1
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
2
|
Cruz ED, Rahim F, Lemmon M, Mikati MA. US Food and Drug Administration Facilitated Pediatric Approval Programs: Application to Pediatric Neurological Disorders. J Child Neurol 2022; 37:222-231. [PMID: 35135372 DOI: 10.1177/08830738211037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crucial time is often lost while waiting for approval of therapies for pediatric neurological disorders, many of which have aggressive manifestations with devastating effects. There are logistical, ethical, and financial impediments that face the studies needed to determine efficacy and safety of therapies in children. In this article, the authors present the Food and Drug Administration's programs aimed at facilitating the development of pediatric drugs, focusing on their application to pediatric neurological disorders. They also provide examples of drugs that received, or are currently enrolled in, these programs. Reflecting upon the commonalities of drugs receiving these designations, the authors highlight underlying ethical issues related to pediatric drug development and emphasize the need for structured incentives to stimulate approval and production of drug therapies for pediatric neurology patients. By consolidating information that applies to drug approval of pediatric neurological disorders, stakeholders in drug development can enhance treatment development for these disorders.
Collapse
Affiliation(s)
- Emily Da Cruz
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Faraan Rahim
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Monica Lemmon
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Velíšková J, Velíšek L. Infantile Spasms: Pharmacotherapy Challenges. NEUROPSYCHOPHARMACOTHERAPY 2022:4399-4415. [DOI: 10.1007/978-3-030-62059-2_435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
5
|
Siehr MS, Massey CA, Noebels JL. Arx expansion mutation perturbs cortical development by augmenting apoptosis without activating innate immunity in a mouse model of X-linked infantile spasms syndrome. Dis Model Mech 2020; 13:dmm042515. [PMID: 32033960 PMCID: PMC7132796 DOI: 10.1242/dmm.042515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 01/12/2023] Open
Abstract
X-linked infantile spasms syndrome (ISSX) is a clinically devastating developmental epileptic encephalopathy with life-long impact. Arx(GCG)10+7 , a mouse model of the most common triplet-repeat expansion mutation of ARX, exhibits neonatal spasms, electrographic phenotypes and abnormal migration of GABAergic interneuron subtypes. Neonatal presymptomatic treatment with 17β-estradiol (E2) in Arx(GCG)10+7 reduces spasms and modifies progression of epilepsy. Cortical pathology during this period, a crucial point for clinical intervention in ISSX, has largely been unexplored, and the pathogenic cellular defects that are targeted by early interventions are unknown. In the first postnatal week, we identified a transient wave of elevated apoptosis in Arx(GCG)10+7 mouse cortex that is non-Arx cell autonomous, since mutant Arx-immunoreactive (Arx+) cells are not preferentially impacted by cell death. NeuN+ (also known as Rbfox3) survival was also not impacted, suggesting a vulnerable subpopulation in the immature Arx(GCG)10+7 cortex. Inflammatory processes during this period might explain this transient elevation in apoptosis; however, transcriptomic and immunohistochemical profiling of several markers of inflammation revealed no innate immune activation in Arx(GCG)10+7 cortex. Neither neonatal E2 hormone therapy, nor ACTH(1-24), the frontline clinical therapy for ISSX, diminished the augmented apoptosis in Arx(GCG)10+7 , but both rescued neocortical Arx+ cell density. Since early E2 treatment effectively prevents seizures in this model, enhanced apoptosis does not solely account for the seizure phenotype, but may contribute to other aberrant brain function in ISSX. However, since both hormone therapies, E2 and ACTH(1-24), elevate the density of cortical Arx+-interneurons, their early therapeutic role in other neurological disorders hallmarked by interneuronopathy should be explored.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Meagan S Siehr
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cory A Massey
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen B, Kessi M, Chen S, Xiong J, Wu L, Deng X, Yang L, He F, Yin F, Peng J. The Recommendations for the Management of Chinese Children With Epilepsy During the COVID-19 Outbreak. Front Pediatr 2020; 8:495. [PMID: 32984209 PMCID: PMC7477110 DOI: 10.3389/fped.2020.00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease (COVID-19) is the most severe public health problem facing the world currently. Social distancing and avoidance of unnecessary movements are preventive strategies that are being advocated to prevent the spread of the causative virus [severe acute respiratory syndrome (SARS)-CoV2]. It is known that epileptic children need long term treatments (antiepileptic drugs and/or immunosuppressive agents) as well as close follow up due to the nature of the disease. In addition, it is clear that epilepsy can concur with other chronic illnesses which can lower body immunity. As a result, epileptic children have high risk of acquiring this novel disease due to weak/immature immune system. Of concern, the management of children with epilepsy has become more challenging during this outbreak due to the prevention measures that are being taken. Although children with controlled seizures can be managed at home, it is challenging for pediatricians when it comes to cases with uncontrolled seizures/severe cases. To this end, we provide recommendations for the management of epileptic children at home, outpatient and inpatient settings.
Collapse
Affiliation(s)
- Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
7
|
Mesraoua B, Deleu D, Kullmann DM, Shetty AK, Boon P, Perucca E, Mikati MA, Asadi-Pooya AA. Novel therapies for epilepsy in the pipeline. Epilepsy Behav 2019; 97:282-290. [PMID: 31284159 DOI: 10.1016/j.yebeh.2019.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Despite the availability of many antiepileptic drugs (AEDs) (old and newly developed) and, as recently suggested, their optimization in the treatment of patients with uncontrolled seizures, more than 30% of patients with epilepsy continue to experience seizures and have drug-resistant epilepsy; the management of these patients represents a real challenge for epileptologists and researchers. Resective surgery with the best rates of seizure control is not an option for all of them; therefore, research and discovery of new methods of treating resistant epilepsy are of extreme importance. In this article, we will discuss some innovative approaches, such as P-glycoprotein (P-gp) inhibitors, gene therapy, stem cell therapy, traditional and novel antiepileptic devices, precision medicine, as well as therapeutic advances in epileptic encephalopathy in children; these treatment modalities open up new horizons for the treatment of patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Hamad Medical Corporation and Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Dirk Deleu
- Hamad Medical Corporation and Weill Cornell Medical College-Qatar, Doha, Qatar.
| | | | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Paul Boon
- Reference Center for Refractory Epilepsy, Ghent University Hospital Belgium - Academic Center for Epileptology, Heeze-Maastricht, the Netherlands.
| | - Emilio Perucca
- Unit of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, and Clinical Trial Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, USA.
| | - Ali A Asadi-Pooya
- Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
8
|
SoRelle JA, Thodeson DM, Arnold S, Gotway G, Park JY. Clinical Utility of Reinterpreting Previously Reported Genomic Epilepsy Test Results for Pediatric Patients. JAMA Pediatr 2019; 173:e182302. [PMID: 30398534 PMCID: PMC6583457 DOI: 10.1001/jamapediatrics.2018.2302] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Clinical genomic tests that examine the DNA sequence of large numbers of genes are commonly used in the diagnosis and management of epilepsy in pediatric patients. The permanence of genomic test result interpretations is not known. OBJECTIVE To investigate the value of reinterpreting previously reported genomic test results. DESIGN, SETTING, AND PARTICIPANTS This study retrospectively reviewed and reinterpreted genomic test results from July 1, 2012, to August 31, 2015, for pediatric patients who previously underwent genomic epilepsy testing at a single tertiary care pediatric health care facility. Reinterpretation of previously reported variants was conducted in May 2017. MAIN OUTCOMES AND MEASURES Patient reports from clinical genomic epilepsy tests were reviewed, and all reported genetic variants were reinterpreted using 2015 consensus standards and guidelines for interpreting hereditary genetic variants. Three classification tiers were used in the reinterpretation: pathogenic or likely pathogenic variant, variant of uncertain significance (VUS), or benign or likely benign variant. RESULTS A total of 309 patients had genomic epilepsy tests performed (mean [SD] age, 5.6 [0.8] years; 163 [52.8%] male), and 185 patients had a genetic variant reported. The reported variants resulted in 61 patients with and 124 patients without a genetic diagnosis (VUS variants only). On reinterpretation of all reported variants, 67 of the 185 patients (36.2%) had a change in variant classification. Of the 67 patients with a genetic variant change in interpretation, 21 (31.3%) experienced a change in diagnosis. During the 5 years of the study, 19 of 61 patients (31.1%) with a genetic diagnosis and 48 of 124 patients (38.7%) with undiagnosed conditions (VUS only) had their results reclassified. Review of genomic reports issued during the final 2 years of the study identified reclassification of variants in 4 of 16 patients (25.0%) with a pathogenic or likely pathogenic variant and 11 of 41 patients (26.8%) with a VUS. CONCLUSIONS AND RELEVANCE The identified high rate of reinterpretation in this study suggests that interpretation of genomic test results has rapidly evolved during the past 5 years. These findings suggest that reinterpretation of genomic test results should be performed at least every 2 years.
Collapse
Affiliation(s)
- Jeffrey A. SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Drew M. Thodeson
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas
| | - Susan Arnold
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas
| | - Garrett Gotway
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Jason Y. Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas,Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
9
|
Reithmeier D, Tang-Wai R, Seifert B, Lyon AW, Alcorn J, Acton B, Corley S, Prosser-Loose E, Mousseau DD, Lim HJ, Tellez-Zenteno J, Huh L, Leung E, Carmant L, Huntsman RJ. The protocol for the Cannabidiol in children with refractory epileptic encephalopathy (CARE-E) study: a phase 1 dosage escalation study. BMC Pediatr 2018; 18:221. [PMID: 29981580 PMCID: PMC6035794 DOI: 10.1186/s12887-018-1191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/24/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Initial studies suggest pharmaceutical grade cannabidiol (CBD) can reduce the frequency of convulsive seizures and lead to improvements in quality of life in children affected by epileptic encephalopathies. With limited access to pharmaceutical CBD, Cannabis extracts in oil are becoming increasingly available. Physicians show reluctance to recommend Cannabis extracts given the lack of high quality safety data especially regarding the potential for harm caused by other cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC). The primary aims of the study presented in this protocol are (i) To determine whether CBD enriched Cannabis extract is safe and well-tolerated for pediatric patients with refractory epilepsy, (ii) To monitor the effects of CBD-enriched Cannabis extract on the frequency and duration of seizure types and on quality of life. METHODS Twenty-eight children with treatment resistant epileptic encephalopathy ranging in age from 1 to 10 years will be recruited in four Canadian cities into an open-label, dose-escalation phase 1 trial. The primary objectives for the study are (i) To determine if the CBD-enriched Cannabis herbal extract is safe and well-tolerated for pediatric patients with treatment resistant epileptic encephalopathy and (ii) To determine the effect of CBD-enriched Cannabis herbal extract on the frequency and duration of seizures. Secondary objectives include (i) To determine if CBD-enriched Cannabis herbal extracts alter steady-state levels of co-administered anticonvulsant medications. (ii) To assess the relation between dose escalation and quality of life measures, (iii) To determine the relation between dose escalation and steady state trough levels of bioactive cannabinoids. (iv) To determine the relation between dose escalation and incidence of adverse effects. DISCUSSION This paper describes the study design of a phase 1 trial of CBD-enriched Cannabis herbal extract in children with treatment-resistant epileptic encephalopathy. This study will provide the first high quality analysis of safety of CBD-enriched Cannabis herbal extract in pediatric patients in relation to dosage and pharmacokinetics of the active cannabinoids. TRIAL REGISTRATION http://clinicaltrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2016 Dec 16. Identifier NCT03024827, Cannabidiol in Children with Refractory Epileptic Encephalopathy: CARE-E; 2017 Jan 19 [cited 2017 Oct]; Available from: http://clinicaltrials.gov/ct2/show/NCT03024827.
Collapse
Affiliation(s)
- Darren Reithmeier
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Room E3210 Health Sciences 104 Clinic Place, Saskatoon, SK S7N-2Z4 Canada
| | - Richard Tang-Wai
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Pediatrics, Division of Child Neurology, Loma Linda University, Loma Linda, California, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of Alberta, 11405-87 Avenue, 4th Floor, Edmonton, AB T6G-1C9 Canada
| | - Blair Seifert
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Pharmaceutical Services, Saskatchewan Health Authority, Saskatoon Health Region, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N-0W8 Canada
| | - Andrew W. Lyon
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority, St. Paul’s Hospital, 1702 20th Street West, Saskatoon, SK S7M-0Z9 Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Room E3210 Health Sciences 104 Clinic Place, Saskatoon, SK S7N-2Z4 Canada
| | - Bryan Acton
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Saskatchewan Health Authority and Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Clinical Health Psychology, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Scott Corley
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Clinical Trial Support Unit, University of Saskatchewan, Royal University Hospital, Room 5676, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Erin Prosser-Loose
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Pediatrics, University of Saskatchewan, Royal University Hospital, Room 2665, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Darrell D. Mousseau
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Cell Signalling Laboratory, Departments of Psychiatry and Physiology, University of Saskatchewan, GB41, HSB 107 Wiggins Ave, Saskatoon, SK S7N 5E5 Canada
| | - Hyun J. Lim
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Community Health and Epidemiology, University of Saskatchewan, Room E3222 Health Sciences, 104 Clinic Place, Saskatoon, SK S7N-2Z4 Canada
| | - Jose Tellez-Zenteno
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Medicine, Division of Neurology, University of Saskatchewan, Royal University Hospital, Room 1622, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| | - Linda Huh
- Division of Pediatric Neurology, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Room 2D19, 4480 Oak Street, Vancouver, BC V6H-3V4 Canada
| | - Edward Leung
- Division of Pediatric Neurology, Room CE208, Department of Pediatrics 5, University of Manitoba, Children’s Hospital, 840 Sherbrooke Street, Winnipeg, MB R3A-1S1 Canada
| | - Lionel Carmant
- Division of Pediatric Neurology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Universite de Montreal, Room 5-4, 3175 Chemin de la Cote Ste-Catherine, Montreal, QC H3T-1C5 Canada
| | - Richard J. Huntsman
- Cannabinoid Research Initiative of Saskatchewan (CRIS), University of Saskatchewan, Saskatoon, Saskatchewan Canada
- Department of Pediatrics, Royal University Hospital, Rm 2744, 103 Hospital Drive, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|