1
|
Kranz S, Heyder M, Rabe U, Liu P, Mrozinska A, Guellmar A, Berg A, Steen D, Tuckermann J, Watts DC, Sigusch B, Reise M. Osseointegration of photodynamic active biomaterials for bone regeneration in an animal bone model over a period of 12 months. Dent Mater 2023; 39:977-985. [PMID: 37709590 DOI: 10.1016/j.dental.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVES Previous efforts led to the development of two different polymeric biomaterials for periodontal regeneration with antibacterial photodynamic surface activity. The present study aimed to investigate osseointegration and bone formation of both materials in an ovine model. METHODS Both biomaterials: 1) urethane dimethacrylate-based Biomaterial 1 (BioM1) and 2) tri-armed oligoester-urethane methacrylate-based Biomaterial 2 (BioM2) are enriched with beta-tri-calcium phosphate and the photosensitizer meso-tetra(hydroxyphenyl)chlorin (mTHPC). These materials were implanted in non-critical size bone defects in the sheep femur (n = 16) and tibia (n = 8). Empty defects served as controls (n = 16). Polyfluorochrome sequential bone labeling was carried out at baseline and after 3, 6, and 12 months. Animals were sacrificed after 12 months. Bone specimens (n = 40) were fixed and subjected to microtomographic analysis (µCT) for the evaluation of the bone-volume-fraction (BV/TV), trabecular number and trabecular thickness. Subsequently, histological sections were arranged and polyfluorochrome sequential bone labeling was analyzed by confocal laser scanning microscopy (cLSM). RESULTS cLSM analysis revealed that highest remodeling and bone formation activity occurred during the second half of the study period (6-12 months). Bone formation in the tibia was significantly lower for the control (2.71 ± 1.26%) as compared to BioM1 (6.01 ± 2.99%) and BioM2 (6.45 ± 2.12%); (p = 0.006, p = 0004). Micro-computed tomography revealed a BV/TV volume fraction of 44.72 ± 9.01% in femur defects filled with BioM1 which was significantly higher compared to the control (32.27 ± 7.02%; p = 0.01). Bone architecture (trabecular number, trabecular thickness) did not significantly differ from the self-healed defects. SIGNIFICANCE Both biomaterials, especially BioM1 showed good osseointegration and bone formation characteristics and can be recommended for further examination in periodontal regeneration studies.
Collapse
Affiliation(s)
- S Kranz
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany.
| | - M Heyder
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - U Rabe
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - P Liu
- Institute of Comparative Molecular Endocrinology, University Ulm, Helmholtzstr. 8/1, 9081 Ulm, Germany
| | - A Mrozinska
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - A Guellmar
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - A Berg
- Department of Biomaterials, INNOVENT e.V., Prüssingstr. 27b, 07745 Jena, Germany
| | - D Steen
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - J Tuckermann
- Institute of Comparative Molecular Endocrinology, University Ulm, Helmholtzstr. 8/1, 9081 Ulm, Germany
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - M Reise
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| |
Collapse
|
2
|
Sachse A, Hasenbein I, Hortschansky P, Schmuck KD, Maenz S, Illerhaus B, Kuehmstedt P, Ramm R, Huber R, Kunisch E, Horbert V, Gunnella F, Roth A, Schubert H, Kinne RW. BMP-2 (and partially GDF-5) coating significantly accelerates and augments bone formation close to hydroxyapatite/tricalcium-phosphate/brushite implant cylinders for tibial bone defects in senile, osteopenic sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:31. [PMID: 37378714 PMCID: PMC10307740 DOI: 10.1007/s10856-023-06734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.
Collapse
Affiliation(s)
- André Sachse
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Ines Hasenbein
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany
| | - Klaus D Schmuck
- Johnson & Johnson Medical GmbH, DePuy Synthes, Norderstedt, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Illerhaus
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Peter Kuehmstedt
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - Roland Ramm
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, Leipzig, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany.
| |
Collapse
|
3
|
Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis 2022; 60:e23499. [PMID: 36086991 PMCID: PMC9787372 DOI: 10.1002/dvg.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
The periodontal complex involves the hard and soft tissues which support dentition, comprised of cementum, bone, and the periodontal ligament (PDL). Periodontitis, a prevalent infectious disease of the periodontium, threatens the integrity of these tissues and causes irreversible damage. Periodontal therapy aims to repair and ultimately regenerate these tissues toward preserving native dentition and improving the physiologic integration of dental implants. The PDL contains multipotent stem cells, which have a robust capacity to differentiate into various types of cells to form the PDL, cementum, and alveolar bone. Selection of appropriate growth factors and biomaterial matrices to facilitate periodontal regeneration are critical to recapitulate the physiologic organization and function of the periodontal complex. Herein, we discuss the current state of clinical periodontal regeneration including a review of FDA-approved growth factors. We will highlight advances in preclinical research toward identifying additional growth factors capable of robust repair and biomaterial matrices to augment regeneration similarly and synergistically, ultimately improving periodontal regeneration's predictability and long-term efficacy. This review should improve the readers' understanding of the molecular and cellular processes involving periodontal regeneration essential for designing comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- W. Benton Swanson
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yao Yao
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
4
|
Hasenbein I, Sachse A, Hortschansky P, Schmuck KD, Horbert V, Anders C, Lehmann T, Huber R, Maslaris A, Layher F, Braun C, Roth A, Plöger F, Kinne RW. Single Application of Low-Dose, Hydroxyapatite-Bound BMP-2 or GDF-5 Induces Long-Term Bone Formation and Biomechanical Stabilization of a Bone Defect in a Senile Sheep Lumbar Osteopenia Model. Biomedicines 2022; 10:513. [PMID: 35203721 PMCID: PMC8962316 DOI: 10.3390/biomedicines10020513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Effects of hydroxyapatite (HA) particles with bone morphogenetic BMP-2 or GDF-5 were compared in sheep lumbar osteopenia; in vitro release in phosphate-buffered saline (PBS) or sheep serum was assessed by ELISA. Lumbar (L) vertebral bone defects (Ø 3.5 mm) were generated in aged, osteopenic female sheep (n = 72; 9.00 ± 0.11 years; mean ± SEM). Treatment was: (a) HA particles (2.5 mg; L5); or (b) particles coated with BMP-2 (1 µg; 10 µg) or GDF-5 (5 µg; 50 µg; L4; all groups n = 6). Untouched vertebrae (L3) served as controls. Three and nine months post-therapy, bone formation was assessed by osteodensitometry, histomorphometry, and biomechanical testing. Cumulative 14-day BMP release was high in serum (76-100%), but max. 1.4% in PBS. In vivo induction of bone formation by HA particles with either growth factor was shown by: (i) significantly increased bone volume, trabecular and cortical thickness (overall increase HA + BMP vs. control close to the injection channel 71%, 110%, and 37%, respectively); (ii) partial significant effects for bone mineral density, bone formation, and compressive strength (increase 17%; 9 months; GDF-5). Treatment effects were not dose-dependent. Combined HA and BMPs (single low-dose) highly augment long-term bone formation and biomechanical stabilization in sheep lumbar osteopenia. Thus, carrier-bound BMP doses 20,000-fold to 1000-fold lower than previously applied appear suitable for spinal fusion/bone regeneration and improved treatment safety.
Collapse
Affiliation(s)
- Ines Hasenbein
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - André Sachse
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Peter Hortschansky
- Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany;
| | - Klaus D. Schmuck
- Johnson & Johnson Medical GmbH, DePuySynthes, 22851 Norderstedt, Germany;
| | - Victoria Horbert
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Christoph Anders
- Division of Motor Research, Pathophysiology and Biomechanics, Experimental Trauma Surgery, Department for Hand, Reconstructive, and Trauma Surgery, Jena University Hospital, 07743 Jena, Germany;
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Data Sciences, Jena University Hospital, 07743 Jena, Germany;
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Alexander Maslaris
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
| | - Frank Layher
- Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (I.H.); (A.S.); (V.H.); (A.M.); (F.L.)
| | - Christina Braun
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, 04103 Leipzig, Germany;
| | - Frank Plöger
- BIOPHARM GmbH, Czernyring 22, 69115 Heidelberg, Germany;
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| |
Collapse
|
5
|
Taguchi T, Lopez MJ. An overview of de novo bone generation in animal models. J Orthop Res 2021; 39:7-21. [PMID: 32910496 PMCID: PMC7820991 DOI: 10.1002/jor.24852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Some of the earliest success in de novo tissue generation was in bone tissue, and advances, facilitated by the use of endogenous and exogenous progenitor cells, continue unabated. The concept of one health promotes shared discoveries among medical disciplines to overcome health challenges that afflict numerous species. Carefully selected animal models are vital to development and translation of targeted therapies that improve the health and well-being of humans and animals alike. While inherent differences among species limit direct translation of scientific knowledge between them, rapid progress in ex vivo and in vivo de novo tissue generation is propelling revolutionary innovation to reality among all musculoskeletal specialties. This review contains a comparison of bone deposition among species and descriptions of animal models of bone restoration designed to replicate a multitude of bone injuries and pathology, including impaired osteogenic capacity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Mandi J. Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
6
|
Maenz S, Brinkmann O, Hasenbein I, Braun C, Kunisch E, Horbert V, Gunnella F, Sachse A, Bischoff S, Schubert H, Jandt KD, Bossert J, Driesch D, Kinne RW, Bungartz M. The old sheep: a convenient and suitable model for senile osteopenia. J Bone Miner Metab 2020; 38:620-630. [PMID: 32296985 DOI: 10.1007/s00774-020-01098-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/08/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Existing osteoporosis models in sheep exhibit some disadvantages, e.g., challenging surgical procedures, serious ethical concerns, failure of reliable induction of substantial bone loss, or lack of comparability to the human condition. This study aimed to compare bone morphological and mechanical properties of old and young sheep, and to evaluate the suitability of the old sheep as a model for senile osteopenia. MATERIALS AND METHODS The lumbar vertebral body L3 of female merino sheep with two age ranges, i.e., old animals (6-10 years; n = 41) and young animals (2-4 years; n = 40), was analyzed concerning its morphological and mechanical properties by bone densitometry, quantitative histomorphometry, and biomechanical testing of the corticalis and/or central spongious region. RESULTS In comparison with young sheep, old animals showed only marginally diminished bone mineral density of the vertebral bodies, but significantly decreased structural (bone volume, - 15.1%; ventral cortical thickness, - 11.8%; lateral cortical thickness, - 12.2%) and bone formation parameters (osteoid volume, osteoid surface, osteoid thickness, osteoblast surface, all - 100.0%), as well as significantly increased bone erosion (eroded surface, osteoclast surface). This resulted in numerically decreased biomechanical properties (compressive strength; - 6.4%). CONCLUSION Old sheep may represent a suitable model of senile osteopenia with markedly diminished bone structure and formation, and substantially augmented bone erosion. The underlying physiological aging concept reduces challenging surgical procedures and ethical concerns and, due to complex alteration of different facets of bone turnover, may be well representative of the human condition.
Collapse
Affiliation(s)
- Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Olaf Brinkmann
- Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Ines Hasenbein
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Christina Braun
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - André Sachse
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| | - Sabine Bischoff
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany.
| | - Matthias Bungartz
- Chair of Orthopedics, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, Klosterlausnitzer Str. 81, 07607, Eisenberg, Germany
| |
Collapse
|
7
|
de Lacerda Schickert S, Pinto JC, Jansen J, Leeuwenburgh SCG, van den Beucken JJJP. Tough and injectable fiber reinforced calcium phosphate cement as an alternative to polymethylmethacrylate cement for vertebral augmentation: a biomechanical study. Biomater Sci 2020; 8:4239-4250. [PMID: 32579633 DOI: 10.1039/d0bm00413h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vertebral compression fractures (VCFs) are a very common problem among the elderly, which ultimately result in severe pain and a drastically reduced quality of life. An effective treatment for VCFs is the minimally invasive augmentation of the damaged vertebrae through vertebroplasty and/or kyphoplasty. These surgical procedures treat the affected vertebrae by injection of poly(methyl methacrylate) cement (PMMA) into the vertebral body. However, clinical use of PMMA cement is associated with major drawbacks. Bioceramic cements such as injectable calcium phosphate cements (CPC) exhibit a superior osteocompatibility over PMMA cements, but are too brittle for load-bearing applications. Here, we evaluated the handling and mechanical properties of a recently developed CPC formulation containing both poly(vinyl alcohol) (PVA) fibers and carboxymethyl cellulose (CMC) as an alternative to PMMA cement for vertebro- and kyphoplasty. Our results demonstrate that the addition of CMC rendered fiber-reinforced CPC injectable without negatively affecting its mechanical properties. Further, an ex vivo mechanical analysis clearly showed that extravasation of PVA fiber-reinforced CPC with CMC into trabecular bone was limited as compared to PMMA. Finally, we observed that the ex vivo biomechanical performance of vertebrae treated with CMC and PVA fibers was similar to PMMA-treated vertebrae. The obtained data suggests that PVA fiber-reinforced CPCs with CMC possesses adequate handling, mechanical and structural characteristics for vertebro- and kyphoplasty procedures. These data pave the way for future preclinical studies on the feasibility of treating vertebral compression fractures using PVA fiber-reinforced CPC with CMC.
Collapse
Affiliation(s)
- Sónia de Lacerda Schickert
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences; Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, The Netherlands.
| | - João Castro Pinto
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences; Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, The Netherlands.
| | - John Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences; Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, The Netherlands.
| | - Sander C G Leeuwenburgh
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences; Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, The Netherlands.
| | - Jeroen J J P van den Beucken
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences; Department of Dentistry - Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Gunnella F, Kunisch E, Horbert V, Maenz S, Bossert J, Jandt KD, Plöger F, Kinne RW. In Vitro Release of Bioactive Bone Morphogenetic Proteins (GDF5, BB-1, and BMP-2) from a PLGA Fiber-Reinforced, Brushite-Forming Calcium Phosphate Cement. Pharmaceutics 2019; 11:pharmaceutics11090455. [PMID: 31484306 PMCID: PMC6781330 DOI: 10.3390/pharmaceutics11090455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration of sheep lumbar osteopenia is promoted by targeted delivery of bone morphogenetic proteins (BMPs) via a biodegradable, brushite-forming calcium-phosphate-cement (CPC) with stabilizing poly(l-lactide-co-glycolide) acid (PLGA) fibers. The present study sought to quantify the release and bioactivity of BMPs from a specific own CPC formulation successfully used in previous in vivo studies. CPC solid bodies with PLGA fibers (0%, 5%, 10%) containing increasing dosages of GDF5, BB-1, and BMP-2 (2 to 1000 µg/mL) were ground and extracted in phosphate-buffered saline (PBS) or pure sheep serum/cell culture medium containing 10% fetal calf serum (FCS; up to 30/31 days). Released BMPs were quantified by ELISA, bioactivity was determined via alkaline phosphatase (ALP) activity after 3-day exposure of different osteogenic cell lines (C2C12; C2C12BRlb with overexpressed BMP-receptor-1b; MCHT-1/26; ATDC-5) and via the influence of the extracts on the expression of osteogenic/chondrogenic genes and proteins in human adipose tissue-derived mesenchymal stem cells (hASCs). There was hardly any BMP release in PBS, whereas in medium + FCS or sheep serum the cumulative release over 30/31 days was 11-34% for GDF5 and 6-17% for BB-1; the release of BMP-2 over 14 days was 25.7%. Addition of 10% PLGA fibers significantly augmented the 14-day release of GDF5 and BMP-2 (to 22.6% and 43.7%, respectively), but not of BB-1 (13.2%). All BMPs proved to be bioactive, as demonstrated by increased ALP activity in several cell lines, with partial enhancement by 10% PLGA fibers, and by a specific, early regulation of osteogenic/chondrogenic genes and proteins in hASCs. Between 10% and 45% of bioactive BMPs were released in vitro from CPC + PLGA fibers over a time period of 14 days, providing a basis for estimating and tailoring therapeutically effective doses for experimental and human in vivo studies.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| |
Collapse
|
9
|
Functionalization of Ceramic Coatings for Enhancing Integration in Osteoporotic Bone: A Systematic Review. COATINGS 2019. [DOI: 10.3390/coatings9050312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The success of reconstructive orthopaedic surgery strongly depends on the mechanical and biological integration between the prosthesis and the host bone tissue. Progressive population ageing with increased frequency of altered bone metabolism conditions requires new strategies for ensuring an early implant fixation and long-term stability. Ceramic materials and ceramic-based coatings, owing to the release of calcium phosphate and to the precipitation of a biological apatite at the bone-implant interface, are able to promote a strong bonding between the host bone and the implant. Methods: The aim of the present systematic review is the analysis of the existing literature on the functionalization strategies for improving the implant osteointegration in osteoporotic bone and their relative translation into the clinical practice. The review process, conducted on two electronic databases, identified 47 eligible preclinical studies and 5 clinical trials. Results: Preclinical data analysis showed that functionalization with both organic and inorganic molecules usually improves osseointegration in the osteoporotic condition, assessed mainly in rodent models. Clinical studies, mainly retrospective, have tested no functionalization strategies. Registered trademarks materials have been investigated and there is lack of information about the micro- or nano- topography of ceramics. Conclusions: Ceramic materials/coatings functionalization obtained promising results in improving implant osseointegration even in osteoporotic conditions but preclinical evidence has not been fully translated to clinical applications.
Collapse
|
10
|
Dias IR, Camassa JA, Bordelo JA, Babo PS, Viegas CA, Dourado N, Reis RL, Gomes ME. Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Curr Osteoporos Rep 2018; 16:182-197. [PMID: 29460175 DOI: 10.1007/s11914-018-0431-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes research on the use of sheep and goats as large animal models of human osteoporosis for preclinical and translational studies. RECENT FINDINGS The most frequent osteoporotic sheep model used is the ovariectomized sheep with 12 months post-operatively or more and the combined treatment of ovariectomized sheep associated to calcium/vitamin D-deficient diet and glucocorticoid applications for 6 months, but other methods are also described, like pinealectomy or hypothalamic-pituitary disconnection in ovariectomized sheep. The goat model for osteoporosis research has been used in a very limited number of studies in osteoporosis research relative to sheep. These osteoporotic small ruminant models are applied for biomaterial research, bone augmentation, efficacy of implant fixation, fragility fracture-healing process improvement, or bone-defect repair studies in the osteopenic or osteoporotic bone. Sheep are a recognized large animal model for preclinical and translational studies in osteoporosis research and the goat to a lesser extent. Recently, the pathophysiological mechanism underlying induction of osteoporosis in glucocorticoid-treated ovariectomized aged sheep was clarified, being similar to what occurs in postmenopausal women with glucocorticoid-induced osteoporosis. It was also concluded that the receptor activator of NF-κB ligand was stimulated in the late progressive phase of the osteoporosis induced by steroids in sheep. The knowledge of the pathophysiological mechanisms at the cellular and molecular levels of the induction of osteoporosis in small ruminants, if identical to humans, will allow in the future, the use of these animal models with greater confidence in the preclinical and translational studies for osteoporosis research.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | - José A Camassa
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - João A Bordelo
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Pedro S Babo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4804-533, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|