1
|
Lambrechts MJ, Issa TZ, Mazmudar A, Lee Y, Toci GR, D’Antonio ND, Schilken M, Lingenfelter K, Kepler CK, Schroeder GD, Vaccaro AR. Cellular Bone Matrix in Spine Surgery - Are They Worth the Risk: A Systematic Review. Global Spine J 2024; 14:1070-1081. [PMID: 37773001 PMCID: PMC11192114 DOI: 10.1177/21925682231205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
STUDY DESIGN Systematic Review. OBJECTIVE To review the literature for complications and outcomes after the implantation of cellular bone matrix (CBM) during spine fusion. METHODS The PubMed database was queried from inception to January 31, 2023 for any articles that discussed the role of and identified a specific CBM in spinal fusion procedures. Adverse events, reoperations, methods, and fusion rates were collected from all studies and reported. RESULTS Six hundred articles were identified, of which 19 were included that reported outcomes of 7 different CBM products. Seven studies evaluated lumbar fusion, 11 evaluated cervical fusion, and 1 study reported adverse events of a single CBM product. Only 4 studies were comparative studies while others were limited to case series. Fusion rates ranged from 68% to 98.7% in the lumbar spine and 87% to 100% in the cervical spine, although criteria for radiographic fusion was variable. While 7 studies reported no adverse events, there was no strict consensus on what constituted a complication. One study reported catastrophic disseminated tuberculosis from donor contaminated CBM. The authors of 14 studies had conflicts of interest with either the manufacturer or distributor for their analyzed CBM. CONCLUSIONS Current evidence regarding the use of cellular bone matrix as an osteobiologic during spine surgery is weak and limited to low-grade non-comparative studies subject to industry funding. While reported fusion rates are high, the risk of severe complications should not be overlooked. Further large clinical trials are required to elucidate whether the CBMs offer any benefits that outweigh the risks.
Collapse
Affiliation(s)
- Mark J. Lambrechts
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Tariq Z. Issa
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aditya Mazmudar
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunsoo Lee
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory R. Toci
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Meghan Schilken
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Gregory D. Schroeder
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R. Vaccaro
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Meisel HJ, Jain A, Wu Y, Martin CT, Cabrera JP, Muthu S, Hamouda WO, Rodrigues-Pinto R, Arts JJ, Viswanadha AK, Vadalà G, Vergroesen PPA, Ćorluka S, Hsieh PC, Demetriades AK, Watanabe K, Shin JH, Riew KD, Papavero L, Liu G, Luo Z, Ahuja S, Fekete T, Uz Zaman A, El-Sharkawi M, Sakai D, Cho SK, Wang JC, Yoon T, Santesso N, Buser Z. AO Spine Guideline for the Use of Osteobiologics (AOGO) in Anterior Cervical Discectomy and Fusion for Spinal Degenerative Cases. Global Spine J 2024; 14:6S-13S. [PMID: 38421322 PMCID: PMC10913909 DOI: 10.1177/21925682231178204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
STUDY DESIGN Guideline. OBJECTIVES To develop an international guideline (AOGO) about the use of osteobiologics in anterior cervical discectomy and fusion (ACDF) for treating degenerative spine conditions. METHODS The guideline development process was guided by AO Spine Knowledge Forum Degenerative (KF Degen) and followed the Guideline International Network McMaster Guideline Development Checklist. The process involved 73 participants with expertise in degenerative spine diseases and surgery from 22 countries. Fifteen systematic reviews were conducted addressing respective key topics and evidence was collected. The methodologist compiled the evidence into GRADE Evidence-to-Decision frameworks. Guideline panel members judged the outcomes and other criteria and made the final recommendations through consensus. RESULTS Five conditional recommendations were created. A conditional recommendation is about the use of allograft, autograft or a cage with an osteobiologic in primary ACDF surgery. Other conditional recommendations are about the use of osteobiologic for single- or multi-level ACDF, and for hybrid construct surgery. It is suggested that surgeons use other osteobiologics rather than human bone morphogenetic protein-2 (BMP-2) in common clinical situations. Surgeons are recommended to choose 1 graft over another or 1 osteobiologic over another primarily based on clinical situation, and the costs and availability of the materials. CONCLUSION This AOGO guideline is the first to provide recommendations for the use of osteobiologics in ACDF. Despite the comprehensive searches for evidence, there were few studies completed with small sample sizes and primarily as case series with inherent risks of bias. Therefore, high-quality clinical evidence is demanded to improve the guideline.
Collapse
Affiliation(s)
- Hans Jörg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost Halle, Halle, Germany
| | - Amit Jain
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Yabin Wu
- Research Department, AO Spine, AO Foundation, Davos, Switzerland
| | - Christopher T Martin
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Juan Pablo Cabrera
- Department of Neurosurgery, Hospital Clínico Regional de Concepción, Concepción, Chile; Faculty of Medicine, University of Concepción, Concepción, Chile
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Dindigul, India; Orthopaedic Research Group, Coimbatore, TN, India
| | - Waeel O Hamouda
- Department of Neurosurgery, Kasr Alainy Faculty of Medicine, Research, and Teaching Hospitals, Cairo University, Cairo, Egypt; Neurological & Spinal Surgery Service, Security Forces Hospital, Dammam, Saudi Arabia
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto, Porto, Portugal; Hospital CUF Trindade, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jacobus J Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Stipe Ćorluka
- Spinal Surgery Division, Department of Traumatology, University Hospital Centre Sestre Milosrdnice, Zagreb, Croatia; Department of Anatomy and Physiology, University of Applied Health Sciences, Zagreb, Croatia
| | - Patrick C Hsieh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - K Daniel Riew
- Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA; Department of Orthopedic Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Luca Papavero
- Clinic for Spine Surgery, Schoen Clinic Hamburg Eilbek, Hamburg, Germany
| | - Gabriel Liu
- Department of Orthopedic Surgery, National University Hospital, Singapore, Singapore
| | - Zhuojing Luo
- Department of Orthopaedic Surgery, Xijing Hospital, Xi'an, China
| | - Sashin Ahuja
- Welsh Centre for Spinal Surgery & Trauma, Department of Spine Surgery, University Hospital of Wales, Cardiff, UK
| | - Tamás Fekete
- Spine Center Division, Schulthess Klinik, Zurich, Switzerland
| | - Atiq Uz Zaman
- Orthopaedic and Spine Surgery Department, Lahore Medical and Dental College, Ghurki Trust Teaching Hospital, Lahore, Pakistan
| | - Mohammad El-Sharkawi
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Samuel K Cho
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tim Yoon
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Nancy Santesso
- Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Zorica Buser
- Gerling Institute, Brooklyn, NY, USA; Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Hoffmann J, Ricciardi GA, Yurac R, Meisel HJ, Buser Z, Qian B, Vergroesen PPA. The Use of Osteobiologics in Single versus Multi-Level Anterior Cervical Discectomy and Fusion: A Systematic Review. Global Spine J 2024; 14:110S-119S. [PMID: 38421334 PMCID: PMC10913903 DOI: 10.1177/21925682221136482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
STUDY DESIGN Systematic literature review. OBJECTIVES In this study we assessed evidence for the use of osteobiologics in single vs multi-level anterior cervical discectomy and fusion (ACDF) in patients with cervical spine degeneration. The primary objective was to compare fusion rates after single and multi-level surgery with different osteobiologics. Secondary objectives were to compare differences in patient reported outcome measures (PROMs) and complications. METHODS After a global team of reviewers was selected, a systematic review using different repositories was performed, confirming to PRISMA and GRADE guidelines. In total 1206 articles were identified and after applying inclusion and exclusion criteria, 11 articles were eligible for analysis. Extracted data included fusion rates, definition of fusion, patient reported outcome measures, types of osteobiologics used, complications, adverse events and revisions. RESULTS Fusion rates ranged from 87.7% to 100% for bone morphogenetic protein 2 (BMP-2) and 88.6% to 94.7% for demineralized bone matrix, while fusion rates reported for other osteobiologics were lower. All included studies showed PROMs improved significantly for each osteobiologic. However, no differences were reported when comparing osteobiologics, or when comparing single vs multi-level surgery specifically. CONCLUSION The highest fusion rates after 2-level ACDF for cervical spine degeneration were reported when BMP-2 was used. However, PROMs did not differ between the different osteobiologics. Further blinded randomized trials should be performed to compare the use of BMP-2 in single vs multi-level ACDF specifically.
Collapse
Affiliation(s)
- Jim Hoffmann
- Department of Orthopaedics, Alrijne Hospital, Leiderdorp, The Netherlands
| | - Guillermo A Ricciardi
- Spine Surgery, Orthopaedics and Traumatology, Centro Mdico Integral Fitz Roy, Buenos Aires, Argentina
- Spine Surgery, Orthopaedics and Traumatology, Sanatorio Gemes, Buenos Aires, Argentina
| | - Ratko Yurac
- Professor associate of Orthopedics and Traumatology, University of Development, Santiago, Chile
- Spine Unit, Department of Orthopedics and Traumatology, Clinica Alemana, Santiago, Chile
| | - Hans Jörg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost, Halle, Germany
| | - Zorica Buser
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, USA
- Gerling Institute, Brooklyn, NY, USA
| | - Bangping Qian
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School University, Nanjing, China
| | | |
Collapse
|
4
|
Li Q, Hu B, Masood U, Zhang Z, Yang X, Liu L, Feng G, Yang H, Song Y. A Comparison of Corpectomy ACDF Hybrid Procedures with Nano-Hydroxyapatite/Polyamide 66 Cage and Titanium Mesh Cage for Multi-level Degenerative Cervical Myelopathy: A Stepwise Propensity Score Matching Analysis. Orthop Surg 2023; 15:2830-2838. [PMID: 37749767 PMCID: PMC10622274 DOI: 10.1111/os.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Previous studies have found satisfactory clinical results with the nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage to reconstruct the stability of anterior cervical column. However, studies evaluating the long-term outcomes of the n-HA/PA66 cage in multi-level degenerative cervical myelopathy (MDCM) have not been reported. This study aims to compare the outcomes of corpectomy anterior cervical discectomy and fusion (ACDF) hybrid procedures between the n-HA/PA66 cage and titanium mesh cage (TMC) to treat MDCM. METHODS After the screening for eligibility, this retrospective study involved 90 patients who underwent corpectomy ACDF hybrid (CACDFH) procedure from June 2013 to June 2018. The CACDFH procedure is the combination of ACDF and anterior cervical corpectomy and fusion (ACCF). According to the cage utilized, we categorized patients into a n-HA/PA66 cage group and a TMC group. Then, stepwise propensity score matching (PSM) was performed to maintain comparable clinical data between groups. All the patients were followed up ≥4 years and the longest follow-up time was 65.43 (±11.49) months. Cage subsidence, adjacent segment degeneration (ASD), segmental height (SH), segmental angle (SA), cervical lordosis (CL), and clinical data (visual analogue scale [VAS] and Japanese Orthopaedic Association [JOA] score) was evaluated preoperatively, at 1 week, and at the final surgery follow-up. The independent student's t test and chi-square test were applied to compare the differences between groups. RESULTS Through PSM analysis, 25 patients from the n-HA/PA66 group were matched to 25 patients in the TMC group. The occurrence of ASD was 16.0% (4/25) in the n-HA/PA 66 group, which was significantly less than in the TMC group at 44.0% (11/25) (p = 0.031). Moreover, the cage subsidence rate was significantly higher in the TMC group as compared to the n-HA/PA 66 group (40.0% vs. 12.0%, p = 0.024). But there was no significant difference in SH, SA, and CL at any time after surgery as determined through follow-up. The VAS and JOA scores significantly improved in both groups at 3 months postoperative and at final follow-up. However, there were no significant differences in the VAS and JOA score at any time between the two groups in preoperative (p > 0.05). CONCLUSION The n-HA/PA66 cage is associated with lower rate of cage subsidence and ASD than the TMC in the treatment of MDCM. The n-HA/PA66 cage could be superior to the TMC in corpectomy ACDF hybrid procedures.
Collapse
Affiliation(s)
- Qiujiang Li
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Bowen Hu
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Umar Masood
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New YorkBuffaloNYUSA
| | - Zhuang Zhang
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Xi Yang
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Limin Liu
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Ganjun Feng
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Huiliang Yang
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| | - Yueming Song
- Department of OrthopaedicsOrthopaedic Research Institute, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Gianulis E, Wetzell B, Scheunemann D, Gazzolo P, Sohoni P, Moore MA, Chen J. Characterization of an advanced viable bone allograft with preserved native bone-forming cells. Cell Tissue Bank 2023; 24:417-434. [PMID: 36434165 PMCID: PMC10209280 DOI: 10.1007/s10561-022-10044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
Bone grafts are widely used to successfully restore structure and function to patients with a broad range of musculoskeletal ailments and bone defects. Autogenous bone grafts are historically preferred because they theoretically contain the three essential components of bone healing (ie, osteoconductivity, osteoinductivity, and osteogenicity), but they have inherent limitations. Allograft bone derived from deceased human donors is one alternative that is also capable of providing both an osteoconductive scaffold and osteoinductive potential but, until recently, lacked the osteogenic component of bone healing. Relatively new, cellular bone allografts (CBAs) were designed to address this need by preserving viable cells. Although most commercially-available CBAs feature mesenchymal stem cells (MSCs), osteogenic differentiation is time-consuming and complex. A more advanced graft, a viable bone allograft (VBA), was thus developed to preserve lineage-committed bone-forming cells, which may be more suitable than MSCs to promote bone fusion. The purpose of this paper was to present the results of preclinical research characterizing VBA. Through a comprehensive series of in vitro and in vivo assays, the present results demonstrate that VBA in its final form is capable of providing all three essential bone remodeling properties and contains viable lineage-committed bone-forming cells, which do not elicit an immune response. The results are discussed in the context of clinical evidence published to date that further supports VBA as a potential alternative to autograft without the associated drawbacks.
Collapse
Affiliation(s)
- Elena Gianulis
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Bradley Wetzell
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Danielle Scheunemann
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Patrick Gazzolo
- Global Spine and General Orthopedics, LifeNet Health®, Virginia Beach, VA USA
| | - Payal Sohoni
- Global Trauma and CMF, LifeNet Health®, Virginia Beach, VA USA
| | - Mark A. Moore
- Global Scientific Affairs and Clinical Engagement, LifeNet Health®, 1864 Concert Dr., Virginia Beach, VA 23453 USA
| | - Jingsong Chen
- Institute of Regenerative Medicine, LifeNet Health®, Virginia Beach, VA USA
| |
Collapse
|
6
|
McVeigh LG, Zaazoue MA, Lane BC, Voorhies JM, Bradbury J. Management and outcomes of surgical site tuberculosis infection due to infected bone graft in spine surgery: a single-institution experience and 1-year postoperative follow-up. J Neurosurg Spine 2023; 38:281-292. [PMID: 36272124 DOI: 10.3171/2022.7.spine22534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In 2021, several patients across the United States received bone allograft contaminated with Mycobacterium tuberculosis (TB). TB is typically a pulmonary infection with many possible extrapulmonary manifestations, including skeletal tuberculosis. However, TB is a rare causative organism of postoperative surgical site infection. Iatrogenic skeletal TB infections are not widely reported in the medical literature; therefore, treatment and associated outcomes are relatively unknown. In this series, the authors report 6 cases of patients who received a mesenchymal stem cell-enhanced bone graft infected with TB at their institution, including the clinical courses, imaging findings, management plans, and outcomes at 1 year postoperatively. METHODS A retrospective review was performed of 6 consecutive patients who underwent spinal fusion surgery at the authors' institution and received bone graft from a lot contaminated with TB. Collected data included patient demographic characteristics, indications for surgery, surgical procedures performed, timing of contamination discovery, medical treatment, and follow-up information including reoperation, healing progress, and imaging findings. RESULTS Five of 6 patients (83.3%) eventually tested positive for TB via interferon-gamma release assay or wound culture. They experienced significant complications, including surgical site infections with neck swelling, pain, dysphagia, and wound dehiscence. Extensive soft-tissue infection was common; however, significant bony involvement was not observed. Surgical wound debridement was required in 4 patients, and all patients received medical management with standard RIPE (rifampin, isoniazid pyrazinamide, pyridoxine, and ethambutol) therapy for 8 weeks with extension of rifampin and isoniazid for scheduled 12 months. All patients (excluding 1 patient who died of COVID-19) showed signs of improvement with adequately healing wounds at the most recent follow-up at a median (range) of 12 (6-13) months postoperatively. To date, no patients have developed pulmonary TB. CONCLUSIONS Direct inoculation with TB via contaminated bone grafts resulted in a high rate of severe soft-tissue infection, although extensive skeletal and pulmonary involvement has not been observed at 1 year postoperatively; this review includes the longest reported follow-up period for this TB outbreak. Medical management remains the mainstay of therapy for these patients, with most patients showing recovery with oral antibiotic therapy. The severity of these infections arising from mesenchymal stem cell-containing bone allografts that undergo an alternative sterilization process than standard allografts raises concerns regarding the added risks of infection, which should be weighed against the expected benefits of these grafts.
Collapse
|
7
|
Pinter ZW, Elder BD, Kaye ID, Kepler CK, Wagner S, Freedman BA, Sebastian AS. A Review of Commercially Available Cellular-based Allografts. Clin Spine Surg 2022; 35:E77-E86. [PMID: 34654775 DOI: 10.1097/bsd.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2021] [Indexed: 11/27/2022]
Abstract
STUDY DESIGN This was a narrative review. OBJECTIVE This review discusses our current knowledge regarding cellular-based allografts while highlighting the key gaps in the literature that must be addressed before their widespread adoption. SUMMARY OF BACKGROUND DATA Iliac crest bone graft is the gold-standard bone graft material but is associated with donor site morbidity. Commonly utilized bone graft extenders such as demineralized bone matrix and bone morphogenetic protein have conflicting data supporting their efficacy and lack the osteogenic potential of new cellular-based allograft options. METHODS An extensive literature review was performed. The literature was then summarized in accordance with the authors' clinical experience. RESULTS There is not widespread evidence thus far that the addition of the osteogenic cellular component to allograft enhances spinal fusion, as a recent study by Bhamb and colleagues demonstrated superior bone formation during spine fusion in an aythmic rat model when demineralized bone matrix was used in comparison to Osteocel Plus. Furthermore, the postimplantation cellular viability and osteogenic and osteoinductive capacity of cellular-based allografts need to be definitively established, especially given that a recent study by Lina and colleagues demonstrated a paucity of bone marrow cell survival in an immunocompetent mouse posterolateral spinal fusion model. CONCLUSIONS This data indicates that the substantially increased cost of these cellular allografts may not be justified. LEVEL OF EVIDENCE Level V.
Collapse
Affiliation(s)
| | | | - I David Kaye
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA
| | | | - Scott Wagner
- Walter Reed National Military Medical Center, Bethesda, MD
| | | | | |
Collapse
|
8
|
Noh T, Zakaria H, Massie L, Ogasawara CT, Lee GA, Chedid M. Bone Marrow Aspirate in Spine Surgery: Case Series and Review of the Literature. Cureus 2021; 13:e20309. [PMID: 35028210 PMCID: PMC8748018 DOI: 10.7759/cureus.20309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background With the modernization of biotechnology, there has been a concerted effort to create novel biomaterials to promote arthrodesis for spine surgery. The novel use of the stem cells from bone marrow aspirate (BMA) to augment spine surgery is a burgeoning field because these cells are considered to be both osteoinductive and osteogenic. We sought to review the evidence behind the use of BMAs in spinal fusions and report the results of our own case series. Methods PubMed and EMBASE databases were searched for studies that investigated the use of stem cells for spine surgery. For our own case series, the medical records of 150 consecutive patients who underwent a lumbar spinal fusion with BMA were retrospectively reviewed for adverse events (AEs) for up to two years after surgery. Results In our case series, there were no AEs identified in 49% of our patients. Of the identified AEs, 61% were unrelated to the use of BMA (e.g., UTI and heart failure), with the remaining 39% likely unrelated to its use (e.g., back pain and anemia). There was a 92.8% arthrodesis rate with the use of BMA. Conclusions We reviewed the rationale, basic science, and clinical science for BMA usage in spine surgery and concluded that BMA is safe for use in spine surgery and is associated with a high rate of arthrodesis.
Collapse
Affiliation(s)
- Thomas Noh
- Division of Neurological Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, USA
| | - Hesham Zakaria
- Department of Neurological Surgery, Henry Ford Health System, Detroit, USA
| | - Lara Massie
- Department of Neurological Surgery, Henry Ford Health System, Detroit, USA
| | - Christian T Ogasawara
- Division of Neurological Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, USA
| | - Gunnar A Lee
- Division of Neurological Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, USA
| | - Mokbel Chedid
- Department of Neurological Surgery, Henry Ford Health System, Detroit, USA
| |
Collapse
|
9
|
Diaz RR, Savardekar AR, Brougham JR, Terrell D, Sin A. Investigating the efficacy of allograft cellular bone matrix for spinal fusion: a systematic review of the literature. Neurosurg Focus 2021; 50:E11. [PMID: 34062505 DOI: 10.3171/2021.3.focus2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of allograft cellular bone matrices (ACBMs) in spinal fusion has expanded rapidly over the last decade. Despite little objective data on its effectiveness, ACBM use has replaced the use of traditional autograft techniques, namely iliac crest bone graft (ICBG), in many centers. METHODS In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review was conducted of the PubMed, Cochrane Library, Scopus, and Web of Science databases of English-language articles over the time period from January 2001 to December 2020 to objectively assess the effectiveness of ACBMs, with an emphasis on the level of industry involvement in the current body of literature. RESULTS Limited animal studies (n = 5) demonstrate the efficacy of ACBMs in spinal fusion, with either equivalent or increased rates of fusion compared to autograft. Clinical human studies utilizing ACBMs as bone graft expanders or bone graft substitutes (n = 5 for the cervical spine and n = 8 for the lumbar spine) demonstrate the safety of ACBMs in spinal fusion, but fail to provide conclusive level I, II, or III evidence for its efficacy. Additionally, human studies are plagued with several limiting factors, such as small sample size, lack of prospective design, lack of randomization, absence of standardized assessment of fusion, and presence of industry support/relevant conflict of interest. CONCLUSIONS There exist very few objective, unbiased human clinical studies demonstrating ACBM effectiveness or superiority in spinal fusion. Impartial, well-designed prospective studies are needed to offer evidence-based best practices to patients in this domain.
Collapse
|
10
|
Bergin SM, Wang TY, Park C, Rajkumar S, Goodwin CR, Karikari IO, Abd-El-Barr MM, Shaffrey CI, Yarbrough CK, Than KD. Pseudarthrosis rate following anterior cervical discectomy with fusion using an allograft cellular bone matrix: a multi-institutional analysis. Neurosurg Focus 2021; 50:E6. [PMID: 34062497 DOI: 10.3171/2021.3.focus2166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of osteobiologics, engineered materials designed to promote bone healing by enhancing bone growth, is becoming increasingly common for spinal fusion procedures, but the efficacy of some of these products is unclear. The authors performed a retrospective, multi-institutional study to investigate the clinical and radiographic characteristics of patients undergoing single-level anterior cervical discectomy with fusion performed using the osteobiologic agent Osteocel, an allograft mesenchymal stem cell matrix. METHODS The medical records across 3 medical centers and 12 spine surgeons were retrospectively queried for patients undergoing single-level anterior cervical discectomy and fusion (ACDF) with the use of Osteocel. Pseudarthrosis was determined based on CT or radiographic imaging of the cervical spine. Patients were determined to have radiographic pseudarthrosis if they met any of the following criteria: 1) lack of bridging bone on CT obtained > 300 days postoperatively, 2) evidence of instrumentation failure, or 3) motion across the index level as seen on flexion-extension cervical spine radiographs. Univariate and multivariate analyses were then performed to identify independent preoperative or perioperative predictors of pseudarthrosis in this population. RESULTS A total of 326 patients met the inclusion criteria; 43 (13.2%) patients met criteria for pseudarthrosis, of whom 15 (34.9%) underwent revision surgery. There were no significant differences between patients with and those without pseudarthrosis, respectively, for patient age (54.1 vs 53.8 years), sex (34.9% vs 47.4% male), race, prior cervical spine surgery (37.2% vs 33.6%), tobacco abuse (16.3% vs 14.5%), chronic kidney disease (2.3% vs 2.8%), and diabetes (18.6% vs 14.5%) (p > 0.05). Presence of osteopenia or osteoporosis (16.3% vs 3.5%) was associated with pseudarthrosis (p < 0.001). Implant type was also significantly associated with pseudarthrosis, with a 16.4% rate of pseudarthrosis for patients with polyetherethereketone (PEEK) implants versus 8.4% for patients with allograft implants (p = 0.04). Average lengths of follow-up were 27.6 and 23.8 months for patients with and those without pseudarthrosis, respectively. Multivariate analysis demonstrated osteopenia or osteoporosis (OR 4.97, 95% CI 1.51-16.4, p < 0.01) and usage of PEEK implant (OR 2.24, 95% CI 1.04-4.83, p = 0.04) as independent predictors of pseudarthrosis. CONCLUSIONS In patients who underwent single-level ACDF, rates of pseudarthrosis associated with the use of the osteobiologic agent Osteocel are higher than the literature-reported rates associated with the use of alternative osteobiologics. This is especially true when Osteocel is combined with a PEEK implant.
Collapse
|
11
|
Darveau SC, Leary OP, Persad-Paisley EM, Shaaya EA, Oyelese AA, Fridley JS, Sampath P, Camara-Quintana JQ, Gokaslan ZL, Niu T. Existing clinical evidence on the use of cellular bone matrix grafts in spinal fusion: updated systematic review of the literature. Neurosurg Focus 2021; 50:E12. [PMID: 34062506 DOI: 10.3171/2021.3.focus2173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spinal fusion surgery is increasingly common; however, pseudarthrosis remains a common complication affecting as much as 15% of some patient populations. Currently, no clear consensus on the best bone graft materials to use exists. Recent advances have led to the development of cell-infused cellular bone matrices (CBMs), which contain living components such as mesenchymal stem cells (MSCs). Relatively few clinical outcome studies on the use of these grafts exist, although the number of such studies has increased in the last 5 years. In this study, the authors aimed to summarize and critically evaluate the existing clinical evidence on commercially available CBMs in spinal fusion and reported clinical outcomes. METHODS The authors performed a systematic search of the MEDLINE and PubMed electronic databases for peer-reviewed, English-language original articles (1970-2020) in which the articles' authors studied the clinical outcomes of CBMs in spinal fusion. The US National Library of Medicine electronic clinical trials database (www.ClinicalTrials.gov) was also searched for relevant ongoing clinical trials. RESULTS Twelve published studies of 6 different CBM products met inclusion criteria: 5 studies of Osteocel Plus/Osteocel (n = 354 unique patients), 3 of Trinity Evolution (n = 114), 2 of ViviGen (n = 171), 1 of map3 (n = 41), and 1 of VIA Graft (n = 75). All studies reported high radiographic fusion success rates (range 87%-100%) using these CBMs. However, this literature was overwhelmingly limited to single-center, noncomparative studies. Seven studies disclosed industry funding or conflicts of interest (COIs). There are 4 known trials of ViviGen (3 trials) and Bio4 (1 trial) that are ongoing. CONCLUSIONS CBMs are a promising technology with the potential of improving outcome after spinal fusion. However, while the number of studies conducted in humans has tripled since 2014, there is still insufficient evidence in the literature to recommend for or against CBMs relative to cheaper alternative materials. Comparative, multicenter trials and outcome registries free from industry COIs are indicated.
Collapse
|
12
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
13
|
Wang E, Stickley C, Manning J, Varlotta CG, Woo D, Ayres E, Abotsi E, Vasquez-Montes D, Fischer CR, Stieber J, Quirno M, Protopsaltis TS, Passias PG, Buckland AJ. Biologics and Minimally Invasive Approach to TLIFs: What Is the Risk of Radiculitis? Int J Spine Surg 2020; 14:804-810. [PMID: 33046541 DOI: 10.14444/7114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) and allograft containing mesenchymal stem cells (live cell) are popular biologic substitutes for iliac crest autograft used in transforaminal lumbar interbody fusion (TLIF). Use of these agents in the pathogenesis of postoperative radiculitis remains controversial. Recent studies have independently linked minimally invasive (MIS) TLIF with increased radiculitis risk compared to open TLIF. The purpose of this study was to assess the rate of postoperative radiculitis in open and MIS TLIF patients along with its relationship to concurrent biologic adjuvant use. METHODS Patients ≥18 years undergoing single-level TLIF from June 2012 to December 2018 with minimum 1-year follow-up were included. Outcome measures were rate of radiculitis, intra- and postoperative complications, revision surgery; length of stay (LOS), and estimated blood loss (EBL). RESULTS There were 397 patients: 223 with open TLIFs, 174 with MIS TLIFs. One hundred and fifty-nine surgeries used bone morphogenetic protein (BMP), 26 live cell, 212 neither. Open TLIF: higher mean EBL, LOS, and Charlson Comorbidity Index (CCI) than MIS. Postoperative radiculitis in 37 patients (9.32% overall): 16 cases MIS BMP (15.69% of their cohort), 6 MIS without BMP (8.33%), 5 open BMP (8.77%), 10 open without BMP (6.02%). MIS TLIF versus open TLIF: no differences in 1-year reoperation rates, infection/wound complication, pseudarthrosis, or postoperative complication rate. BMP versus non-BMP: no differences in reoperation rates, infection/wound complication, pseudarthrosis, or postoperative complication rate. Multivariate logistic regression found that neither BMP (P = .109) nor MIS (P = .314) was an independent predictor for postoperative radiculitis when controlled for age, gender, body mass index, and CCI. Using paired open and MIS groups (N = 168 each) with propensity score matching, these variables were still not independently associated with radiculitis (P = .174 BMP, P = .398 MIS). However, the combination of MIS with BMP was associated with increased radiculitis risk in both the entire patient cohort (odds ratio [OR]: 2.259 [1.117-4.569], P = .023, N = 397) and PSM cohorts (OR: 2.196 [1.045-4.616], P = .038, N = 336) compared to other combinations of surgical approach and biologic use. CONCLUSION Neither the MIS approach nor BMP use is an independent risk factor for post-TLIF radiculitis. However, risk of radiculitis significantly increases when they are used in tandem. This should be considered when selecting biological adjuvants for MIS TLIF. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Erik Wang
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Carolyn Stickley
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Jordan Manning
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | | | - Dainn Woo
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Ethan Ayres
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Edem Abotsi
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | | | - Charla R Fischer
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Jonathan Stieber
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Martin Quirno
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | | | - Peter G Passias
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York
| | - Aaron J Buckland
- Department of Orthopaedics, NYU Langone Orthopedic Hospital, New York, New York.,Melbourne Orthopaedic Group, Melbourne, Australia
| |
Collapse
|
14
|
Kim KT, Kim KG, Choi UY, Lim SH, Kim YJ, Sohn S, Sheen SH, Heo CY, Han I. Safety and Tolerability of Stromal Vascular Fraction Combined with β-Tricalcium Phosphate in Posterior Lumbar Interbody Fusion: Phase I Clinical Trial. Cells 2020; 9:cells9102250. [PMID: 33049918 PMCID: PMC7600447 DOI: 10.3390/cells9102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
The rates of pseudarthrosis remain high despite recent advances in bone graft substitutes for spinal fusion surgery. The aim of this single center, non-randomized, open-label clinical trial was to determine the feasibility of combined use of stromal vascular fraction (SVF) and β-tricalcium phosphate (β-TCP) for patients who require posterior lumbar interbody fusion (PLIF) and pedicle screw fixation. Two polyetheretherketone (PEEK) cages were inserted into the intervertebral space following complete removal of the intervertebral disc. The PEEK cage (SVF group) on the right side of the patient was filled with β-TCP in combination with SVF, and the cage on the left side (control group) was filled with β-TCP alone. Fusion rate and cage subsidence were assessed by lumbar spine X-ray and CT at 6 and 12 months postoperatively. At the 6-month follow-up, 54.5% of the SVF group (right-sided cages) and 18.2% of the control group (left-sided cages) had radiologic evidence of bone fusion (p = 0.151). The 12-month fusion rate of the right-sided cages was 100%, while that of the left-sided cages was 91.6% (p = 0.755). Cage subsidence was not observed. Perioperative combined use of SVF with β-TCP is feasible and safe in patients who require spinal fusion surgery, and it has the potential to increase the early bone fusion rate following spinal fusion surgery.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41566, Korea
| | - Kwang Gi Kim
- Department of Biomedical Engineering, College of Medicine, Gachon University, Seongnam-si 13120, Korea; (K.G.K.); (S.H.L.); (Y.J.K.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Seongnam-si 13120, Korea
| | - Un Yong Choi
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea; (U.Y.C.); (S.S.); (S.H.S.)
| | - Sang Heon Lim
- Department of Biomedical Engineering, College of Medicine, Gachon University, Seongnam-si 13120, Korea; (K.G.K.); (S.H.L.); (Y.J.K.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Seongnam-si 13120, Korea
| | - Young Jae Kim
- Department of Biomedical Engineering, College of Medicine, Gachon University, Seongnam-si 13120, Korea; (K.G.K.); (S.H.L.); (Y.J.K.)
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea; (U.Y.C.); (S.S.); (S.H.S.)
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea; (U.Y.C.); (S.S.); (S.H.S.)
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea; (U.Y.C.); (S.S.); (S.H.S.)
- Correspondence:
| |
Collapse
|
15
|
Wang JC, Yoon ST, Brodke DS, Park JB, Hsieh P, Meisel HJ, Buser Z. Development of AOSpine BOnE (Bone Osteobiologics and Evidence) Classification. Global Spine J 2020; 10:871-874. [PMID: 32905732 PMCID: PMC7485069 DOI: 10.1177/2192568219880176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Classification development. OBJECTIVES The aim of our study was to develop a 3-tier classification for the levels of evidence for osteobiologics and provide a description of the principles by which osteobiologics can be evaluated. BOnE (Bone Osteobiologics and Evidence) classification evaluates each osteobiologic based on the available evidence, and if the published evidence is based on clinical, in vivo or in vitro studies. METHODS The process of establishing the BOnE classification included 5 face-to-face meetings and 2 web calls among members of the AOSpine Knowledge Forum Degenerative. RESULTS The 3 levels of evidence were determined based on the type of data on osteobiologics: level A for human studies, level B for animal studies, and level C for in vitro studies, with level A being the highest level of evidence. Each level was organized into 4 subgroups (eg, A1, A2, A3, and A4). CONCLUSIONS The use and the variety of osteobiologics for spine fusion has dramatically increased over the past few decades; however, literature on their effectiveness is inconclusive. Several prior systematic reviews developed by AOSpine Knowledge Forum Degenerative reported low level of evidence primarily due to the high risk of bias, small sample size, lack of control groups, and limited patient-reported outcomes. BOnE classification will provide a universal platform for research studies and journal publications to classify a new or an existing product and will allow for creating decision-making algorithms for surgical planning.
Collapse
Affiliation(s)
| | | | | | - Jong-Beom Park
- Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, Korea
| | - Patrick Hsieh
- University of Southern California, Los Angeles, CA, USA
| | | | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA,Zorica Buser, Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St, HC4 - #5400A, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Lin C, Zhang N, Waldorff EI, Punsalan P, Wang D, Semler E, Ryaby JT, Yoo J, Johnstone B. Comparing cellular bone matrices for posterolateral spinal fusion in a rat model. JOR Spine 2020; 3:e1084. [PMID: 32613160 PMCID: PMC7323463 DOI: 10.1002/jsp2.1084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Cellular bone matrices (CBM) are allograft products that provide three components essential to new bone formation: an osteoconductive scaffold, extracellular growth factors for cell proliferation and differentiation, and viable cells with osteogenic potential. This is an emerging technology being applied to augment spinal fusion procedures as an alternative to autografts. METHODS We aim to compare the ability of six commercially-available human CBMs (Trinity ELITE®, ViviGen®, Cellentra®, Osteocel® Pro, Bio4® and Map3®) to form a stable spinal fusion using an athymic rat model of posterolateral fusion. Iliac crest bone from syngeneic rats was used as a control to approximate the human gold standard. The allografts were implanted at L4-5 according to vendor specifications in male athymic rats, with 15 rats in each group. MicroCT scans were performed at 48 hours and 6 weeks post-implantation. The rats were euthanized 6 weeks after surgery and the lumbar spines were harvested for X-ray, manual palpation and histology analysis by blinded reviewers. RESULTS By manual palpation, five of 15 rats of the syngeneic bone group were fused at 6 weeks. While Trinity ELITE had eight of 15 and Cellentra 11 of 15 rats with stable fusion, only 2 of 15 of ViviGen-implanted spines were fused and zero of 15 of the Osteocel Pro, Bio4 and Map3 produced stable fusion. MicroCT analysis indicated that total bone volume increased from day 0 to week 6 for all groups except syngeneic bone group. Trinity ELITE (65%) and Cellentra (73%) had significantly greater bone volume increases over all other implants, which was consistent with the histological analysis. CONCLUSION Trinity ELITE and Cellentra were significantly better than other implants at forming new bone and achieving spinal fusion in this rat model at week 6. These results suggest that there may be large differences in the ability of different CBMs to elicit a successful fusion in the posterolateral spine.
Collapse
Affiliation(s)
- Cliff Lin
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Paolo Punsalan
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | | | - Jung Yoo
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | - Brian Johnstone
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
17
|
Smith KA, Russo GS, Vaccaro AR, Arnold PM. Scientific, Clinical, Regulatory, and Economic Aspects of Choosing Bone Graft/Biological Options in Spine Surgery. Neurosurgery 2020; 84:827-835. [PMID: 30032187 DOI: 10.1093/neuros/nyy322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/17/2018] [Indexed: 01/07/2023] Open
Abstract
Spinal arthrodesis is a major element of the spinal surgeon's practice. To attain successful fusion rates, attention must be paid to spinal segment immobilization and proper selection of bone graft. Autogenous bone graft (ie, ICBG), the "gold standard," with or without graft extenders and enhancers provides the foundation for most spinal fusions. ABG is the only graft option containing all 3 factors of new bone growth: osteoconductivity, osteoinductivity, and osteogenicity. While many bone graft alternatives function well as bone graft extenders, only growth factors proteins (ie, rhBMP-2 or OP-2) function as bone graft enhancers and substitutes. The search for optimal hybrid interbody cages, bone graft substitutes, autogenous or allogenic stem cells, and nanostructure scaffolds for release of growth factors continues.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Glenn S Russo
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul M Arnold
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Vlad MD, Fernández Aguado E, Gómez González S, Ivanov IC, Şindilar EV, Poeată I, Iencean AŞ, Butnaru M, Avădănei ER, López López J. Novel titanium-apatite hybrid scaffolds with spongy bone-like micro architecture intended for spinal application: In vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110658. [PMID: 32204086 DOI: 10.1016/j.msec.2020.110658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Titanium alloy scaffolds with novel interconnected and non-periodic porous bone-like micro architecture were 3D-printed and filled with hydroxyapatite bioactive matrix. These novel metallic-ceramic hybrid scaffolds were tested in vitro by direct-contact osteoblast cell cultures for cell adhesion, proliferation, morphology and gene expression of several key osteogenic markers. The scaffolds were also evaluated in vivo by implanting them on transverse and spinous processes of sheep's vertebras and subsequent histology study. The in vitro results showed that: (a) cell adhesion, proliferation and viability were not negatively affected with time by compositional factors (quantitative MTT-assay); (b) the osteoblastic cells were able to adhere and to attain normal morphology (fluorescence microscopy); (c) the studied samples had the ability to promote and sustain the osteogenic differentiation, matrix maturation and mineralization in vitro (real-time quantitative PCR and mineralized matrix production staining). Additionally, the in vivo results showed that the hybrid scaffolds had greater infiltration, with fully mineralized bone after 6 months, than the titanium scaffolds without bioactive matrix. In conclusion, these novel hybrid scaffolds could be an alternative to the actual spinal fusion devices, due to their proved osteogenic performance (i.e. osteoinductive and osteoconductive behaviour), if further dimensional and biomechanical optimization is performed.
Collapse
Affiliation(s)
- Maria Daniela Vlad
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania; TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania.
| | - Enrique Fernández Aguado
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Sergio Gómez González
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Iuliu Cristian Ivanov
- TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania
| | - Eusebiu Viorel Şindilar
- Faculty of Veterinary Medicine, University "Ion Ionescu de la Brad" of Agricultural Sciences and Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489 Iasi, Romania
| | - Ion Poeată
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Andrei Ştefan Iencean
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Maria Butnaru
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania
| | - Elena Roxana Avădănei
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - José López López
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Methods of Cryoprotectant Preservation: Allogeneic Cellular Bone Grafts and Potential Effects. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5025398. [PMID: 31737666 PMCID: PMC6817928 DOI: 10.1155/2019/5025398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Debridement of the bone surface during a surgical fusion procedure initiates an injury response promoting a healing cascade of molecular mediators released over time. Autologous grafts offer natural scaffolding to fill the bone void and to provide local bone cells. Commercial bone grafting products such as allografts, synthetic bone mineral products, etc., are used to supplement or to replace autologous grafts by supporting osteoinductivity, osteoconductivity, and osteogenesis at the surgical site. To assure osteogenic potential, preservation of allogeneic cells with cryoprotectants has been developed to allow for long-term storage and thus delivery of viable bone cells to the surgical site. Dimethyl sulfoxide (DMSO) is an intracellular cryoprotectant commonly used because it provides good viability of the cells post-thaw. However, there is known cytotoxicity reported for DMSO when cells are stored above cryogenic temperatures. For most cellular bone graft products, the cryoprotectant is incorporated with the cells into the other mineralized bone and demineralized bone components. During thawing, the DMSO may not be sufficiently removed from allograft products compared to its use in a cell suspension where removal by washing and centrifugation is available. Therefore, both the allogeneic cell types in the bone grafting product and the local cell types at the bone grafting site could be affected as cytotoxicity varies by cell type and by DMSO content according to reported studies. Overcoming cytotoxicity may be an additional challenge in the formation of bone at a wound or surgical site. Other extracellular cryoprotectants have been explored as alternatives to DMSO which preserve without entering the cell membrane, thereby providing good cellular viability post-thaw and might abrogate the cytotoxicity concerns.
Collapse
|
20
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Bone Graft Substitutes in Single- or Double-Level Anterior Cervical Discectomy and Fusion: A Systematic Review. Spine (Phila Pa 1976) 2019; 44:E618-E628. [PMID: 30395088 DOI: 10.1097/brs.0000000000002925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Systematic review OBJECTIVE.: To undertake a systematic review of published literature to evaluate efficacy of bone graft substitutes on radiographic and clinical outcomes in single- or double-level anterior cervical discectomy and fusion (ACDF) for degenerative disease. SUMMARY OF BACKGROUND DATA ACDF is one of the most common spinal surgeries completed in the United States. Today bone graft substitutes including ceramic-based synthetic bone grafts, allografts, bone morphogenetic proteins (BMPs), mesenchymal stem cells, and bone marrow aspirate are widely used to enhance fusions; even though the efficacy of these substitutes is poorly defined. Critical evaluation of these products is necessary to optimize radiographic and clinical outcomes for ACDF in degenerative disease. METHODS A systematic literature review of 22 published articles was conducted. All articles reported results on patients who underwent a single- or double-level ACDF performed using a bone graft substitute and reported results on radiographic fusion rates at least 6 months after surgery. RESULTS All studies using BMP showed 100% fusion rate despite length of the study or whether additional bone graft substitutes were used. Use of only ceramic-based synthetics had the lowest fusion rate, 80.5%. Use of only mesenchymal stem cells resulted in an average fusion rate of 87.7%. When used alone, allograft resulted in an average fusion rate of 87.3%. This was significantly influenced by one outlier, Kim et al, which when removed, increased the fusion rate to 93.5%. Clinical outcomes were improved postoperatively irrespective of the graft used, although dysphagia was significantly greater in studies using BMP (P < 0.001). CONCLUSION Allograft alone has the lowest cost with similar fusion rates and clinical outcomes compared to other bone graft substitutes. Physicians should consider this when choosing to use bone graft substitutes for routine ACDFs. LEVEL OF EVIDENCE 4.
Collapse
|
22
|
Hsieh PC, Buser Z, Skelly AC, Brodt ED, Brodke D, Meisel HJ, Park JB, Yoon ST, Wang JC. Allogenic Stem Cells in Spinal Fusion: A Systematic Review. Global Spine J 2019; 9:22S-38S. [PMID: 31157144 PMCID: PMC6512196 DOI: 10.1177/2192568219833336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To review, critically appraise, and synthesize evidence on the use of allogenic stem cell products for spine fusion compared with other bone graft materials. METHODS Systematic searches of PubMed/MEDLINE, through October 31, 2018 and of EMBASE and ClinicalTrials.gov through April 13, 2018 were conducted for literature comparing allogenic stem cell sources for fusion in the lumbar or cervical spine with other fusion methods. In the absence of comparative studies, case series of ≥10 patients were considered. RESULTS From 382 potentially relevant citations identified, 6 publications on lumbar fusion and 5 on cervical fusion met the inclusion criteria. For lumbar arthrodesis, mean Oswestry Disability Index (ODI), visual analogue scale (VAS) pain score, and fusion rates were similar for anterior lumbar interbody fusion (ALIF) using allogenic multipotent adult progenitor cells (Map3) versus recombinant human bone morphogenetic protein-2 (rhBMP-2) in the one comparative lumbar study (90% vs 92%). Across case series of allogenic stem cell products, function and pain were improved relative to baseline and fusion occurred in ≥90% of patients at ≥12 months. For cervical arthrodesis across case series, stem cell products improved function and pain compared with baseline at various time frames. In a retrospective cohort study fusion rates were not statistically different for Osteocel compared with Vertigraft allograft (88% vs 95%). Fusion rates varied across time frames and intervention products in case series. CONCLUSIONS The overall quality (strength) of evidence of effectiveness and safety of allogenic stem cells products for lumbar and cervical arthrodesis was very low, meaning that we have very little confidence that the effects seen are reflective of the true effects.
Collapse
Affiliation(s)
| | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Darrel Brodke
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Overley SC, McAnany SJ, Anwar MA, Merrill RK, Lovy A, Guzman JZ, Zhadanov S, Doshi A, Rothenberg E, Vaishnav A, Gang C, Qureshi SA. Predictive Factors and Rates of Fusion in Minimally Invasive Transforaminal Lumbar Interbody Fusion Utilizing rhBMP-2 or Mesenchymal Stem Cells. Int J Spine Surg 2019; 13:46-52. [PMID: 30805286 DOI: 10.14444/6007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Several fusion adjuncts exist to enhance fusion rates during minimally invasive transforaminal lumbar interbody fusion (MI-TLIF). The objective of this study was to compare fusion rates in patients undergoing MI-TLIF with either rhBMP-2 or cellularized bone matrix (CBM). Methods We conducted a single surgeon retrospective cohort study of patients who underwent MI-TLIF with either rhBMP-2 or CBM placed in an interbody cage. Single and multilevel procedures were included. Fusion was assessed on computed tomography scans at 12-month follow-up by an independent, blinded, board-certified neuroradiologist. Fusion rates and rate of revision surgery were compared with a Fisher exact test between the 2 groups. A multivariate regression analysis was performed to identify patient factors that were predictive of radiographic nonunion after MI-TLIF. Results A total of 93 fusion levels in 78 patients were reviewed. Thirty-nine patients received CBM, and 39 patients received rhBMP-2. The patients receiving rhBMP-2 were older on average (61.4 vs 55.6, P = .03). The overall fusion rate was 68% in the CBM group (32/47 levels) and 78% in the rhBMP-2 group (36/46) (P = .35). Only preoperative hypertension was predictive of radiographic nonunion (odds ratio = 3.5, P = .05). There were 3 smokers in the CBM group and 4 smokers in the BMP group, and 1 in each group experienced radiographic pseudarthrosis. A total of 4 patients, 3 in the CBM group and 1 in the BMP group (P = .61), required revision for symptomatic pseudarthrosis. All of these patients had a single-level index procedure. Conclusions There were no differences in radiographic fusion and rate of revision surgery in patients who underwent MI-TLIF with either rhBMP-2 or CBM as fusion adjuncts. Level of Evidence 3. Clinical Relevance Both rhBMP-2 and CBMs can be used as effective fusion adjuncts without any clear advantage of one over the other.
Collapse
Affiliation(s)
- Samuel C Overley
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven J McAnany
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Muhammad A Anwar
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert K Merrill
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Lovy
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Javier Z Guzman
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sergey Zhadanov
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amish Doshi
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward Rothenberg
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Avani Vaishnav
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Catherine Gang
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| | - Sheeraz A Qureshi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York
| |
Collapse
|
25
|
Abjornson C, Brecevich A, Callanan T, Dowe C, Cammisa FP, Lorio MP. ISASS Recommendations and Coverage Criteria for Bone Graft Substitutes used in Spinal Surgery. Int J Spine Surg 2018; 12:757-771. [PMID: 30619681 DOI: 10.14444/5095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autologous bone graft remains the gold standard by which bone graft substitutes are compared in spine fusion surgery. The utilization of bone graft substitutes, either as (1) an extender for spinal fusion constructs or (2) an alternative to minimize morbidity while maximizing outcomes, is changing. Moreover, current procedures technology (CPT) code 20939 became effective in 2018 defining bone marrow aspirate for bone grafting, spine surgery only. Changes in the complex landscape of grafting materials have prompted ISASS to provide category guidance for bone graft substitutes by comparing and contrasting US regulatory pathways, mechanisms of action, and supportive clinical evidence for these bone grafting materials.
Collapse
|
26
|
Xiao L, Xu S, Wang X, Jin Z, Wang J, Yang B, Xu H. Isolation and characterization of stem cells from differentially degenerated human lumbar zygapophyseal articular cartilage. Mol Med Rep 2018; 18:5751-5759. [PMID: 30365096 DOI: 10.3892/mmr.2018.9592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to verify the presence of stem cells with multilineage differentiation potential in human lumbar zygapophyseal articular cartilage (LZAC) and to compare the chondrogenic potential of cells obtained from differentially degenerated articular cartilage samples. Surgically obtained human lumbar zygapophyseal joint tissues were classified into the normal, mildly degenerated and severely degenerated groups, according to their pathological characteristics. Primary chondrocytes from these groups were cultured, and stem cells were selected using a monoclonal cell culture method. Differences in stem cell morphology between the three groups were observed using inverted microscopy and phalloidin staining. In addition, stem cell chondrogenic potential was determined through induced differentiation and cellular staining. Gene and protein expression levels of the chondrogenic‑specific markers aggrecan, collagen type‑II and SRY‑related high‑mobility‑group box 9 were determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The clonogenic ability of stem cells in the three groups was determined using a clonogenic assay. It was revealed that stem cells with multilineage differentiation potential were isolated from all three cartilage groups; however, the cells obtained from severely degenerated articular cartilage resulted in severe fibrosis, whilst those obtained from mildly degenerated articular cartilage possessed stronger chondrogenic and clonogenic abilities. Taken together, stem cells with multilineage differentiation potential and clonal properties were identified in human LZAC, and these characteristics were more prominent in mildly degenerated as compared with severely degenerated articular cartilage.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shujuan Xu
- Department of Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiao Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhongxing Jin
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jing Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Bijing Yang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
27
|
Oshina M, Oshima Y, Tanaka S, Riew KD. Radiological Fusion Criteria of Postoperative Anterior Cervical Discectomy and Fusion: A Systematic Review. Global Spine J 2018; 8:739-750. [PMID: 30443486 PMCID: PMC6232720 DOI: 10.1177/2192568218755141] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES Diagnosis of pseudarthrosis after anterior cervical fusion is difficult, and often depends on the surgeon's subjective assessment because recommended radiographic criteria are lacking. This review evaluated the available evidence for confirming fusion after anterior cervical surgery. METHODS Articles describing assessment of anterior cervical fusion were retrieved from MEDLINE and SCOPUS. The assessment methods and fusion rates at 1 and 2 years were evaluated to identify reliable radiographical criteria. RESULTS Ten fusion criteria were described. The 4 most common were presence of bridging trabecular bone between the endplates, absence of a radiolucent gap between the graft and endplate, absence of or minimal motion between adjacent vertebral bodies on flexion-extension radiographs, and absence of or minimal motion between the spinous processes on flexion-extension radiographs. The mean fusion rates were 90.2% at 1 year and 94.7% at 2 years. The fusion rate at 2 years had significant independence (P = .048). CONCLUSIONS The most common fusion criteria, bridging trabecular bone between the endplates and absence of a radiolucent gap between the graft and endplate, are subjective. We recommend using <1 mm of motion between spinous processes on extension and flexion to confirm fusion.
Collapse
Affiliation(s)
- Masahito Oshina
- The University of Tokyo Hospital, Tokyo, Japan,Columbia University, New York, NY, USA,Masahito Oshina, Department of Orthopaedic Surgery,
The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | | | | | | |
Collapse
|
28
|
Hsu WK, Goldstein CL, Shamji MF, Cho SK, Arnold PM, Fehlings MG, Mroz TE. Novel Osteobiologics and Biomaterials in the Treatment of Spinal Disorders. Neurosurgery 2017; 80:S100-S107. [PMID: 28350951 DOI: 10.1093/neuros/nyw085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Spinal osteobiologics have evolved substantially in this century after the development of many product categories such as growth factors, allograft, and stem cells. The indications for the use of novel biologics within spine surgery are rapidly expanding as the mechanism of each is elucidated. While the knowledge base of bone morphogenetic protein increases with each subsequent year, the application of new nanotechnology and cell-based strategies are being reported. This review will discuss the most recent data in novel osteobiologics, and where we could use future study.
Collapse
Affiliation(s)
- Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Mohammed F Shamji
- Department of Orthopaedic Surgery, University of Toronto, Toronto, Canada
| | - Sam K Cho
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, New York
| | - Paul M Arnold
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, Missouri
| | - Michael G Fehlings
- Department of Orthopaedic Surgery, University of Toronto, Toronto, Canada
| | - Tom E Mroz
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
|
30
|
Kadam A, Millhouse PW, Kepler CK, Radcliff KE, Fehlings MG, Janssen ME, Sasso RC, Benedict JJ, Vaccaro AR. Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies. Int J Spine Surg 2016; 10:33. [PMID: 27909654 DOI: 10.14444/3033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STUDY DESIGN A narrative review of literature. OBJECTIVE This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. SUMMARY OF BACKGROUND DATA Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. METHODS A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. RESULTS A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. CONCLUSIONS There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall.
Collapse
Affiliation(s)
- Abhijeet Kadam
- Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ishida W, Elder BD, Holmes C, Lo SFL, Witham TF. Variables Affecting Fusion Rates in the Rat Posterolateral Spinal Fusion Model with Autogenic/Allogenic Bone Grafts: A Meta-analysis. Ann Biomed Eng 2016; 44:3186-3201. [PMID: 27473706 DOI: 10.1007/s10439-016-1701-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/21/2016] [Indexed: 01/14/2023]
Abstract
The rat posterolateral spinal fusion model with autogenic/allogenic bone graft (rat PFABG) has been increasingly utilized as an experimental model to assess the efficacy of novel fusion treatments. The objective of this study was to investigate the reliability of the rat PFABG model and examine the effects of different variables on spinal fusion. A web-based literature search from January, 1970 to September, 2015, yielded 26 studies, which included 40 rat PFABG control groups and 449 rats. Data regarding age, weight, sex, and strain of rats, graft volume, graft type, decorticated levels, surgical approach, institution, the number of control rats, fusion rate, methods of fusion assessment, and timing of fusion assessment were collected and analyzed. The primary outcome variable of interest was fusion rate, as evaluated by manual palpation. Fusion rates varied widely, from 0 to 96%. The calculated overall fusion rate was 46.1% with an I 2 value of 62.4, which indicated moderate heterogeneity. Weight >300 g, age >14 weeks, male rat, Sprague-Dawley strain, and autogenic coccyx grafts increased fusion rates with statistical significance. Additionally, an assessment time-point ≥8 weeks had a trend towards statistical significance (p = 0.070). Multi-regression analysis demonstrated that timing of assessment and age as continuous variables, as well as sex as a categorical variable, can predict the fusion rate with R 2 = 0.82. In an inter-institution reliability analysis, the pooled overall fusion rate was 50.0% [44.8, 55.3%], with statistically significant differences among fusion outcomes at different institutions (p < 0.001 and I 2 of 72.2). Due to the heterogeneity of fusion outcomes, the reliability of the rat PFABG model was relatively limited. However, selection of adequate variables can optimize its use as a control group in studies evaluating the efficacy of novel fusion therapies.
Collapse
Affiliation(s)
- Wataru Ishida
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Benjamin D Elder
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA.
| | - Christina Holmes
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Sheng-Fu L Lo
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA
| |
Collapse
|