1
|
Tang S, Pan D, Chen S, Li H, Ye Z. Biomechanical Analysis for Enhanced Expulsion-Proof Intervertebral Fusion Device. J Biomech Eng 2025; 147:041001. [PMID: 39790095 DOI: 10.1115/1.4067574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
This study aimed to compare the sinking and shifting characteristics of an enhanced expulsion-proof intervertebral fusion device (EEIFD) with a traditional transforaminal lumbar interbody fusion device (TTLIFD). Five specimens of each device were selected for analysis. Four mechanical tests-compression, subsidence, expulsion, and torque-were conducted for each cage. Additionally, a blade-cutting torque test was performed on the EEIFD, with load-displacement curves and mechanical values recorded. In static axial compression, static subsidence, and dynamic subsidence tests, the EEIFD demonstrated performance comparable to the TTLIFD. In expulsion testing, the maximum expulsion force for the EEIFD when the blade was rotated out (534.02 ± 21.24 N) was significantly higher than when the blade was not rotated out (476.97 ± 24.45 N) (P = 6.81 × 10-4). Moreover, the maximum expulsion force for the EEIFD with blade rotation (534.02 ± 21.24 N) was significantly higher than that of the TTLIFD (444.01 ± 12.42 N) (P = 9.82 × 10-5). These findings indicated that the EEIFD effectively enhanced expulsion prevention and antisubsidence performance.
Collapse
Affiliation(s)
- Shaolong Tang
- Department of Orthopedics, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou 310000, Zhejiang China; Department of Spinal Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan, China
| | - Dan Pan
- Department of Spinal Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan, China
| | - Siyuan Chen
- Department of Spinal Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan, China
| | - Hengyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital of Medical College of Zhejiang University, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
2
|
Pezzanite LM, Nelson BB, Downey AC, Gadomski B, McGilvray K, Baer K, Kappel SM, Nout-Lomas Y, Seim HB, Easley JT. Ex vivo biomechanical comparison of pedicle screw and rod constructs with and without interbody fusion devices for equine cervical vertebral stabilization. Vet Surg 2025. [PMID: 39953786 DOI: 10.1111/vsu.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/21/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE To determine the biomechanical properties of pedicle screw and rod (PSR) constructs alone and with an interbody fusion device (PSRIFD) for equine ventral cervical vertebral stabilization. STUDY DESIGN Cadaveric ex vivo biomechanical analysis. SAMPLE POPULATION A total of 14 (n = 14) adult equine cervical vertebral columns. METHODS Cervical vertebral columns were stabilized by PSR alone (n = 6) or PSRIFD (n = 5). Three columns were left unaltered as controls. Non-destructive biomechanical testing showed the kinematic range of motion (ROM), compliance, and neutral zone of each spinal unit in the three main kinematic directions (flexion-extension, lateral bending and axial rotation). Destructive testing was performed to identify mode of failure and stiffness in flexion. Non-destructive and destructive biomechanical data were compared by ANOVA between experimental groups. RESULTS In flexion-extension, PSR and PSRIFD had significantly lower ROM, compliance and neutral zone than controls (all p < .05). ROM, compliance and neutral zone were not different between PSR and PSRIFD groups. In axial rotation, the neutral zone of PSR was lower than PSRIFD (p = .013) and both were lower than controls (p < .0001 and p < .02, respectively). Stiffness and moment failure between PSR and PSRIFD groups were not different. All constructs failed through articular process joint dislocation, though the PSRIFD group also had ventral IFD migration. CONCLUSION PSR and PSRIFD groups have similar biomechanical properties and modes of failure, though PSRIFD had higher catastrophic injury potential. CLINICAL SIGNIFICANCE These findings support that PSR constructs provide comparable biomechanical stability to PSRIFD, reducing time and potential complications associated with IFD placement.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brad B Nelson
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Amy C Downey
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ben Gadomski
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Kenzie Baer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M Kappel
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Yvette Nout-Lomas
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Howard B Seim
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jeremiah T Easley
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Ni S, Yang R, Liu S, Hu Y. Biomechanical analysis of a newly designed and 3D printed plate-locking interbody cage: an observational study of finite element analysis. Sci Rep 2025; 15:3534. [PMID: 39875489 PMCID: PMC11775238 DOI: 10.1038/s41598-025-88151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Anterior cervical interbody fusion (ACDF) has become a classic surgical procedure for the treatment of cervical degenerative diseases, and various interbody cages are widely used in this procedure. We used 3D printing technology to produce a new type of plate-locking cage, anticipating to achieve high fusion rate with the high biomechanical stability. This study is to compare the biomechanical characteristics between a newly designed interbody cage and a conventional Zero-profile cage during ACDF using finite element analysis. The CT images of a 35-year-old healthy male were extracted and saved in DICOM format. Mimics Research 19.0, Geomagic Wrap 2017, NX12. 0, Abaqus 6.14 were used to construct the finite element models, then, titanium plate, titanium screw, cages, and the residual parts of both groups were assembled with reference to the surgical approach of ACDF (C4/5), following the successful establishment of both surgical models, a total of six boundary and loading conditions were tested, including flexion, extension, left and right bending, and left and right axial torsion. It is found that the plate stress peak of the new cage group decreased 73.78 MPa, 70.00%; 77.17 MPa, 70.67%; 59.77 MPa, 64.97%; 49.94 MPa, 58.28%; 44.55 MPa, 68.38%; 46.14 MPa, 68.00% in flexion, extension, left bending, right bending, left axial torsion and right axial torsion, respectively. There were no obvious increases of C5 upper endoplate stress peak between these two surgical models (< 50%), except 11.68 MPa, 153.08%; 6.55 MPa, 51.45%; in flexion and extension. The 3D-printed porous plate-locking cage was shown to be biomechanically stable compared to the conventional Zero-profile cage, and it is worth noticing that the stress on the plate of the new cage is less than that on screw of the conventional cage, which indicates that the risk of fracture, loosening, and prolapse of the new cage is less likely to occur.
Collapse
Affiliation(s)
- Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China
| | - Sanmao Liu
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China
| | - Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning, China.
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian, 116044, Liaoning, China.
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian, 116021, Liaoning, China.
| |
Collapse
|
4
|
Jiao P, Zhang C, Meng W, Wang J, Jang D, Wu Z, Agarwal N, Alavi AH. Artificial Intelligence-Guided Inverse Design of Deployable Thermo-Metamaterial Implants. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2991-3001. [PMID: 39746033 PMCID: PMC11744508 DOI: 10.1021/acsami.4c17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Current limitations in implant design often lead to trade-offs between minimally invasive surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical properties and volume change in response to temperature changes, enabling minimally invasive and personalized surgery. We begin by generating a large database of corrugated thermo-metamaterials with various cell structures and bending stiffnesses. An artificial intelligence inverse design model is subsequently developed by integrating an evolutionary algorithm with a neural network. This model allows for the automatic determination of the optimal microstructure for thermo-metamaterials with desired performance,i.e., target bending stiffness. We validate this approach by designing patient-specific spinal fusion implants and tracheal stents. The results demonstrate that the deployable thermo-metamaterial implants can achieve over a 200% increase in volume or cross-sectional area in their fully deployed states. Finally, we propose a broader vision for a clinically informed artificial intelligence design process that prioritizes biocompatibility, feasibility, and precision simultaneously for the development of high-performing and clinically viable implants. The feasibility of this proposed vision is demonstrated using a fuzzy analytic hierarchy process to customize thermo-metamaterial implants based on clinically relevant factors.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean
College, Zhejiang University, Zhoushan 316021, China
| | - Chenjie Zhang
- Ocean
College, Zhejiang University, Zhoushan 316021, China
| | - Wenxuan Meng
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiajun Wang
- Ocean
College, Zhejiang University, Zhoushan 316021, China
| | - Daeik Jang
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhangming Wu
- College
of Engineering, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Nitin Agarwal
- Department
of Neurological Surgery, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15213, United States
- Department
of Neurological Surgery, University of Pittsburgh
Medical Center, Pittsburgh, Pennsylvania 15213, United States
- Neurological
Surgery, Veterans Affairs Pittsburgh Healthcare
System, Pittsburgh, Pennsylvania 15240, United States
| | - Amir H. Alavi
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
5
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
6
|
Segi N, Nakashima H, Ito S, Ouchida J, Oishi R, Yamauchi I, Miyairi Y, Morita Y, Matsumoto T, Kanbara S, Ito K, Imagama S. Trabecular Bone Remodeling after Posterior Lumbar Interbody Fusion: Comparison of the Osseointegration in Three-Dimensional Porous Titanium Cages and Polyether-Ether-Ketone Cages. Global Spine J 2025; 15:66-75. [PMID: 38752287 PMCID: PMC11571954 DOI: 10.1177/21925682241255686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES Imaging changes in the vertebral body after posterior lumbar interbody fusion (PLIF) are determined to be trabecular bone remodeling (TBR). This study aimed to investigate the influence of cage materials on TBR and segment stabilization in PLIF by studying image changes. METHODS This was a retrospective study reviewing 101 cases who underwent one-level PLIF with three-dimensional porous titanium (3DTi) cages (53 patients) or polyether-ether-ketone (PEEK) cages (48 patients). Computed tomography images obtained 3 months, 1 year, and 2 years postoperatively were examined for TBR, vertebral endplate cyst formation as an instability sign, cage subsidence, and clear zone around pedicle screw (CZPS). RESULTS No significant differences in the TBR-positivity rates were observed between the two cages at 3 months, 1 year, and 2 years postoperatively. However, all 3DTi cage segments that were TBR-positive at 3 months postoperatively showed no CZPS and fewer final instability segments than the TBR-negative segments (0% vs 9%). In contrast, although the PEEK cage segments that were TBR-positive at 3 months postoperatively were not associated with future segmental stabilization, those that were TBR-positive at 1 year postoperatively had fewer final instability segments than the TBR-negative segments (0% vs 33%). CONCLUSIONS The 3DTi cage segments with TBR 3 months postoperatively showed significant final segmental stabilization, whereas TBR at 1 year rather than 3 months postoperatively was useful in determining final segmental stabilization for the PEEK cage segments. The timing of TBR, a new osseointegration assessment, were associated with the cage material.
Collapse
Affiliation(s)
- Naoki Segi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadayuki Ito
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Ouchida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryotaro Oishi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ippei Yamauchi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Miyairi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Morita
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Shunsuke Kanbara
- Department of Orthopedic Surgery, Chubu Rosai Hospital, Nagoya, Japan
| | - Keigo Ito
- Department of Orthopedic Surgery, Chubu Rosai Hospital, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Park HJ, Shin JI, You KH, Yang JI, Kim N, Kim YH, Kang MS, Park SM. Biportal Endoscopic Transforaminal Lumbar Interbody Fusion: How to Improve Fusion Rate? Int J Spine Surg 2024; 18:582-588. [PMID: 39349004 PMCID: PMC11616434 DOI: 10.14444/8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Biportal endoscopic transforaminal lumbar interbody fusion (BE-TLIF) is a minimally invasive surgical technique for treating degenerative lumbar spine conditions. It offers advantages such as reduced soft tissue trauma and lower infection rates, but certain technical aspects may be challenging. The current study aims to identify strategies to enhance the fusion rate in BE-TLIF by addressing these specific challenges. METHODS A literature review was conducted on techniques to improve fusion rates in BE-TLIF. RESULTS The review suggests that lateral-based portals supplemented with medial portals allowed for safe insertion of interbody cages with large footprint. Direct visualization of the disc space with a 30° endoscope assisted with better disc space preparation. Facetectomies performed with osteotomes, rather than burrs, ensured maximum retrieval of autologous bone graft. Utilizing bone morphogenetic proteins with sustained release carriers such as hydroxyapatite can be useful to increase fusion rates of BE-TLIF. CONCLUSIONS To our knowledge, the current literature is the first comprehensive review of strategies to enhance fusion rates in BE-TLIF. The proposed techniques and biological adjuncts are effective means to address key challenges associated with the procedure, and such strategies would potentially shorten the learning curve and improve clinical outcomes. Further clinical studies are required to validate these findings and establish standardized protocols. CLINICAL RELEVANCE These findings provide practical solutions to overcome common challenges in BE-TLIF. The suggested techniques would reduce the incidence of pseudarthrosis, improve patient outcomes, and ultimately offer a safer and more reliable option for lumbar interbody fusion patients. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Hyun-Jin Park
- Department of Orthopedic Surgery, Spine Center, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - John I Shin
- Department of Orthopedic Surgery, Cooperman Barnabas Medical Center/Jersey City Medical Center-RWJBarnabas Health, Jersey, NJ, USA
| | - Ki-Han You
- Department of Orthopedic Surgery, Spine Center, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Jason I Yang
- Department of Orthopedic Surgery, Rutgers-Robert Wood Johnson University Hospital, RWJBarnabas Health, New Brunswick, NJ, USA
| | - Nathan Kim
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Yong H Kim
- Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Min-Seok Kang
- Department of Orthopedic Surgery, Korea University College of Medicine, Anam Hospital, Seoul, Republic of Korea
| | - Sang-Min Park
- Spine Center and Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
8
|
Talukdar RG, Dhara S, Gupta S. Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion. Med Eng Phys 2024; 133:104248. [PMID: 39557508 DOI: 10.1016/j.medengphy.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Porous interbody cages are often used in spinal fusion surgery since they allow bone ingrowth which facilitates long-term stability. However, the extent of bone ingrowth in and around porous interbody cages has scarcely been investigated. Moreover, tissue differentiation might not be similar around the superior and inferior cage-bone interfaces. Using mechanobiology-based numerical framework and physiologic loading conditions, the study investigates the spatial distribution of evolutionary bone ingrowth within randomly distributed porous interbody cages, having varied porosities. Finite Element (FE) microscale models, corresponding to cage porosities of 60 %, 72 %, and 83 %, were developed for the superior and inferior interfacial regions of the cage, along with the macroscale model of the implanted lumbar spine. The implant-bone relative displacements of different porosity models were mapped from macroscale to microscale model. Bone formation of 10-40 % was predicted across the porous cage models, resulting in an average Young's modulus ranging between 765 MPa and 915 MPa. Maximum bone ingrowth of ∼34 % was observed for the 83 % porous cage, which was subject to low implant-bone relative displacements (maximum 50μm). New bone formation was found to be greater at the superior interface (∼34 %) as compared to the inferior interface (∼30 %) for P83 model. Relatively greater volume of fibrous tissue was formed at the implant-bone interface for the cage with 60 % and 72 % porosities, which might lead to cage migration and eventual failure of the implant. Hence, the interbody cage with 83 % porosity appears to be most favorable for bone ingrowth, provided sufficient mechanical strength is offered.
Collapse
Affiliation(s)
- Rahul Gautam Talukdar
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
9
|
Misiaszek JP, Sather NA, Goodwin AM, Brecount HJ, Kurapaty SS, Inglis JE, Hsu EL, Stupp SI, Stock SR, Dunand DC. 3D-ink-extruded titanium scaffolds with porous struts and bioactive supramolecular polymers for orthopedic implants. Acta Biomater 2024; 188:446-459. [PMID: 39277094 PMCID: PMC11486560 DOI: 10.1016/j.actbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Porous titanium addresses the longstanding orthopedic challenges of aseptic loosening and stress shielding. This work expands on the evolution of porous Ti with the manufacturing of hierarchically porous, low stiffness, ductile Ti scaffolds via direct-ink write (DIW) extrusion and sintering of inks containing Ti and NaCl particles. Scaffold macrochannels were filled with a subtherapeutic dose of recombinant bone morphogenetic protein-2 (rhBMP-2) alone or co-delivered within a bioactive supramolecular polymer slurry (SPS) composed of peptide amphiphile nanofibrils and collagen, creating four treatment conditions (Ti struts: microporous vs. fully dense; BMP-2 alone or with SPS). The BMP-2-loaded scaffolds were implanted bilaterally across the L4 and L5 transverse processes in a rat posterolateral lumbar fusion model. In-vivo bone growth in these scaffolds is evaluated with synchrotron X-ray computed microtomography (µCT) to study the effects of strut microporosity and added biological signaling agents on the bone formation response. Optical and scanning electron microscopy confirms the ∼100 µm space-holder micropore size, high-curvature morphology, and pore fenestrations within the struts. Uniaxial compression testing shows that the microporous strut scaffolds have low stiffness and high ductility. A significant promotion in bone formation was observed for groups utilizing the SPS, while no significant differences were found for the scaffolds with the incorporation of micropores. STATEMENT OF SIGNIFICANCE: By 2050, the anticipated number of people aged 60 years and older worldwide is anticipated to double to 2.1 billion. This rapid increase in the geriatric population will require a corresponding increase in orthopedic surgeries and more effective materials for longer indwelling times. Titanium alloys have been the gold standard of bone fusion and fixation, but their use has longstanding limitations in bone-implant stiffness mismatch and insufficient osseointegration. We utilize 3D-printing of titanium with NaCl space holders for large- and small-scale porosity and incorporate bioactive supramolecular polymers into the scaffolds to increase bone growth. This work finds no significant change in bone ingrowth via space-holder-induced microporosity but significant increases in bone ingrowth via the bioactive supramolecular polymers in a rat posterolateral fusion model.
Collapse
Affiliation(s)
- John P Misiaszek
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| | - Nicholas A Sather
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA; Simpson Querry Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
| | - Alyssa M Goodwin
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA.
| | - Hogan J Brecount
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA.
| | - Steven S Kurapaty
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA.
| | - Jacqueline E Inglis
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA.
| | - Erin L Hsu
- Department of Orthopaedic Surgery, Northwestern University, Chicago, IL, USA; Simpson Querry Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA; Simpson Querry Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States; Department of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Stuart R Stock
- Simpson Querry Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA; Department of Cell and Developmental Biology, and Simpson Querry Institute, Northwestern University, Chicago, IL, USA.
| | - David C Dunand
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Sun J, Liu SS, Zou D, Ni RH, Wei CB, Wang H, Li WS. A novel porous interbody fusion cage modified by microarc oxidation and hydrothermal treatment technology accelerate osseointegration and spinal fusion in sheep. RSC Adv 2024; 14:31966-31978. [PMID: 39391624 PMCID: PMC11462409 DOI: 10.1039/d3ra08185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/25/2024] [Indexed: 10/12/2024] Open
Abstract
The clinical outcome of spinal fusion surgery is closely related to the success of bone fusion. Nowadays, the interbody cage which is used to replace the disc for spinal fusion is expected to have biological activity to improve osseointegration, especially for the aging and osteoporotic patients. Here, through micro-arc oxidation and hydrothermal treatment (MAO + HT), a bioactive CaP coating with micro/nano multilevel morphology was developed on 3D printed Ti6Al4V alloy then verified in vitro and in sheep anterior cervical decompression fusion model systematically. In vitro studies have confirmed the positive effects of characteristic micro/nano morphology and hydrophilicity of the coating formed after surface treatment on the adhesion, proliferation, and osteogenic differentiation of osteoblast precursor cells. Furthermore, the MAO + HT treated interbody cage showed a closer integration with the surrounding bone tissue, improved kinetic stability of the implanted segment, and significantly reduced incidence of fusion failure during the early postoperative period, which indicated that such a surface modification strategy is applicable to the biomechanical and biological microenvironment of the intervertebral space.
Collapse
Affiliation(s)
- Jiang Sun
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Shan-Shan Liu
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Da Zou
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | - Ren-Hua Ni
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| | | | - Hao Wang
- Beijing AKec Medical Co., Ltd Beijing 102200 China
| | - Wei-Shi Li
- Peking University Third Hospital Beijing 100191 China
- Engineering Research Center of Bone and Joint Precision Medicine Department of Orthopedics Beijing 100191 China
- Beijing Key Laboratory of Spinal Disease Research Beijing 100191 China
| |
Collapse
|
11
|
Wang W, Yang S, Han M, Liu H, Feng Q, Su Y, Han Y, Wang J. Three-dimensional printed titanium chest wall reconstruction for tumor removal in the sternal region. J Cardiothorac Surg 2024; 19:579. [PMID: 39354530 PMCID: PMC11446048 DOI: 10.1186/s13019-024-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
Resection of thoracic wall tumors results in significant defects in the chest wall, leading to various complications. In recent years, the use of three-dimensional (3D) printed titanium alloy prostheses in clinical practice has demonstrated enhanced outcomes in chest wall reconstruction surgery. A cohort of seven patients with sternal tumors was identified for this study. Following a helical CT scan, a digital model was generated for the design of the prosthesis. Subsequently, the tumors were then removed together with the affected sternum and ribs. The chest wall was then reconstructed using 3D-printed titanium alloy prosthesis for bone reconstruction, mesh for pleural reconstruction, and flap for soft tissue reconstruction. Patients were monitored for a period of one year post-surgery. In the seven cases examined, the tumors were found in various locations with varying degrees of invasion. Based on the scope of surgical resection and the size of the defect, 3D-printed titanium alloy prosthesis was custom-designed for chest wall reconstruction. Prior to bone reconstruction, pleural reconstruction was achieved with Bard Composix E/X Mesh, while soft tissue repair involved muscle flap and musculocutaneous flap procedures. A one-year follow-up assessment revealed that the utilization of the 3D-printed titanium alloy prosthesis led to secure fixation, favorable histocompatibility, and enhanced lung function. The findings demonstrate that the utilization of 3D printed titanium alloy prostheses represents a significant advancement in the field of chest wall reconstruction and thoracic surgical procedures.
Collapse
Affiliation(s)
- Wenzhang Wang
- Yanda Hospital, Hebei Medical University, Hebei, China
| | - Shiyan Yang
- Yanda Hospital, Hebei Medical University, Hebei, China
| | - Menghu Han
- Yanda Hospital, Hebei Medical University, Hebei, China
| | - Haifeng Liu
- Yanda Hospital, Hebei Medical University, Hebei, China
| | - Qing Feng
- Yanda Hospital, Hebei Medical University, Hebei, China
| | - Yonglin Su
- Beijing AK Medical Co. Ltd, Beijing, China
| | - Yi Han
- Thoracic Surgery Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Jin Wang
- Yanda Hospital, Hebei Medical University, Hebei, China.
| |
Collapse
|
12
|
Christou C, Varcoe T, Williams G, Heil T, Leifeld S, Park H, Peckham S, Stewart D, Greenbaum J, Wang T, Pelletier M, Walsh W, Alvarez L. In vivo Assessment of AMP2, a Novel Ceramic-Binding BMP-2, in Ovine Lumbar Interbody Fusion. Spine (Phila Pa 1976) 2024; 49:1381-1390. [PMID: 38988089 PMCID: PMC11386960 DOI: 10.1097/brs.0000000000005091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
STUDY DESIGN Assessment of bone formation in an ovine interbody fusion study. OBJECTIVE To compare OsteoAdapt SP, which consists of AMP-2, a modified variant of recombinant human bone morphogenetic protein (rhBMP-2) bound to a tricalcium phosphate-containing carrier, to autologous iliac crest bone graft (ICBG) in a lumbar interbody fusion model. SUMMARY OF BACKGROUND DATA Treatment of lumbar disk degeneration often involves spinal fusion to reduce pain and motion at the affected spinal segment by insertion of a cage containing bone graft material. Three graft materials were compared in this study-ICBG and OsteoAdapt SP (low or high dose). METHODS The sheep underwent lateral lumbar fusion surgery with PEEK or Titanium interbody cages packed with OsteoAdapt SP (low or high dose) or ICBG. Outcomes were evaluated at 8-, 16- and 26- weeks. Newly formed bone quality, bone mineralization, and fusion were assessed by manual palpation, qualitative and semi-quantitative histopathology, histomorphometry, computed tomography (CT), and micro-CT (mCT) analysis. RESULTS OsteoAdapt SP was implanted into 43 animals and ICBG into 21 animals (L3-L4). No group showed evidence of systemic toxicity by multiple assessments. All levels were fused by manual palpation at 26 weeks. Serial CT scans showed increasing fusion scores over time. Both doses of OsteoAdapt SP resulted in robust new bone formation and progression of fusion in the interbody cage. Range of motion tests for treatment groups was lower compared with ICBG at 8- and 16 weeks. Similarly, histology at eight weeks demonstrated more robust new bone formation for both OsteoAdapt SP groups compared to autograft. CONCLUSION We have demonstrated the preclinical safety and efficacy of OsteoAdapt SP in a clinically relevant large animal model, supporting faster and more robust new bone formation within the interbody cage, comparable to or better than the gold standard, ICBG, in all measures.
Collapse
Affiliation(s)
- Chris Christou
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | - Tamara Varcoe
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | - Georgia Williams
- South Australia Health and Medical Research Institute, Preclinical, Imaging & Research Laboratories (SAHMRI-PIRL), Gilles Plains, SA
| | | | | | | | | | | | | | - Tian Wang
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | - William Walsh
- Surgical and Orthopaedic Research Laboratory, University of New South Wales, NSW
| | | |
Collapse
|
13
|
Kiselev R, Zheravin A. Clinical Application of 3D-Printed Artificial Vertebral Body (3DP AVB): A Review. J Pers Med 2024; 14:1024. [PMID: 39452532 PMCID: PMC11508315 DOI: 10.3390/jpm14101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: The choice of prosthesis for vertebral body reconstruction (VBR) remains a controversial issue due to the lack of a reliable solution. The subsidence rate of the most commonly used titanium mesh cages (TMC) ranges from 42.5% to 79.7%. This problem is primarily caused by the differences in the elastic modulus between the TMC and bone. This review aims to summarize the clinical and radiological outcomes of new 3D-printed artificial vertebral bodies (3DP AVB). Methods: A literature search of PubMed, Scopus and Google Scholar was conducted to extract relevant studies. After screening the titles and abstracts, a total of 50 articles were selected for full-text analysis. Results: Preliminary data suggest fewer implant-related complications with 3DP AVB. Most comparative studies indicate significantly lower subsidence rates, reduced operation times and decreased intraoperative blood loss. However, the scarcity of randomized clinical trials and the high variability of the results warrant caution. Conclusion: Most literature data show an advantage of 3DP AVB in terms of the operation time, intraoperative blood loss and subsidence rate. However, long manufacturing times, high costs and regulatory issues are this technology's main drawbacks.
Collapse
Affiliation(s)
- Roman Kiselev
- Meshalkin National Medical Research Centre, Novosibirsk 630055, Russia;
| | | |
Collapse
|
14
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
15
|
Ham DW, Park SM, Kim YB, Chang DG, Yang JJ, Kwon BT, Song KS. Feasibility of the Non-Window-Type 3D-Printed Porous Titanium Cage in Posterior Lumbar Interbody Fusion: A Randomized Controlled Multicenter Trial. J Bone Joint Surg Am 2024:00004623-990000000-01194. [PMID: 39259778 DOI: 10.2106/jbjs.23.01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Three-dimensionally printed titanium (3D-Ti) cages can be divided into 2 types: window-type cages, which have a void for bone graft, and non-window-type cages without a void. Few studies have investigated the necessity of a void for bone graft in fusion surgery. Therefore, the present study assessed the clinical and radiographic outcomes of window and non-window-type 3D-Ti cages in single-level posterior lumbar interbody fusion. METHODS A total of 70 patients were randomly assigned to receive either a window or non-window cage; 61 patients (87%) completed final follow-up (32 from the window cage group, 29 from the non-window cage group). Radiographic outcomes, including fusion rates, subsidence, and intra-cage osseointegration patterns, were assessed. Intra-cage osseointegration was measured using the intra-cage bridging bone score for the window cage group and the surface osseointegration ratio score for the non-window cage group. Additionally, we looked for the presence of the trabecular bone remodeling (TBR) sign on computed tomography (CT) images. RESULTS Of the 61 patients, 58 achieved interbody fusion, resulting in a 95.1% fusion rate. The fusion rate in the non-window cage group was comparable to, and not significantly different from, that in the window cage group (96.6% and 93.8%, p > 0.99). The subsidence rate showed no significant difference between the window and non-window cage groups (15.6% and 3.4%, respectively; p = 0.262). The intra-cage osseointegration scores showed a significant difference between the groups (p = 0.007), with the non-window cage group having a higher proportion of cases with a score of 4 compared with the window cage group. The TBR sign was observed in 87.9% of patients who achieved interbody fusion, with a higher rate in the non-window cage group across the entire cohort although the difference was not significant (89.7% versus 78.1%, p = 0.385). CONCLUSIONS Non-window-type 3D-Ti cages showed equivalent clinical outcomes compared with window-type cages and comparable interbody fusion rates. These results suggest that the potential advantages of 3D-Ti cages could be optimized in the absence of a void for bone graft by providing a larger contact surface for osseointegration. LEVEL OF EVIDENCE Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Dae-Woong Ham
- Department of Orthopedic Surgery, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Min Park
- Spine Center and Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnamsi, Republic of Korea
| | - Youngbae B Kim
- Department of Orthopedic Surgery, VHS Medical Center, Seoul, Republic of Korea
| | - Dong-Gune Chang
- Spine Center and Department of Orthopedic Surgery, Inje University Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Jae Jun Yang
- Department of Orthopedic Surgery, Dongguk University Ilsan Hospital, Goyangsi, Republic of Korea
| | - Byung-Taek Kwon
- Department of Orthopedic Surgery, Chung-Ang University Gwang Myeong Hospital, Gwangmyeongsi, Republic of Korea
| | - Kwang-Sup Song
- Department of Orthopedic Surgery, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Ge R, Liu C, Zhao Y, Wang K, Wang X. Endochondral Ossification for Spinal Fusion: A Novel Perspective from Biological Mechanisms to Clinical Applications. J Pers Med 2024; 14:957. [PMID: 39338212 PMCID: PMC11433020 DOI: 10.3390/jpm14090957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Degenerative scoliosis (DS), encompassing conditions like spondylolisthesis and spinal stenosis, is a common type of spinal deformity. Lumbar interbody fusion (LIF) stands as a conventional surgical intervention for this ailment, aiming at decompression, restoration of intervertebral height, and stabilization of motion segments. Despite its widespread use, the precise mechanism underlying spinal fusion remains elusive. In this review, our focus lies on endochondral ossification for spinal fusion, a process involving vertebral development and bone healing. Endochondral ossification is the key step for the successful vertebral fusion. Endochondral ossification can persist in hypoxic conditions and promote the parallel development of angiogenesis and osteogenesis, which corresponds to the fusion process of new bone formation in the hypoxic region between the vertebrae. The ideal material for interbody fusion cages should have the following characteristics: (1) Good biocompatibility; (2) Stable chemical properties; (3) Biomechanical properties similar to bone tissue; (4) Promotion of bone fusion; (5) Favorable for imaging observation; (6) Biodegradability. Utilizing cartilage-derived bone-like constructs holds promise in promoting bony fusion post-operation, thus warranting exploration in the context of spinal fusion procedures.
Collapse
Affiliation(s)
- Rile Ge
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Beijing 100050, China;
| | - Chenjun Liu
- Department of Spinal Surgery, Peking University People’s Hospital, 11th Xizhimen South Ave., Beijing 100044, China;
| | - Yuhong Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China;
| | - Kaifeng Wang
- Department of Spinal Surgery, Peking University People’s Hospital, 11th Xizhimen South Ave., Beijing 100044, China;
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
17
|
Boccaccio A. A mechano-regulation model to design and optimize the surface microgeometry of titanium textured devices for biomedical applications. J Mech Behav Biomed Mater 2024; 157:106645. [PMID: 38963999 DOI: 10.1016/j.jmbbm.2024.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
In a technological context where, thanks to the additive manufacturing techniques, even sophisticated geometries as well as surfaces with specific micrometric features can be realized, we propose a mechano-regulation algorithm to determine the optimal microgeometric parameters of the surface of textured titanium devices for biomedical applications. A poroelastic finite element model was developed including a portion of bone, a portion of a textured titanium device and a layer of granulation tissue separating the bone from the device and occupying the space between them. The algorithm, implemented in the Matlab environment, determines the optimal values of the root mean square and the correlation length that the device surface must possess to maximize bone formation in the gap between the bone and the device. For low levels of compression load acting on the bone, the algorithm predicts low values of root mean square and high values of correlation length. Conversely, high levels of load require high values of root mean square and low values of correlation length. The optimal microgeometrical parameters were determined for various thickness values of the granulation tissue layer. Interestingly, the predictions of the proposed computational model are consistent with the experimental results reported in the literature. The proposed algorithm shows promise as a valuable tool for addressing the demands of precision medicine. In this approach, the device or prosthesis is no longer designed solely based on statistical averages but is tailored to each patient's unique anthropometric characteristics, as well as considerations related to their metabolism, sex, age, and more.
Collapse
Affiliation(s)
- Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, Italy.
| |
Collapse
|
18
|
Iqbal J, Zafar Z, Skandalakis G, Kuruba V, Madan S, Kazim SF, A Bowers C. Recent advances of 3D-printing in spine surgery. Surg Neurol Int 2024; 15:297. [PMID: 39246777 PMCID: PMC11380890 DOI: 10.25259/sni_460_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/10/2024] Open
Abstract
Background The emerging use of three-dimensional printing (3DP) offers improved surgical planning and personalized care. The use of 3DP technology in spinal surgery has several common applications, including models for preoperative planning, biomodels, surgical guides, implants, and teaching tools. Methods A literature review was conducted to examine the current use of 3DP technology in spinal surgery and identify the challenges and limitations associated with its adoption. Results The review reveals that while 3DP technology offers the benefits of enhanced stability, improved surgical outcomes, and the feasibility of patient-specific solutions in spinal surgeries, several challenges remain significant impediments to widespread adoption. The obvious expected limitation is the high cost associated with implementing and maintaining a 3DP facility and creating customized patient-specific implants. Technological limitations, including the variability between medical imaging and en vivo surgical anatomy, along with the reproduction of intricate high-fidelity anatomical detail, pose additional challenges. Finally, the lack of comprehensive clinical monitoring, inadequate sample sizes, and high-quality scientific evidence all limit our understanding of the full scope of 3DP's utility in spinal surgery and preclude widespread adoption and implementation. Conclusion Despite the obvious challenges and limitations, ongoing research and development efforts are expected to address these issues, improving the accessibility and efficacy of 3DP technology in spinal surgeries. With further advancements, 3DP technology has the potential to revolutionize spinal surgery by providing personalized implants and precise surgical planning, ultimately improving patient outcomes and surgical efficiency.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Neurosurgery, King Edward Medical University, Lahore, Pakistan
| | - Zaitoon Zafar
- Department of Biotechnology, University of San Francisco, San Francisco, California, United States
| | - Georgios Skandalakis
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico, United States
| | | | - Shreya Madan
- Department of Neurosurgery, Desert Mountain High School, Scottsdale, Arizona, United States
| | - Syed Faraz Kazim
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| | - Christian A Bowers
- Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, New Mexico, United States
| |
Collapse
|
19
|
Lewandrowski KU, Vira S, Elfar JC, Lorio MP. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J Pers Med 2024; 14:809. [PMID: 39202002 PMCID: PMC11355268 DOI: 10.3390/jpm14080809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.
Collapse
Affiliation(s)
- Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Division Personalized Pain Research and Education, Tucson, AZ 85712, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas Bogotá, Bogotá 111321, Colombia
| | - Shaleen Vira
- Orthopedic and Sports Medicine Institute, Banner-University Tucson Campus, 755 East McDowell Road, Floor 2, Phoenix, AZ 85006, USA;
| | - John C. Elfar
- Department of Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Morgan P. Lorio
- Advanced Orthopedics, 499 East Central Parkway, Altamonte Springs, FL 32701, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| |
Collapse
|
20
|
Lee JJ, Jacome FP, Hiltzik DM, Pagadala MS, Hsu WK. Evolution of Titanium Interbody Cages and Current Uses of 3D Printed Titanium in Spine Fusion Surgery. Curr Rev Musculoskelet Med 2024:10.1007/s12178-024-09912-z. [PMID: 39003679 DOI: 10.1007/s12178-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE OF REVIEW To summarize the history of titanium implants in spine fusion surgery and its evolution over time. RECENT FINDINGS Titanium interbody cages used in spine fusion surgery have evolved from solid metal blocks to porous structures with varying shapes and sizes in order to provide stability while minimizing adverse side effects. Advancements in technology, especially 3D printing, have allowed for the creation of highly customizable spinal implants to fit patient specific needs. Recent evidence suggests that customizing shape and density of the implants may improve patient outcomes compared to current industry standards. Future work is warranted to determine the practical feasibility and long-term clinical outcomes of patients using 3D printed spine fusion implants. Outcomes in spine fusion surgery have improved greatly due to technological advancements. 3D printed spinal implants, in particular, may improve outcomes in patients undergoing spine fusion surgery when compared to current industry standards. Long term follow up and direct comparison between implant characteristics is required for the adoption of 3D printed implants as the standard of care.
Collapse
Affiliation(s)
- Justin J Lee
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA.
| | - Freddy P Jacome
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - David M Hiltzik
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - Manasa S Pagadala
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
| | - Wellington K Hsu
- Northwestern University, Simpson Querrey Institute (SQI), 808 N Cleveland Ave. 901, Chicago, IL, 60610, USA
- Department of Orthopedic Surgery, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Hu Y, Chen X, Chu Z, Luo L, Gan Z, Zhong J, Yuan Z, Zhu B, Dong W. Biomechanical Properties of Novel Porous Scaffold Core and Hollow Lateral Hole Pedicle Screws: A Comparative Study in Bama Pigs. Orthop Surg 2024; 16:1718-1725. [PMID: 38766934 PMCID: PMC11216838 DOI: 10.1111/os.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Screw loosening is a common complication of internal fixation of pedicle screw. Therefore, the development of a pedicle screw with low loosening rate and high biosafety is of great clinical significance. This study aimed to investigate whether the application of a porous scaffold structure can improve the stability of pedicle screws by comparing the biomechanical properties of novel porous scaffold core pedicle screws (PSCPSs) with those of hollow lateral hole pedicle screws (HLHPSs) in a porcine lumbar spine. METHODS Thirty-two pedicle screws of both types were implanted bilaterally into the L1-4 vertebrae of four Bama pigs, with our newly designed PSCPSs on the right and HLHPSs on the left. All the Bama pigs were sacrificed 16 weeks postoperatively, and the lumbar spine was freed into individual vertebrae. Biomechanical properties of both the pedicle screws were evaluated using pull-out tests, as well as cyclic bending and pull-out tests, while the mechanical properties were assessed using three-point bending tests. The data generated were statistically analyzed using paired-sample t-tests and two independent sample t-tests. RESULTS We found that the maximal pull-out forces before and after cyclic bending of the PSCPSs (1161.50 ± 337.98 N and 1075.25 ± 223.33 N) were significantly higher than those of the HLHPSs (948.38 ± 194.32 N and 807.13 ± 242.75 N) (p < 0.05, p < 0.05). In 800 cycles of the bending tests, neither PSCPS nor HLHPS showed loosening or visible detachment, but their maximal pull-out forces after cyclic bending tests decreased compared to those in cycles without cyclic bending tests (7.43% and 14.89%, respectively), with no statistical significance (p > 0.05 and p > 0.05, respectively). Additionally, both screws buckled rather than broke in the three-point bending tests, with no statistically significant differences between the maximal bending load and modulus of elasticity of the two screws (p > 0.05 and p > 0.05, respectively). CONCLUSIONS Compared with the HLHPSs, the PSCPSs have greater pull-out resistance and better fatigue tolerance with appropriate mechanical properties. Therefore, PSCPSs theoretically have significant potential for clinical applications in reducing the incidence of loosening after pedicle screw implantation.
Collapse
Affiliation(s)
- Yong Hu
- Department of Spine SurgeryNingbo No. 6 HospitalNingboChina
| | - Xijiong Chen
- Health Science CenterNingbo UniversityNingboChina
| | - Zhentao Chu
- Health Science CenterNingbo UniversityNingboChina
| | - Linwei Luo
- Health Science CenterNingbo UniversityNingboChina
| | - Zhiwei Gan
- Health Science CenterNingbo UniversityNingboChina
| | - Jianbin Zhong
- Department of Spine SurgeryNingbo No. 6 HospitalNingboChina
| | - Zhenshan Yuan
- Department of Spine SurgeryNingbo No. 6 HospitalNingboChina
| | - Bingke Zhu
- Department of Spine SurgeryNingbo No. 6 HospitalNingboChina
| | - Weixin Dong
- Department of Spine SurgeryNingbo No. 6 HospitalNingboChina
| |
Collapse
|
22
|
Tabarestani TQ, Salven DS, Sykes DAW, Bardeesi AM, Bartlett AM, Wang TY, Paturu MR, Dibble CF, Shaffrey CI, Ray WZ, Chi JH, Wiggins WF, Abd-El-Barr MM. Using Novel Segmentation Technology to Define Safe Corridors for Minimally Invasive Posterior Lumbar Interbody Fusion. Oper Neurosurg (Hagerstown) 2024; 27:14-22. [PMID: 38149852 DOI: 10.1227/ons.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES There has been a rise in minimally invasive methods to access the intervertebral disk space posteriorly given their decreased tissue destruction, lower blood loss, and earlier return to work. Two such options include the percutaneous lumbar interbody fusion through the Kambin triangle and the endoscopic transfacet approach. However, without accurate preoperative visualization, these approaches carry risks of damaging surrounding structures, especially the nerve roots. Using novel segmentation technology, our goal was to analyze the anatomic borders and relative sizes of the safe triangle, trans-Kambin, and the transfacet corridors to assist surgeons in planning a safe approach and determining cannula diameters. METHODS The areas of the safe triangle, Kambin, and transfacet corridors were measured using commercially available software (BrainLab, Munich, Germany). For each approach, the exiting nerve root, traversing nerve roots, theca, disk, and vertebrae were manually segmented on 3-dimensional T2-SPACE magnetic resonance imaging using a region-growing algorithm. The triangles' borders were delineated ensuring no overlap between the area and the nerves. RESULTS A total of 11 patients (65.4 ± 12.5 years, 33.3% female) were retrospectively reviewed. The Kambin, safe, and transfacet corridors were measured bilaterally at the operative level. The mean area (124.1 ± 19.7 mm 2 vs 83.0 ± 11.7 mm 2 vs 49.5 ± 11.4 mm 2 ) and maximum permissible cannula diameter (9.9 ± 0.7 mm vs 6.8 ± 0.5 mm vs 6.05 ± 0.7 mm) for the transfacet triangles were significantly larger than Kambin and the traditional safe triangles, respectively ( P < .001). CONCLUSION We identified, in 3-dimensional, the borders for the transfacet corridor: the traversing nerve root extending inferiorly until the caudal pedicle, the theca medially, and the exiting nerve root superiorly. These results illustrate the utility of preoperatively segmenting anatomic landmarks, specifically the nerve roots, to help guide decision-making when selecting the optimal operative approach.
Collapse
Affiliation(s)
- Troy Q Tabarestani
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - David S Salven
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - David A W Sykes
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - Anas M Bardeesi
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Alyssa M Bartlett
- Department of Neurosurgery, Duke University School of Medicine, Durham , North Carolina , USA
| | - Timothy Y Wang
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Mounica R Paturu
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | - Christopher F Dibble
- Department of Neurosurgery, Duke University Hospital, Durham , North Carolina , USA
| | | | - Wilson Z Ray
- Department of Neurosurgery, Washington University, St. Louis , Missouri , USA
| | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston , Massachusetts , USA
| | - Walter F Wiggins
- Department of Radiology, Duke University Hospital, Durham , North Carolina , USA
| | | |
Collapse
|
23
|
Pairojboriboon S, Niruthisard S, Chandhanayingyong C, Monsereenusorn C, Poopan S, Lo SFL. A comparison of transforaminal lumbar interbody fusion (TLIF) cage material on fusion rates: A systematic review and network meta-analysis. World Neurosurg X 2024; 23:100392. [PMID: 38884030 PMCID: PMC11176927 DOI: 10.1016/j.wnsx.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024] Open
Abstract
Background A wide variety of materials are used for lumbar interbody fusion, but there is no unified consensus on the superiority of one material over another. The aim of this systematic review and network meta-analysis (NMA) is to compare and rank the various TLIF interbody materials based on fusion rates. Methods We queried PubMed, EMBASE and Scopus from inception until August 2023, in which 2135 studies were identified. Inclusion criteria were applied based on the PRISMA guidelines. The fusion assessment employed the Bridwell's criteria with a length of follow-up of at least 12 months. The NMA was conducted to compare multiple approaches from multiple studies using the frequentist framework with STATA16. Results In total, 13 TLIF studies involving 1919 patients with 1981 lumbar interbody levels fulfilled our eligibility criteria. Seven different cage materials were utilized: polyetheretherketone (PEEK, as the reference), allograft, autograft, PEEK with titanium coating (TiPEEK), titanium, carbon/carbon fiber reinforced polymer (CFRP) and 3D-printed titanium. The average patient age was 60.9 (SD = 7.5) years old. When compared to PEEK, the other six materials did not have a significantly different rate of lumbar fusion. However, the SUCRA number of the 3D-printed titanium, TiPEEK, Ti, allograft, autograft, CFRP, and PEEK were 0.8, 0.6, 0.5, 0.5, 0.4, 0.4, and 0.3 consecutively. Conclusions Based on a network meta-analysis within the confines of our clinical study, 3D-printed titanium interbody cage may promote the highest success rate of fusion while PEEK may be the material with the least success rate of fusion in TLIF.
Collapse
Affiliation(s)
- Sutipat Pairojboriboon
- Department of Orthopaedic Surgery, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Supranee Niruthisard
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Chalinee Monsereenusorn
- Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Siwaporn Poopan
- Faculty of Social Sciences and Humanities, Mahidol University, Thailand
| | - Sheng-Fu Larry Lo
- Deparment of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, New York, USA
| |
Collapse
|
24
|
Wang Z, Zhang D, Zhang Z, Miao J. The postoperative clinical effects of utilizing 3D printed (Ti6Al4V) interbody fusion cages in posterior lumbar fusion: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e38431. [PMID: 38905365 PMCID: PMC11191957 DOI: 10.1097/md.0000000000038431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The research focused on the postoperative effect of using interbody fusion cage in lumbar posterior lamina decompression and interbody fusion with pedicle screw by comparing the postoperative effect of using 3D printing (Ti6Al4V) and PEEK material interbody fusion cage. METHODS Ninety-one patients with lumbar degenerative diseases from the Department of Spine Surgery of Tianjin Hospital were included in the study cohort. They were divided into 3D group (n = 39) and PEEK group (n = 52) according to the use of interbody fusion cage. The imaging data of the patients were collected and the postoperative data of the 2 groups were compared to evaluate patients' health status and the recovery of lumbar structure and function after operation. RESULTS Combined with the degree of fusion, the clinical effect of 3D printing titanium alloy interbody fusion cage was comprehensively judged. At the last follow-up, the JOA score, ODI index, VAS, prolo function score, and SF-36 scale of the 2 groups showed that the clinical symptoms were better than those before operation (P < .05). The height of intervertebral disc, the area of intervertebral foramen and the physiological curvature of lumbar vertebrae increased in varying degrees after operation (P < .05). At the last follow-up, the vertebral cage fusion rates were as high as 89.13% and 90.91% in the 3D and PEEK groups, with collapse rates of 6.5% and 4.5%, respectively. There were 10 cases of cage displacement in 3D group and 7 cases of cage displacement in PEEK group. There was no significant difference between the 2 groups (P > .05). CONCLUSIONS In conclusion, 3D printed (Ti6Al4V) interbody fusion cage can obtain good clinical effect in the surgical treatment of lumbar degenerative diseases. Posterior lumbar lamina decompression, bilateral pedicle screw fixation combined with 3D printed cage interbody fusion is excellent in rebuilding the stability of lumbar vertebrae. 3D printed interbody fusion cage can be an ideal substitute material for intervertebral bone grafting. The stable fusion time of interbody fusion cage after lumbar fusion is mostly from 3 months to half a year after operation.
Collapse
Affiliation(s)
- Zi Wang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Dongzhe Zhang
- Department of Spine Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
25
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
26
|
Li J, Zhao B, Wang W, Xu Y, Wu H, Zhang W. Improved intervertebral fusion in LLIF rabbit model with a novel titanium cage. Spine J 2024; 24:1109-1120. [PMID: 38211901 DOI: 10.1016/j.spinee.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND CONTEXT There is no established small animal approach model for the strict simulation of lateral lumbar interbody fusion (LLIF) surgery. PURPOSE This study aims to establish a reliable LLIF rabbit model that strictly simulates the procedure and to preliminarily evaluate the differences in fusion outcomes with different graft materials. STUDY DESIGN A controlled laboratory. METHODS Fifty-four 4-month-old white New Zealand female and male rabbits were selected and divided into five groups: Group A (dissection group) consisted of 9 rabbits, Group B (normal approach group) consisted of 9 rabbits, Group C (autogenous iliac bone group) consisted of 12 rabbits, Group D (BMP-2 carrier material group) consisted of 12 rabbits, and Group E (allograft bone group) consisted of 12 rabbits. Based on data from Group A, a novel titanium metal fusion device was designed. Postoperatively, at the 12-week mark, manual palpation was employed to compare the interbody fusion status among Groups B, C, D, and E. Specimens from Groups C, D, and E were subjected to Micro-CT scanning to compare various parameters such as trabecular bone volume (BV), bone volume fraction (BV/TV, BVF), and bone surface area (BS). Furthermore, a tissue histopathological examination was performed to observe the structure and morphology of newly formed bone within the fusion mass as well as the remodeling of the graft in each group. RESULTS Based on the measurements obtained from the dissection group, we designed a U-shaped interbody fusion device with dimensions of 10 mm in length, 2.5 mm in width, and 1.3 mm in height. In Group B, 9 cases exhibited intervertebral mobility. In Group C, 1 case showed nonfusion. In Group D, all cases achieved fusion. In Group E, 4 cases did not achieve fusion. Additionally, the Micro-CT results showed that the interbody fusion index scores were 4.64±0.50 in Group C, 4.33±0.65 in Group D, and 3.36±0.81 in Group E. There was no statistically significant difference in fusion index scores between Groups C and D (p=.853). Notably, Groups C and D had higher scores than Group E (p<.001). The trabecular bone volume (BV) in Groups C and D also showed no significant difference but was significantly higher than in Group E (p<.001). Furthermore, the histopathological results revealed that the specimens from Group E had less newly formed cartilage and bone compared to Groups C and D. CONCLUSIONS This study successfully established a strict simulation of the clinical LLIF procedure in a rabbit model. Moreso, we conducted a preliminary validation indicating that the BMP-2 carrier material achieved interbody fusion outcomes similar to autogenous iliac bone. CLINICAL SIGNIFICANCE The findings of this investigation from animal models provide a theoretical basis for the clinical use of BMP-2 to promote early spinal fusion in LLIF procedures. Importantly, the study provides a small animal model foundation for research related to LLIF surgery.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bingyi Zhao
- Department of Reproductive and Genetic medicine, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Weijian Wang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yafei Xu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haoyu Wu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
27
|
程 军, 陈 建, 谢 鲤, 冯 世, 周 继, 占 方. [Treatment of cervical ossification of posterior longitudinal ligament with titanium alloy trabecular bone three-dimensional printed artificial vertebral body]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:535-541. [PMID: 38752238 PMCID: PMC11096879 DOI: 10.7507/1002-1892.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Objective To evaluate the effectiveness of using titanium alloy trabecular bone three-dimensional (3D) printed artificial vertebral body in treating cervical ossification of the posterior longitudinal ligament (OPLL). Methods A retrospective analysis was conducted on clinical data from 45 patients with cervical OPLL admitted between September 2019 and August 2021 and meeting the selection criteria. All patients underwent anterior cervical corpectomy and decompression, interbody bone graft fusion, and titanium plate internal fixation. During operation, 21 patients in the study group received titanium alloy trabecular bone 3D printed artificial vertebral bodies, while 24 patients in the control group received titanium cages. There was no significant difference in baseline data such as gender, age, disease duration, affected segments, or preoperative pain visual analogue scale (VAS) score, Japanese Orthopaedic Association (JOA) score, Neck Disability Index (NDI), vertebral height, and C 2-7Cobb angle ( P>0.05). Operation time, intraoperative blood loss, and occurrence of complications were recorded for both groups. Preoperatively and at 3 and 12 months postoperatively, the functionality and symptom relief were assessed using JOA scores, VAS scores, and NDI evaluations. The vertebral height and C 2-7 Cobb angle were detected by imaging examinations and the implant subsidence and intervertebral fusion were observed. Results The operation time and incidence of complications were significantly lower in the study group than in the control group ( P<0.05), while the difference in intraoperative blood loss between the two groups was not significant ( P>0.05). All patients were followed up 12-18 months, with the follow-up time of (14.28±4.34) months in the study group and (15.23±3.54) months in the control group, showing no significant difference ( t=0.809, P=0.423). The JOA score, VAS score, and NDI of the two groups improved after operation, and further improved at 12 months compared to 3 months, with significant differences ( P<0.05). At each time point, the study group exhibited significantly higher JOA scores and improvement rate compared to the control group ( P<0.05); but there was no significantly difference in VAS score and NDI between the two groups ( P>0.05). Imaging re-examination showed that the vertebral height and C 2-7Cobb angle of the two groups significantly increased at 3 and 12 months after operation ( P<0.05), and there was no significant difference between 3 and 12 months after operation ( P>0.05). At each time point, the vertebral height and C 2-7Cobb angle of the study group were significantly higher than those of the control group ( P<0.05), and the implant subsidence rate was significantly lower than that of the control group ( P<0.05). However, there was no significant difference in intervertebral fusion rate between the two groups ( P>0.05). Conclusion Compared to traditional titanium cages, the use of titanium alloy trabecular bone 3D-printed artificial vertebral bodies for treating cervical OPLL results in shorter operative time, fewer postoperative complications, and lower implant subsidence rates, making it superior in vertebral reconstruction.
Collapse
Affiliation(s)
- 军 程
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
- 重庆大学附属三峡医院骨科中心(重庆万州 404100)Orthopedic Center, Chongqing University Three Gorges Hospital, Wanzhou Chongqing, 404100, P. R. China
| | - 建 陈
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
- 重庆大学附属三峡医院骨科中心(重庆万州 404100)Orthopedic Center, Chongqing University Three Gorges Hospital, Wanzhou Chongqing, 404100, P. R. China
| | - 鲤钟 谢
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
| | - 世龙 冯
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
| | - 继斌 周
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
| | - 方彪 占
- 锦州医科大学研究生培养基地(重庆大学附属三峡医院)(重庆万州 404100)Graduate Training Base of Jinzhou Medical University (Chongqing University Three Gorges Hospital), Wanzhou Chongqing, 404100, P. R. China
| |
Collapse
|
28
|
Morse KW, Sun J, Hu L, Bok S, Debnath S, Cung M, Yallowitz AR, Meyers KN, Iyer S, Greenblatt MB. Development of Murine Anterior Interbody and Posterolateral Spinal Fusion Techniques. J Bone Joint Surg Am 2024; 106:735-745. [PMID: 38194481 DOI: 10.2106/jbjs.23.00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Multiple animal models have previously been utilized to investigate anterior fusion techniques, but a mouse model has yet to be developed. The purpose of this study was to develop murine anterior interbody and posterolateral fusion techniques. METHODS Mice underwent either anterior interbody or posterolateral spinal fusion. A protocol was developed for both procedures, including a description of the relevant anatomy. Samples were subjected to micro-computed tomography to assess fusion success and underwent biomechanical testing with use of 4-point bending. Lastly, samples were fixed and embedded for histologic evaluation. RESULTS Surgical techniques for anterior interbody and posterolateral fusion were developed. The fusion rate was 83.3% in the anterior interbody model and 100% in the posterolateral model. Compared with a control, the posterolateral model exhibited a greater elastic modulus. Histologic analysis demonstrated endochondral ossification between bridging segments, further confirming the fusion efficacy in both models. CONCLUSIONS The murine anterior interbody and posterolateral fusion models are efficacious and provide an ideal platform for studying the molecular and cellular mechanisms mediating spinal fusion. CLINICAL RELEVANCE Given the extensive genetic tools available in murine disease models, use of fusion models such as ours can enable determination of the underlying genetic pathways involved in spinal fusion.
Collapse
Affiliation(s)
- Kyle W Morse
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Lingling Hu
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Shawon Debnath
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Michelle Cung
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Kathleen N Meyers
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - Sravisht Iyer
- Department of Spine Surgery, Hospital for Special Surgery, New York, NY
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
29
|
Singh H, Kukowski NR, Lunati MP, Dawes A, Kim CH, Kim S, Rhee JM. Porous 3D Printed Titanium Cages in Anterior Cervical Discectomy and Fusion are Associated With Less Subsidence, Improved Maintenance of Segmental Lordotic Correction, and Similar Clinical Outcomes as Allograft. Global Spine J 2024; 14:878-888. [PMID: 36062347 PMCID: PMC11192133 DOI: 10.1177/21925682221124527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
STUDY-DESIGN Retrospective chart review. OBJECTIVES Investigate radiographic and clinical outcomes of 3D printed titanium cages (3DTC) vs allograft in patients undergoing Anterior cervical discectomy and fusion (ACDF). METHODS Consecutive series of patients undergoing ACDF with 3DTC were compared to patients using corticocancellous allograft. Cage subsidence, fusion status, sagittal alignment, and patient-reported-outcomes. Radiographic evaluation was performed on the closing intraoperative x-ray and compared to films at 6-weeks, 6-months, and 1-year. Cage subsidence was calculated based on the amount of settling into superior and inferior endplates compared to the intraoperative x-ray. Fusion was assessed based on < 1 mm of flexion/extension motion. Sagittal alignment parameters and patient-reported-outcomes were measured. RESULTS Seventy six-patients/(120 levels) in 3DTC group and 77-patients/(115 levels) in allograft group were evaluated. No significant differences were noted in patient demographics, level fused or the number of levels fused between the groups. The most common level fused was C5-6. 3DTC had a significantly lower subsidence rate at all-time points as compared to allograft (P < .001). 3DTC maintained segmental lordosis better than allograft at all-time points including 1-year postop (P < .001). No significant differences were noted in fusion rate for 3DTC vs allograft at 6-months (P > .05). There were no significant differences in patient-reported-outcomes. CONCLUSION 3D printed titanium cages had similar patient-reported outcomes and fusion rates as allograft, but less subsidence at all-time points. 3D printed titanium cages better maintained the segmental lordosis at the operative level at all-time points. Although longer term evaluation is needed, based on these results, 3DTC appear to be viable graft options for ACDF that better maintain disc space height and improve segmental lordotic interbody correction.
Collapse
Affiliation(s)
- Hardeep Singh
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut
| | | | - Matthew P. Lunati
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Alexander Dawes
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - Chi Heon Kim
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut
| | - Sungkyu Kim
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| | - John M. Rhee
- Department of Orthopaedic Surgery, Emory University, Atlanta, GA, USA
| |
Collapse
|
30
|
Donaldson C, Santro T, Awad M, Morokoff A. 3D-printed titanium alloy cage in anterior and lateral lumbar interbody fusion for degenerative lumbar spine disease. JOURNAL OF SPINE SURGERY (HONG KONG) 2024; 10:22-29. [PMID: 38567003 PMCID: PMC10982926 DOI: 10.21037/jss-23-120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024]
Abstract
Background The most commonly used cages for intervertebral disc replacement in lumbar fusion procedures are made predominantly from polyetheretherketone (PEEK). There is sufficient data studying their subsidence and failure rates from a variety of approaches. A novel implant is now available for commercial use, 3D-printed porous titanium (3DppTi) alloy cages, which have recently become available for use in spinal procedures. They have been shown in ovine models to have superior efficacy and fusion rates compared to traditional cages. However, there is limited data on their use in clinical practice and long-term outcomes associated with them. Methods A retrospective chart review was performed, of all patients in a single institution who underwent lumbar spine fusion surgery via an anterior or lateral approach with a 3D-printed titanium alloy cage, between January 2020 and February 2021. Clinic letters, imaging and operation reports were independently reviewed to assess for fusion, or evidence of subsidence on follow-up. Results Fifty patients were identified as meeting inclusion criteria, with a total of 66 operative levels. Of these operative levels, 32 were via an anterior approach and 34 via a lateral approach. One patient demonstrated a Marchi grade 0 subsidence, with recurrence of radiculopathy 2 months after an anterior approach, requiring posterior decompression and stabilization. A second patient demonstrated a Marchi grade 1 subsidence after a lateral approach, but did not require further surgery as they were asymptomatic at 2 years of follow-up. This study demonstrated an overall subsidence rate of 3.03%. There was a median follow-up time of 11.3 months for all patients. Conclusions 3D-printed titanium alloy cages demonstrate a lower subsidence rate compared to historically published rates for alternative intervertebral cages, in anterior and lateral lumbar spine fusion surgery.
Collapse
Affiliation(s)
- Christopher Donaldson
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne Health, Melbourne, VIC, Australia
| | - Tomislav Santro
- Department of Radiology, Royal Melbourne Hospital, Melbourne Health, Melbourne, VIC, Australia
| | - Mohammed Awad
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne Health, Melbourne, VIC, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne Health, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Mathey E, Heimbrook A, Carpenter RD, Kelly CN, Gall K. Finite element modeling of the free boundary effect on gyroid additively manufactured samples. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 38469869 DOI: 10.1080/10255842.2024.2326929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
There is a significant need for models that can capture the mechanical behavior of complex porous lattice architectures produced by 3D printing. The free boundary effect is an experimentally observed behavior of lattice architectures including the gyroid triply periodic minimal surface where the number of unit cell repeats has been shown to influence the mechanical performance of the lattice. The purpose of this study is to use finite element modeling to investigate how architecture porosity, unit cell size, and sample size dictate mechanical behavior. Samples with varying porosity and increasing number of unit cells (relative to sample size) were modeled under an axial compressive load to determine the effective modulus. The finite element model captured the free boundary effect and captured experimental trends in the structure's modulus. The findings of this study show that samples with higher porosity are more susceptible to the impact of the free boundary effect and in some samples, the modulus can be 20% smaller in samples with smaller numbers of unit cell repeats within a given sample boundary. The outcomes from this study provide a deeper understanding of the gyroid structure and the implications of design choices including porosity, unit cell size, and overall sample size.
Collapse
Affiliation(s)
- Elizabeth Mathey
- Department of Mechanical Engineering, University of CO Denver, Denver, CO, USA
| | - Amanda Heimbrook
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - R D Carpenter
- Department of Mechanical Engineering, University of CO Denver, Denver, CO, USA
| | | | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Technology, restor3d Inc, Durham, NC, USA
| |
Collapse
|
32
|
Duan Y, Feng D, Li T, Wang Y, Jiang L, Huang Y. Comparison of Lumbar Interbody Fusion with 3D-Printed Porous Titanium Cage Versus Polyetheretherketone Cage in Treating Lumbar Degenerative Disease: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 183:144-156. [PMID: 38145654 DOI: 10.1016/j.wneu.2023.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To compare the safety and radiological effectiveness of lumbar interbody fusion with a 3D-printed porous titanium (3D-PPT) cage versus a polyetheretherketone (PEEK) cage for the treatment of lumbar degenerative disease. METHODS This study was registered at PROSPERO (CRD42023461511). We systematically searched the PubMed, Embase, and Web of Science databases for related studies from inception to September 3, 2023. Review Manager 5.3 was used to conduct this meta-analysis. The reoperation rate, complication rate, fusion rate, and subsidence rate were assessed using relative risk and 95% confidence intervals. RESULTS Ten articles reporting 9 studies comparing lumbar interbody fusion with 3D-PPT cages versus PEEK cages for the treatment of lumbar degenerative disease were included. The subsidence rate at the 1-year follow-up in the 3D-PPT cage was significantly lower than that in the PEEK cage. The fusion rate in the 3D-PPT cage was significantly higher than that in the PEEK cage at the 6-month follow-up. No significant difference was identified between the 2 groups at the 12-month follow-up. No significant difference was identified between the 2 groups in terms of the complication rate and reoperation rate. There was a trend toward a lower complication rate and reoperation rate with the 3D-PPT cage. CONCLUSIONS Compared with the PEEK cage, the 3D-PPT cage may be a safer implant. The 3D-PPT cage was associated with a higher fusion rate and lower subsidence rate. The 3D-PPT cage may accelerate the intervertebral fusion process, improve the quality of fusion and prevent the occurrence of subsidence.
Collapse
Affiliation(s)
- Yuchen Duan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dagang Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tong Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yiran Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Leiming Jiang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yong Huang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
33
|
Huo M, He S, Zhang Y, Liu Q, Liu M, Zhou G, Zhou P, Lu J. Mechano-driven intervertebral bone bridging via oriented mechanical stimulus in a twist metamaterial cage: An in silico study. Comput Biol Med 2024; 171:108149. [PMID: 38401455 DOI: 10.1016/j.compbiomed.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Stiffer cages provide sufficient mechanical support but fail to promote bone ingrowth due to stress shielding. It remains challenging for fusion cage to satisfy both bone bridging and mechanical stability. Here we designed a fusion cage based on twist metamaterial for improved bone ingrowth, and proved its superiority to the conventional diagonal-based cage in silico. The fusion process was numerically reproduced via an injury-induced osteogenesis model and the mechano-driven bone remodeling algorithm, and the outcomes fusion effects were evaluated by the morphological features of the newly-formed bone and the biomechanical behaviors of the bone-cage composite. The twist-based cages exhibited oriented bone formation in the depth direction, in comparison to the diagonal-based cages. The axial stiffness of the bone-cage composites with twist-based cages was notably higher than that with diagonal-based cages; meanwhile, the ranges of motion of the twist-based fusion segment were lower. It was concluded that the twist metamaterial cages led to oriented bone ingrowth, superior mechanical stability of the bone-cage composite, and less detrimental impacts on the adjacent bones. More generally, metamaterials with a tunable displacement mode of struts might provide more design freedom in implant designs to offer customized mechanical stimulus for osseointegration.
Collapse
Affiliation(s)
- Mengke Huo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; CityU-Shenzhen Futian Research Institute, Shenzhen, China
| | - Siyuan He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| | - Yun Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Qing Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Mengxing Liu
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China; Wuhan Mindray Scientific Co., Ltd, Wuhan, China
| | - Guangquan Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; CityU-Shenzhen Futian Research Institute, Shenzhen, China; Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| |
Collapse
|
34
|
Croft AJ, Chanbour H, Chen JW, Young MW, Stephens BF. Implant Surface Technologies to Promote Spinal Fusion: A Narrative Review. Int J Spine Surg 2023; 17:S35-S43. [PMID: 38050045 PMCID: PMC10753326 DOI: 10.14444/8559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The technology surrounding spinal fusion surgery has continuously evolved in tandem with advancements made in bioengineering. Over the past several decades, developments in biomechanics, surgical techniques, and materials science have expanded innovation in the spinal implant industry. This narrative review explores the current state of implant surface technologies utilized in spinal fusion surgery. This review covers various types of implant surface materials, focusing on interbody spacers composed of modified titanium, polyetheretherketone, hydroxyapatite, and other materials, as well as pedicle screw surface modifications. Advantages and disadvantages of the different surface materials are discussed, including their biocompatibility, mechanical properties, and radiographic visibility. In addition, this review examines the role of surface modifications in enhancing osseointegration and reducing implant-related complications and, hopefully, improving patient outcomes. The findings suggest that while each material has its potential advantages, further research is needed to determine the optimal surface properties for enhancing spinal fusion outcomes.
Collapse
Affiliation(s)
- Andrew J Croft
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hani Chanbour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey W Chen
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mason W Young
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Byron F Stephens
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Caffrey JM, Thomas PK, Appt SE, Burkart HB, Weaver CM, Kleinberger M, Gayzik FS. Contrast enhanced computed tomography of small ruminants: Caprine and ovine. PLoS One 2023; 18:e0287529. [PMID: 38127918 PMCID: PMC10735035 DOI: 10.1371/journal.pone.0287529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/07/2023] [Indexed: 12/23/2023] Open
Abstract
The use of small ruminants, mainly sheep and goats, is increasing in biomedical research. Small ruminants are a desirable animal model due to their human-like anatomy and physiology. However, the large variability between studies and lack of baseline data on these animals creates a barrier to further research. This knowledge gap includes a lack of computed tomography (CT) scans for healthy subjects. Full body, contrast enhanced CT scans of caprine and ovine subjects were acquired for subsequent modeling studies. Scans were acquired from an ovine specimen (male, Khatadin, 30-35 kg) and caprine specimen (female, Nubian 30-35 kg). Scans were acquired with and without contrast. Contrast enhanced scans utilized 1.7 mL/kg of contrast administered at 2 mL/s and scans were acquired 20 seconds, 80 seconds, and 5 minutes post-contrast. Scans were taken at 100 kV and 400 mA. Each scan was reconstructed using a bone window and a soft tissue window. Sixteen full body image data sets are presented (2 specimens by 4 contrast levels by 2 reconstruction windows) and are available for download through the form located at: https://redcap.link/COScanData. Scans showed that the post-contrast timing and scan reconstruction method affected structural visualization. The data are intended for further biomedical research on ruminants related to computational model development, device prototyping, comparative diagnostics, intervention planning, and other forms of translational research.
Collapse
Affiliation(s)
- Juliette M. Caffrey
- Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Patricia K. Thomas
- Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Susan E. Appt
- Pathology–Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Heather B. Burkart
- Pathology–Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Caitlin M. Weaver
- Army Research Directorate, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, United States of America
| | - Michael Kleinberger
- Army Research Directorate, DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, United States of America
| | - F. Scott Gayzik
- Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
36
|
Ferraro M, Puglia F, Della Valle A, Cerbone V, Cicatelli A, Peroni DR, Cecconi D, Misaggi B, La Maida GA. Transforaminal lumbar interbody fusion with a tantalum cage: lumbar lordosis redistribution and sacral slope restoration with a modified posterior technique. J Orthop Traumatol 2023; 24:62. [PMID: 38091159 PMCID: PMC10719190 DOI: 10.1186/s10195-023-00741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Transforaminal lumbar interbody fusion (TLIF), a commonly used procedure in spine surgery, has the advantage of a lower incidence of nerve lesions compared to the posterior lumbar interbody fusion (PLIF) technique. The intersomatic arthrodesis has always been carried out with a single tantalum cage normally used for PLIF. Tantalum is a metal that is particularly used in orthopedic surgery. It has a modulus of elasticity similar to marrow and leads to high primary stability of the implant. MATERIALS AND METHODS Our study was a retrospective monocentric observational study evaluating clinical and radiological outcomes of tantalum cages in a modified TLIF technique with posterior instrumentation and autologous and/or homologous posterolateral bone grafting. The aim of the study was to evaluate clinical outcomes and the increase in or redistribution of lumbar lordosis. The intersomatic arthrodesis was always carried out with a single tantalum cage normally used for PLIF to reduce the neurological risk. We retrospectively studied 105 patients who were treated with a modified unilateral TLIF approach by two surgeons between 2013 and 2018. We evaluated the Oswestry Disability Index (ODI), Visual Analogue Scale (VAS) for back pain, global lumbar lordosis, lordosis of L4-sacrum, segmental lordosis of functional motion units that underwent arthrodesis, pelvic tilt, pelvic incidence, and the sacral slope in 77 patients. All patients were suffering from grade III or IV Pfirrmann, instability, or foraminal post-laminectomy stenosis and/or grade I-II degenerative spondylolisthesis or low-grade isthmic spondylolisthesis. They had no significant sagittal imbalance, with a sagittal vertical axis (SVA) of < 5 mm. The average follow-up duration was 30 months. RESULTS We achieved excellent clinical results, with only four cases of failure (5.2%). Moreover, we noticed a statistically significant redistribution of lumbar lordosis, with an average percentage increase in L4-S1 lordosis equal to 19.9% (P < 0.001), an average increase in the L4-S1/Lumbar lordosis (LL) ratio from 0.53 to 0.63 (P < 0.001), and a mean percentage increase in sacral slope equal to 7.6% (P < 0.001). CONCLUSION Thanks to the properties of tantalum, our modified single-portal TLIF technique is a valid surgical solution to obtain a solid arthrodesis and restore the correct lumbar lordosis distribution while reducing neurological complications and the number of failures. LEVEL OF EVIDENCE 4 Trial registration statement: retrospective observational study, no trial registration.
Collapse
Affiliation(s)
- Marcello Ferraro
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| | - Francesco Puglia
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy.
- University of Milan, Milan, Italy.
| | - Andrea Della Valle
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| | - Vincenzo Cerbone
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
- University of Milan, Milan, Italy
| | - Alfonso Cicatelli
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
- University of Milan, Milan, Italy
| | - Donata Rita Peroni
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| | - Davide Cecconi
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| | - Bernardo Misaggi
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| | - Giovanni Andrea La Maida
- Spine Surgery Department, Orthopaedic Institute Gaetano Pini, Via Gaetano Pini, 1, 20121, Milan, Italy
| |
Collapse
|
37
|
Deng Z, Zou Q, Wang L, Wang L, Xiu P, Feng G, Song Y, Yang X. Comparison between Three-Dimensional Printed Titanium and PEEK Cages for Cervical and Lumbar Interbody Fusion: A Prospective Controlled Trial. Orthop Surg 2023; 15:2889-2900. [PMID: 37771127 PMCID: PMC10622287 DOI: 10.1111/os.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES The three-dimensional printing titanium (3DPT) cage with excellent biomechanical properties and osseointegration capabilities has been initially used in spinal fusion, while the polyetheretherketone (PEEK) cage, a bioinert material device, has been a widely used for decades with relatively excellent clinical outcomes. This study was performed to investigate the early radiographic and clinical outcomes of 3DPT cage versus PEEK cage in patients undergoing anterior cervical discectomy and fusion (ACDF) and transforaminal lumbar interbody fusion (TLIF). METHODS This prospective controlled trial, from December 2019 to June 2022, included patients undergoing ACDF and TLIF with 3DPT cages and compared them to patients using PEEK cages for treating spinal degenerative disorders. The outcome measures included radiographic parameters (intervertebral height [IH], subsidence, fusion status, and bone-cage interface contact) and clinical outcomes (Japanese Orthopaedic Association [JOA], Neck Disability Index [NDI], Oswestry Disability Index [ODI], Short Form 12-Item Survey [SF-12], Visual Analog Scale [VAS], and Odom's criteria). Student's independent samples t test and Pearson's chi-square test were used to compare the outcome measures between the two groups before surgery and at 1 week, 3 and 6 months after surgery. RESULTS For the patients undergoing ACDF, the 3DPT (18 patients/[26 segments]) and PEEK groups (18 patients/[26 segments]) had similar fusion rates at 3 months and 6 months follow-up (3 months: 96.2% vs. 83.3%, p = 0.182; 6 months: 100% vs. 91.7%, p = 0.225). The subsidence in the 3DPT group was significantly lower than that in the PEEK group (3 months: 0.4 ± 0.2 mm vs. 0.9 ± 0.7 mm p = 0.004; 6 months: 0.7 ± 0.3 mm vs. 1.5 ± 0.8 mm, p < 0.001). 3DPT and PEEK cage all achieved sufficient contact with the cervical endplates. For the patients undergoing TLIF, the 3DPT (20 patients/[26 segments]) and PEEK groups (20 patients/[24 segments]) had no statistical difference in fusion rate (3 months: 84.6% vs. 58.3%, p = 0.059; 6 months: 92.3% vs. 75%, p = 0.132). The subsidence was lower than that in the PEEK group without significantly difference (3 months: 0.9 ± 0.7 mm vs.1.2 ± 0.9 mm p = 0.136; 6 months: 1.6 ± 1.0 mm vs. 2.0 ± 1.0 mm, p = 0.200). At the 3-month follow-up, the bone-cage interface contact of the 3DPT cage was significantly better than that of the PEEK cage (poor contact: 15.4% vs. 75%, p < 0.001). The values of UAR were higher in the 3DPT group than in the PEEK group during the follow-up in cervical and lumbar fusion, there were more statistical differences in lumbar fusion. There were no significant differences in the clinical assessment between 3DPT or PEEK cage in spinal fusion. CONCLUSION The 3DPT cage and PEEK cage can achieve excellent clinical outcomes in cervical and lumbar fusion. The 3DPT cage has advantage in fusion quality, subsidence severity, and bone-cage interface contact than PEEK cage.
Collapse
Affiliation(s)
- Zhipeng Deng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Qiang Zou
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
- Department of OrthopedicsThe First People's Hospital of Shuangliu DistrictChengduChina
| | - Lei Wang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Liang Wang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Peng Xiu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Ganjun Feng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yueming Song
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Xi Yang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
38
|
Kim YT, Lee KJ, Jang YH, Yang S, Lee TQ, McGarry M, Kim SH. Cadaveric Biomechanical Study of Partial Glenoid Arthroplasty Versus the Latarjet Procedure for Anterior Glenoid Bone Loss. Am J Sports Med 2023; 51:3217-3225. [PMID: 37715516 DOI: 10.1177/03635465231192086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
BACKGROUND For severe anterior glenoid bone loss due to recurrent shoulder instability, the Latarjet procedure offers a dynamic sling effect in addition to bone augmentation. Yet, it heavily alters the surrounding anatomy, while fixation and graft union issues are also common. PURPOSE/HYPOTHESIS The purpose of this study was to compare a novel printed 3-dimensional (3D) partial glenoid arthroplasty (PGA) implant with the classic Latarjet procedure. It was hypothesized that by replicating the original glenoid geometry and preserving soft tissue anatomy, PGA may better reproduce normal joint kinematics. In addition, the locking screw construct may offer stronger fixation. STUDY DESIGN Controlled laboratory study. METHODS A total of 14 matched cadaveric shoulders were tested. The PGA implant was 3D printed in titanium based on preoperative computed tomography. The intact, 25% anterior glenoid bone loss, and postoperative states were tested in the scapular and coronal planes. The following parameters were measured: articular surface area and stepoff, rotational range of motion and the humeral head apex position during rotation, and load and linear stiffness at 25% anterior translation and at 2-mm construct displacement. RESULTS The baseline dimensions of the glenoid articular surface were comparable between the groups. The articular surface area after PGA was significantly larger (P = .006) with less articular stepoff (P = .030). PGA better approximated the intact state's external (P = .006) and total (P = .019) rotational range of motion in the scapular plane. The course of the humeral head apex after PGA better followed that of the intact state (P < .001). Resistance against anterior translation after PGA was not significantly different compared with after the Latarjet procedure. Greater linear stiffness (P = .031) and loading (P = .002) at 2-mm construct displacement were demonstrated in the PGA group. CONCLUSION In addressing anterior glenoid bone loss, PGA better approximated intact glenohumeral joint kinematics compared with the Latarjet procedure with less articular stepoff in a cadaveric model. PGA was comparable in resisting anterior translation while being significantly stronger against loading at 2-mm construct displacement. Further clinical studies are warranted to validate this novel procedure. CLINICAL RELEVANCE A 3D-printed PGA implant may offer an alternative treatment option for severe glenoid bone loss due to shoulder instability, overcoming the previous drawbacks of the Latarjet procedure, including altered kinematics, fixation failure, and hardware issues.
Collapse
Affiliation(s)
- Yong Tae Kim
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Kyung Jae Lee
- Department of Orthopedic Surgery, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Hoon Jang
- Department of Orthopedic Surgery, CM Hospital, Seoul, Republic of Korea
| | - Sook Yang
- Research Center, Cusmedi, Suwon, Republic of Korea
| | - Thay Q Lee
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Michelle McGarry
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Sae Hoon Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
39
|
Hiyama A, Katoh H, Sakai D, Sato M, Watanabe M. Early Radiological Assessment of Static and Expandable Cages in Lateral Single Position for Indirect Decompression- Lateral Lumbar Interbody Fusion. World Neurosurg 2023; 178:e453-e464. [PMID: 37506844 DOI: 10.1016/j.wneu.2023.07.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE This study aimed to compare the postoperative alignment of static and expandable cages in lateral single-position (LSP) for indirect decompression in lateral lumbar interbody fusion (LLIF). METHODS We included sixty-seven patients who underwent LSP-LLIF for lumbar degenerative disease. We performed radiological assessments preoperatively and two weeks postoperatively using computed tomography and magnetic resonance imaging. We divided the patients into the expandable cage group (23 patients) and the static cage group (44 patients). We measured disc height (DH), segmental lordosis (SL), and foraminal area (FA) from computed tomography images and the area of the dural sac from magnetic resonance imaging. We recorded surgical outcomes and complications. RESULTS Both static and expandable cages demonstrated improvements in DH, SL, FA, and dural sac expansion. However, we found no statistically significant differences in the average change in DH (4.4 ± 2.1 mm vs. 4.2 ± 1.8 mm, P = 0.685), the average change in SL (1.0 ± 4.4° vs. 1.9 ± 3.6°, P = 0.310), or FA change (32.5 ± 31.7 mm2 vs. 34.9 ± 29.5 mm2, P = 0.966) between the expandable and static cage groups. We also found no statistically significant difference in dural sac enlargement between the two groups. We observed no significant differences in operation time, estimated blood loss, or length of hospital stay between the two groups. No severe adverse events or additional surgeries were reported. CONCLUSIONS In LSP-LLIF without facet joint resection or other posterior techniques, static and expandable cages showed comparable effectiveness in achieving increased DH, SL, FA, and indirect decompression.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Hiroyuki Katoh
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
40
|
Talukdar RG, Saviour CM, Dhara S, Gupta S. Biomechanical analysis of functionally graded porous interbody cage for lumbar spinal fusion. Comput Biol Med 2023; 164:107281. [PMID: 37481948 DOI: 10.1016/j.compbiomed.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Functionally graded porous (FGP) interbody cage might offer a trade-off between porosity-based reduction of stiffness and mechanical properties. Using finite element models of intact and implanted lumbar functional spinal unit (FSU), the study investigated the quantitative deviations in load transfer and adaptive changes in bone density distributions around FGP interbody cages. The cage had three graded porosities: FGP-A, -B, and -C corresponded to a maximum porosity levels of 48%, 65% and 78%, respectively. Efficacy of the FGP cages were evaluated by comparing the numerically predicted results of solid-Ti and uniformly porous 78% porosity (P78) cage. Variations in stiffness and interface condition affected the strain distribution and bone remodelling around the cages. Peak strains of 0.5-1% were observed in less number of peri-prosthetic bone elements for the FGP cages as compared to the solid-Ti cage. Strains and bone apposition were considerably higher for the bonded implant-bone interface condition than the debonded case. For the FGP-C with bonded interface condition, bone apposition of 11-20% was predicted in the L4 and L5 regions of interest (ROIs); whereas the debonded model exhibited 6-10% increase in bone density. The deviations in bone density change between FGP-C and P78 model were 3-8% for L4 and L5 ROIs. FGP resulted in a reduced average micromotion (∼70-106 μm) as compared to solid-Ti (116 μm), for all physiologic movements. Compared to solid-Ti and uniformly porous cages, the FGP cage seems to be a viable alternative considering the conflicting nature of strength and porosity.
Collapse
Affiliation(s)
- Rahul Gautam Talukdar
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Ceby Mullakkara Saviour
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| |
Collapse
|
41
|
Johnson JW, Gadomski B, Labus K, Stewart H, Nelson B, Seim H, Regan D, von Stade D, Kelly C, Horne P, Gall K, Easley J. Novel 3D printed lattice structure titanium cages evaluated in an ovine model of interbody fusion. JOR Spine 2023; 6:e1268. [PMID: 37780834 PMCID: PMC10540818 DOI: 10.1002/jsp2.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background The use of intervertebral cages within the interbody fusion setting is ubiquitous. Synthetic cages are predominantly manufactured using materials such as Ti and PEEK. With the advent of additive manufacturing techniques, it is now possible to spatially vary complex 3D geometric features within interbody devices, enabling the devices to match the stiffness of native tissue and better promote bony integration. To date, the impact of surface porosity of additively manufactured Ti interbody cages on fusion outcomes has not been investigated. Thus, the objective of this work was to determine the effect of implant endplate surface and implant body architecture of additive manufactured lattice structure titanium interbody cages on bony fusion. Methods Biomechanical, microcomputed tomography, static and dynamic histomorphometry, and histopathology analyses were performed on twelve functional spine units obtained from six sheep randomly allocated to body lattice or surface lattice groups. Results Nondestructive kinematic testing, microcomputed tomography analysis, and histomorphometry analyses of the functional spine units revealed positive fusion outcomes in both groups. These data revealed similar results in both groups, with the exception of bone-in-contact analysis, which revealed significantly improved bone-in-contact values in the body lattice group compared to the surface lattice group. Conclusion Both additively manufactured porous titanium cage designs resulted in increased fusion outcomes as compared to PEEK interbody cage designs as illustrated by the nondestructive kinematic motion testing, static and dynamic histomorphometry, microcomputed tomography, and histopathology analyses. While both cages provided for similar functional outcomes, these data suggest boney contact with an interbody cage may be impacted by the nature of implant porosity adjacent to the vertebral endplates.
Collapse
Affiliation(s)
- James W. Johnson
- Orthopaedic Bioengineering Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Ben Gadomski
- Orthopaedic Bioengineering Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Kevin Labus
- Orthopaedic Bioengineering Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Holly Stewart
- Preclinical Surgical Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Brad Nelson
- Preclinical Surgical Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Howie Seim
- Preclinical Surgical Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | - Dan Regan
- Dept. of Microbiology, Immunology, & PathologyFlint Animal Cancer CenterFort CollinsColoradoUSA
| | - Devin von Stade
- Orthopaedic Bioengineering Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| | | | | | - Ken Gall
- restor3d, Inc.DurhamNorth CarolinaUSA
- Duke UniversityPratt School of EngineeringDurhamNorth CarolinaUSA
| | - Jeremiah Easley
- Preclinical Surgical Research LaboratoryColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
42
|
Cao Y, Yang N, Wang S, Wang C, He Q, Wu Q, Zheng Y. The application of 3D-printed auto-stable artificial vertebral body in en bloc resection and reconstruction of thoracolumbar metastases. J Orthop Surg Res 2023; 18:638. [PMID: 37644570 PMCID: PMC10463335 DOI: 10.1186/s13018-023-04135-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Nerve compression symptoms and spinal instability, resulting from spinal metastases, significantly impact the quality of life for patients. A 3D-printed vertebral body is considered an effective approach to reconstruct bone defects following en bloc resection of spinal tumors. The advantage of this method lies in its customized shape and innermost porous structure, which promotes bone ingrowth and leads to reduced postoperative complications. OBJECTIVE The purpose of this study is to assess the effectiveness of 3D-printed auto-stable artificial vertebrae in the en bloc resection and reconstruction of thoracolumbar metastases. METHODS This study included patients who underwent en bloc resection of thoracolumbar metastases based on the Weinstein-Boriani-Biagini surgical staging system, between January 2019 and April 2021. The patients were divided into two groups: the observation group, which was reconstructed using 3D-printed auto-stable vertebral bodies, and the control group, treated with titanium cages and allograft bone. Evaluation criteria for the patients included assessment of implant subsidence, instrumentation-related complications, VAS score, and Frankel grading of spinal cord injury. RESULTS The median follow-up period was 21.8 months (range 12-38 months). Among the patients, 10 received a customized 3D-printed artificial vertebral body, while the remaining 10 received a titanium cage. The observation group showed significantly lower operation time, intraoperative blood loss, and postoperative drainage compared to the control group (P < 0.05). At the final follow-up, the average implant subsidence was 1.8 ± 2.1 mm for the observation group and 5.2 ± 5.1 mm for the control group (P < 0.05). The visual analog scale (VAS) scores were not statistically different between the two groups at preoperative, 24 h, 3 months, and 1 year after the operation (P < 0.05). There were no statistically significant differences in the improvements of spinal cord functions between the two groups. CONCLUSION The utilization of a 3D-printed auto-stable artificial vertebra for reconstruction following en bloc resection of thoracolumbar metastases appears to be a viable and dependable choice. The low occurrence of prosthesis subsidence with 3D-printed prostheses can offer immediate and robust stability.
Collapse
Affiliation(s)
- Yun Cao
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China.
| | - Nan Yang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Shengbao Wang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Cong Wang
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Qiang He
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Qinfan Wu
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| | - Yangyang Zheng
- Department of Spine, Sichuan Science City Hospital, Mianyang, Sichuan Province, China
| |
Collapse
|
43
|
Zhong Y, Wang Y, Zhou H, Wang Y, Gan Z, Qu Y, Hua R, Chen Z, Chu G, Liu Y, Jiang W. Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis. Front Med (Lausanne) 2023; 10:1183683. [PMID: 37457575 PMCID: PMC10345158 DOI: 10.3389/fmed.2023.1183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Objective The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position. Methods A three-dimensional nonlinear finite element (FE) model of an intact L1-L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2-L3 and L3-L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots. Results When compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1-L2, L4-L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious. Conclusion Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Yujie Wang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yudong Wang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Ziying Gan
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yimeng Qu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Runjia Hua
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhaowei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
44
|
A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater 2023; 23:234-246. [DOI: 10.1016/j.bioactmat.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
|
45
|
Huo CW, Malham GM, Biddau DT, Chung T, Wang YY. Lateral Lumbar Interbody Fusion Using Expandable vs Static Titanium Interbody Cages: A Prospective Cohort Study of Clinical and Radiographic Outcomes. Int J Spine Surg 2023; 17:265-275. [PMID: 36889901 PMCID: PMC10165658 DOI: 10.14444/8422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Expandable cages are a recent development employed to reduce subsidence and improve fusion compared with static cages as they alleviate the need for repeated trialing or overdistraction of the disc space. This study aimed to compare the radiographic and clinical outcomes in patients undergoing lateral lumbar interbody fusion (LLIF) with either an expandable or static titanium cage. METHODS This was a prospective study of 98 consecutive patients undergoing LLIF performed over a 2-year period, with the first 50 patients receiving static cages and the following 48 receiving expandable cages. Radiographic evaluation included interbody fusion status, cage subsidence, and change in segmental lordosis and disc height. Clinical evaluation assessed patient-reported outcome measures (PROMs), including the Oswestry Disability Index, visual analog scale (VAS) for back and leg pain, and short form-12 physical and mental health survey scores collected at 3, 6, and 12 months postoperatively. RESULTS The 98 patients had 169 cages impacted (84 expandable vs 85 static). Mean age was 69.2 years, and 53.1% were women. There was no significant difference between the 2 groups in terms of age, gender, body mass index, or smoking status. The expandable cage group had higher rates of interbody fusion (94.0% vs 82.9%, P = 0.039) at 12 months as well as significantly reduced implant subsidence rates at all follow-up timepoints (4% vs 18% at 3 months; 4% vs 20% at 6 and 12 months). Patients from the expandable cage group showed a mean 1.9 more points of reduction in VAS back pain (P = 0.006) and 2.49 points greater reduction in VAS leg pain (P = 0.023) at 12-month follow-up. CONCLUSIONS Expandable lateral interbody spacers resulted in significantly improved fusion rates with reduced subsidence risks and statistically significant improvement in PROMs up to 12 months postoperatively compared with impacted lateral static cages. CLINICAL RELEVANCE The data provide clinical relevance in favoring expandable cages over static cages for enhanced fusion outcomes in lumbar fusions. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Gregory M Malham
- Neuroscience Institute, Epworth Hospital, Melbourne, VIC, Australia
- Spine Surgery Research, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Dean T Biddau
- Neuroscience Institute, Epworth Hospital, Melbourne, VIC, Australia
- Spine Surgery Research, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Timothy Chung
- Department of Orthopedic surgery, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Yi Yuen Wang
- Neuroscience Institute, Epworth Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, St Vincent's Hospital, Melbourne, VIC, Australia
- Department of Surgery, The University of Melbourne, VIC, Australia
| |
Collapse
|
46
|
Orłowska A, Szewczenko J, Kajzer W, Goldsztajn K, Basiaga M. Study of the Effect of Anodic Oxidation on the Corrosion Properties of the Ti6Al4V Implant Produced from SLM. J Funct Biomater 2023; 14:jfb14040191. [PMID: 37103281 PMCID: PMC10145819 DOI: 10.3390/jfb14040191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Additive technologies allowed for the development of medicine and implantology, enabling the production of personalized and highly porous implants. Although implants of this type are used clinically, they are usually only heat treated. Surface modification using electrochemical methods can significantly improve the biocompatibility of biomaterials used for implants, including printed ones. The study examined the effect of anodizing oxidation on the biocompatibility of a porous implant made of Ti6Al4V by the SLM method. The study used a proprietary spinal implant intended for the treatment of discopathy in the c4–c5 section. As part of the work, the manufactured implant was assessed in terms of compliance with the requirements for implants (structure testing—metallography) and the accuracy of the pores produced (pore size and porosity). The samples were subjected to surface modification using anodic oxidation. The research was carried out for 6 weeks in in vitro conditions. Surface topographies and corrosion properties (corrosion potential, ion release) were compared for unmodified and anodically oxidized samples. The tests showed no effect of anodic oxidation on the surface topography and improved corrosion properties. Anodic oxidation stabilized the corrosion potential and limited the release of ions to the environment.
Collapse
|
47
|
Nakashima T, Morimoto T, Hashimoto A, Kii S, Tsukamoto M, Miyamoto H, Todo M, Sonohata M, Mawatari M. Osteoconductivity and neurotoxicity of silver-containing hydroxyapatite coating cage for spinal interbody fusion in rats. JOR Spine 2023; 6:e1236. [PMID: 36994462 PMCID: PMC10041372 DOI: 10.1002/jsp2.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background The use of spinal instrumentation is an established risk factor for postoperative infection. To address this problem, we prepared silver-containing hydroxyapatite coating, consisting of highly osteoconductive hydroxyapatite interfused with silver. The technology has been adopted for total hip arthroplasty. Silver-containing hydroxyapatite coating has been reported to have good biocompatibility and low toxicity. However, no studies about applying this coating in spinal surgery have addressed the osteoconductivity and direct neurotoxicity to the spinal cord of silver-containing hydroxyapatite cages in spinal interbody fusion. Aim In this study, we evaluated the osteoconductivity and neurotoxicity of silver-containing hydroxyapatite-coated implants in rats. Materials & Methods Titanium (non-coated, hydroxyapatite-coated, and silver-containing hydroxyapatite-coated) interbody cages were inserted into the spine for anterior lumbar fusion. At 8 weeks postoperatively, micro-computed tomography and histology were performed to evaluate the osteoconductivity of the cage. Inclined plane test and toe pinch test were performed postoperatively to assess neurotoxicity. Results Micro-computed tomography data indicated no significant difference in bone volume/total volume among the three groups. Histologically, the hydroxyapatite-coated and silver-containing hydroxyapatite-coated groups showed significantly higher bone contact rate than that of the titanium group. In contrast, there was no significant difference in bone formation rate among the three groups. Data of inclined plane and toe pinch test showed no significant loss of motor and sensory function in the three groups. Furthermore, there was no degeneration, necrosis, or accumulation of silver in the spinal cord on histology. Conclusions This study suggests that silver-hydroxyapatite-coated interbody cages produce good osteoconductivity and are not associated with direct neurotoxicity.
Collapse
Affiliation(s)
- Takema Nakashima
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Akira Hashimoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Sakumo Kii
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of MedicineSaga UniversitySagaJapan
| | - Mitsugu Todo
- Division of Renewable Energy Dynamics, Research Institute for Applied MechanicsKyushu UniversityFukuokaJapan
| | - Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of MedicineSaga UniversitySagaJapan
| |
Collapse
|
48
|
Effect of Interbody Implants on the Biomechanical Behavior of Lateral Lumbar Interbody Fusion: A Finite Element Study. J Funct Biomater 2023; 14:jfb14020113. [PMID: 36826912 PMCID: PMC9962522 DOI: 10.3390/jfb14020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Porous titanium interbody scaffolds are growing in popularity due to their appealing advantages for bone ingrowth. This study aimed to investigate the biomechanical effects of scaffold materials in both normal and osteoporotic lumbar spines using a finite element (FE) model. Four scaffold materials were compared: Ti6Al4V (Ti), PEEK, porous titanium of 65% porosity (P65), and porous titanium of 80% porosity (P80). In addition, the range of motion (ROM), endplate stress, scaffold stress, and pedicle screw stress were calculated and compared. The results showed that the ROM decreased by more than 96% after surgery, and the solid Ti scaffold provided the lowest ROM (1.2-3.4% of the intact case) at the surgical segment among all models. Compared to solid Ti, PEEK decreased the scaffold stress by 53-66 and the endplate stress by 0-33%, while porous Ti decreased the scaffold stress by 20-32% and the endplate stress by 0-32%. Further, compared with P65, P80 slightly increased the ROM (<0.03°) and pedicle screw stress (<4%) and decreased the endplate stress by 0-13% and scaffold stress by approximately 18%. Moreover, the osteoporotic lumbar spine provided higher ROMs, endplate stresses, scaffold stresses, and pedicle screw stresses in all motion modes. The porous Ti scaffolds may offer an alternative for lateral lumbar interbody fusion.
Collapse
|
49
|
Levy HA, Karamian BA, Yalla GR, Canseco JA, Vaccaro AR, Kepler CK. Impact of surface roughness and bulk porosity on spinal interbody implants. J Biomed Mater Res B Appl Biomater 2023; 111:478-489. [PMID: 36075112 DOI: 10.1002/jbm.b.35161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Spinal fusion surgeries are performed to treat a multitude of cervical and lumbar diseases that lead to pain and disability. Spinal interbody fusion involves inserting a cage between the spinal vertebrae, and is often utilized for indirect neurologic decompression, correction of spinal alignment, anterior column stability, and increased fusion rate. The long-term success of interbody fusion relies on complete osseointegration between the implant surface and vertebral end plates. Titanium (Ti)-based alloys and polyetheretherketone (PEEK) interbody cages represent the most commonly utilized materials and provide sufficient mechanics and biocompatibility to assist in fusion. However, modification to the surface and bulk characteristics of these materials has been shown to maximize osseointegration and long-term stability. Specifically, the introduction of intrinsic porosity and surface roughness has been shown to affect spinal interbody mechanics, vascularization, osteoblast attachment, and ingrowth potential. This narrative review synthesizes the mechanical, in vitro, in vivo, and clinical effects on fusion efficacy associated with introduction of porosity in Ti (neat and alloy) and PEEK intervertebral implants.
Collapse
Affiliation(s)
- Hannah A Levy
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Brian A Karamian
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, USA
| | - Goutham R Yalla
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Hossain M, Im S, Jeong JH, Sultana T, Kang JH, Lee BT. Efficacy of a newly designed helical-shaped 3D-printed titanium cage for cervical vertebral defect healing in rabbits. Am J Transl Res 2023; 15:114-124. [PMID: 36777855 PMCID: PMC9908481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 02/14/2023]
Abstract
Three-dimensional (3D) printed titanium (Ti-6Al-4V alloy) cages are widely used for spinal fusion applications. However, the structural design and shape of the cages are a major determinant of the optimal clinical outcome. In this study, we constructed a newly designed 3D-printed helical-shaped titanium cage (HTC) with a flexible body, and compared its healing and fusion efficacy in cervical vertebral defects after corpectomy in rabbits to that of a 3D-printed traditional titanium cage (TTC). We performed radiological examinations 1 and 16 weeks after TTC and HTC implantation. We assessed bone ingrowth in TTC and HTC using micro-computed tomography (micro-CT) and histological staining of tissue sections at 16 weeks. The radiographic data showed that the HTC-implanted group had better restoration of vertebral height than the TTC group, indicating a lower risk of cage subsidence. The micro-CT and histological observations showed that HTC promoted bone regeneration and osseointegration more effectively than TTC. Histomorphometry further revealed significant new bone formation in the HTC group compared to the TTC group. These findings demonstrate that HTC has better healing and bone fusion effects than TTC in cervical vertebral defects in rabbits, indicating its potential clinical value.
Collapse
Affiliation(s)
- Mosharraf Hossain
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon HospitalBucheon, South Korea
| | - Soobin Im
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon HospitalBucheon, South Korea,Institute of Tissue Regeneration, Soonchunhyang UniversityCheonan, South Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon HospitalBucheon, South Korea
| | - Tamima Sultana
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon HospitalBucheon, South Korea
| | - Jung Hoon Kang
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Bucheon HospitalBucheon, South Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang UniversityCheonan, South Korea,Department of Regenerative Medicine, Soonchunhyang UniversityCheonan, South Korea
| |
Collapse
|