain magnetic resonance before radiotherapy and after 4 months. A structural T1-weighted sequence was used for volumetric analysis, and the software FreeSurfer was employed as the tool for the volumetry evaluation of 19 individual hippocampal subregions. Results The volume of the whole hippocampus, segmented by the software, was larger than the volume outlined by the radiation oncologist. No significant differences in volume changes were observed in the right hippocampus. In the left hippocampus, the only subregion with a smaller volume after WBRT was the granular cells and molecular layers of the dentate gyrus (GC-ML-DG) region (median change -5 mm3, median volume 137 vs. 135 mm3; P = .027), the region of the presumed location of neuronal progenitors. Conclusions Our study enriches the theory that the loss of neural stem cells is involved in cognitive decline after radiotherapy, contributes to the understanding of cognitive impairment, and advocates for the need for SRT whenever possible to preserve cognitive functions in patients undergoing brain radiotherapy.
Collapse
Affiliation(s)
- Klara Holikova
- Department of Medical Imaging, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iveta Selingerova
- Research Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Bulik
- Department of Medical Imaging, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ludmila Hynkova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivana Kolouskova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Hnidakova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Burkon
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Slavik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Sana
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Holecek
- Department of Medical Imaging, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Research Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jiri Vanicek
- Department of Medical Imaging, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Upadhyay R, Klamer BG, Perlow HK, White JR, Bazan JG, Jhawar SR, Blakaj DM, Grecula JC, Arnett A, Mestres-Villanueva MA, Healy EH, Thomas EM, Chakravarti A, Raval RR, Lustberg M, Williams NO, Palmer JD, Beyer SJ. Stereotactic Radiosurgery for Women Older than 65 with Breast Cancer Brain Metastases. Cancers (Basel) 2023; 16:137. [PMID: 38201564 PMCID: PMC10778270 DOI: 10.3390/cancers16010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Breast cancer is the second most common cause of brain metastases (BM). Despite increasing incidence of BM in older women, there are limited data on the optimal management of BM in this age group. In this study, we assessed the survival outcomes and treatment patterns of older breast cancer patients ≥65 years old with BM compared to younger patients at our institution. METHODS An IRB-approved single-institutional retrospective review of biopsy-proven breast cancer patients with BM treated with 1- to 5-fraction stereotactic radiation therapy (SRS) from 2015 to 2020 was performed. Primary endpoint was intracranial progression-free survival (PFS) defined as the time interval between the end of SRS to the date of the first CNS progression. Secondary endpoints were overall survival (OS) from the end of SRS and radiation treatment patterns. Kaplan-Meier estimates and Cox proportional hazard regression method were used for survival analyses. RESULTS A total of 112 metastatic breast cancer patients with BMs were included of which 24 were ≥65 years old and 88 were <65 years old. Median age at RT was 72 years (range 65-84) compared to 52 years (31-64) in younger patients. There were significantly higher number of older women with ER/PR positive disease (75% vs. 49%, p = 0.036), while younger patients were more frequently triple negative (32% vs. 12%, p = 0.074) and HER2 positive (42% vs. 29%, p = 0.3). Treatment-related adverse events were similar in both groups. Overall, 14.3% patients had any grade radiation necrosis (RN) (older vs. young: 8.3% vs. 16%, p = 0.5) while 5.4% had grade 3 or higher RN (0% vs. 6.8%, p = 0.7). Median OS after RT was poorer in older patients compared to younger patients (9.5 months vs. 14.5 months, p = 0.037), while intracranial PFS from RT was similar between the two groups (9.7 months vs. 7.1 months, p = 0.580). On univariate analysis, significant predictors of OS were age ≥65 years old (hazard risk, HR = 1.70, p = 0.048), KPS ≤ 80 (HR = 2.24, p < 0.001), HER2 positive disease (HR = 0.46, p < 0.001), isolated CNS metastatic disease (HR = 0.29, p < 0.001), number of brain metastases treated with RT (HR = 1.06, p = 0.028), and fractionated SRS (HR = 0.53, p = 0.013). On multivariable analysis, KPS ≤ 80, HER2 negativity and higher number of brain metastases predicted for poorer survival, while age was not a significant factor for OS after adjusting for other variables. Patients who received systemic therapy after SRS had a significantly improved OS on univariate and multivariable analysis (HR = 0.32, p < 0.001). Number of brain metastases treated was the only factor predictive of worse PFS (HR = 1.06, p = 0.041), which implies a 6% additive risk of progression for every additional metastasis treated. CONCLUSIONS Although older women had poorer OS than younger women, OS was similar after adjusting for KPS, extracranial progression, and systemic therapy; and there was no difference in rates of intracranial PFS, neurological deaths, and LMD in the different age groups. This study suggests that age alone may not play an independent role in treatment-selection and that outcomes for breast cancer patients with BMs and personalized decision-making including other clinical factors should be considered. Future studies are warranted to assess neurocognitive outcomes and other radiation treatment toxicities in older patients.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Brett G. Klamer
- Department of Biostatistics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Julia R. White
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Jose G. Bazan
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - John C. Grecula
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Andrea Arnett
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Mariella A. Mestres-Villanueva
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Erin H. Healy
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA;
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Maryam Lustberg
- Department of Medical Oncology, Yale Cancer Center, New Haven, CT 06511, USA;
| | - Nicole O. Williams
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (R.U.); (H.K.P.); (S.R.J.); (D.M.B.); (J.C.G.); (A.A.); (M.A.M.-V.); (E.M.T.); (A.C.); (R.R.R.); (J.D.P.)
| |
Collapse
|