1
|
Wong WPD, Chen F, Wang X, Li X, Zou X, Hanna JV, Grimsdale AC. Formation of 1D "Perovskitoid" (API) 2Pb 3Br 10 Instead of Layered <110> Oriented 2D-Perovskite (API)PbBr 4 Under Different Dissolution Temperatures. Inorg Chem 2025; 64:2574-2582. [PMID: 39876684 DOI: 10.1021/acs.inorgchem.4c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The corrugated <110> oriented layered metal halide perovskites (MHP) are gaining increased attention for a variety of properties including intrinsic white light emission. One prototypical candidate is 1-(3-aminopropyl)imidazole lead bromide, which was reported to crystallize as the <110> oriented perovskite (API)PbBr4 [API = 1-(3-aminopropyl)imidazole]. This work shows that under similar reaction conditions, the same components can instead form (API)2Pb3Br10, which has a "perovskitoid" structure. (API)2Pb3Br10 exhibits a reversible phase transition between 60 and -20 °C from a polar space group I2 to a centrosymmetric space group P 1 ¯ . The structures and properties of both phases have been characterized by single-crystal and powder X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (ssNMR) accompanied by variable-temperature optical absorption and photoluminescence. In addition, a thermal decomposition of (API)PbBr4 into (API)2Pb3Br10 has been observed between 250 and 300 °C.
Collapse
Affiliation(s)
- Walter P D Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 63798, Singapore
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, West Midlands CV4 7AL, United Kingdom
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fangzheng Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xinyun Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117543, Singapore
| | - Xinwei Li
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117543, Singapore
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - John V Hanna
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, West Midlands CV4 7AL, United Kingdom
| | - Andrew C Grimsdale
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 63798, Singapore
| |
Collapse
|
2
|
Spyridakou M, Tzourtzouklis I, Graf R, Beauseroy H, Bonduelle C, Lecommandoux S, Floudas G. Multiple Levels of Organization in Amphiphilic Diblock Copolymers Based on Poly(γ-benzyl-l-glutamate) Produced by Aqueous ROPISA. Biomacromolecules 2025. [PMID: 39919302 DOI: 10.1021/acs.biomac.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
A recent method for producing amphiphilic block copolymers and nano-objects based on the ring-opening polymerization-induced self-assembly (ROPISA) in aqueous buffer is explored with respect to the tunability toward nanostructures. ROPISA gives rise to polypeptide copolymers with unprecedented levels of organization. By employing amphiphilic block copolymers of poly(ethylene glycol) (PEG) with the synthetic polypeptide poly(γ-benzyl-l-glutamate) (PBLG) and a combination of static (13C NMR, X-ray scattering, polarizing optical microscopy), thermodynamic (differential scanning calorimetry), and dynamic (dielectric spectroscopy) probes, we demonstrate a record of six levels of organization only found before in natural materials. These levels of organization could not be obtained in earlier morphology investigations of copolymers based on PEG and PBLG prepared by different methods. Furthermore, the type of NCA monomer (BLG-NCA vs Leu-NCA) and the solvent treatment method had an influence on the degree of segregation, the α-helical content, and the order-to-disorder transition temperature in the PEG-b-PBLG and PEG-b-PLeu copolymers.
Collapse
Affiliation(s)
- Marianna Spyridakou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Ioannis Tzourtzouklis
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hannah Beauseroy
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Colin Bonduelle
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- University Research Center of Ioannina (URCI)-Institute of Materials Science and Computing, 45110 Ioannina, Greece
| |
Collapse
|
3
|
van Aalst EJ, Yekefallah M, A. M. van Beekveld R, Breukink E, Weingarth M, Wylie BJ. Coordination of bilayer properties by an inward-rectifier K + channel is a cooperative process driven by protein-lipid interaction. J Struct Biol X 2024; 9:100101. [PMID: 38883399 PMCID: PMC11176924 DOI: 10.1016/j.yjsbx.2024.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.
Collapse
Affiliation(s)
- Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Maryam Yekefallah
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Roy A. M. van Beekveld
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Markus Weingarth
- Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Lim AR, Kim SH. NMR analysis of structural geometry and molecular dynamics in perovskite-type N(CH 3) 4CdBr 3 crystal near high-temperature phase transition. RSC Adv 2024; 14:13445-13451. [PMID: 38660532 PMCID: PMC11041620 DOI: 10.1039/d4ra02220c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The NMR chemical shifts, linewidths, spin-lattice relaxation times in the rotating system T1ρ, and spin-lattice relaxation times in the laboratory system T1 were evaluated for the perovskite-type N(CH3)4CdBr3 crystal, aiming to understand the changes in the structural geometry and molecular dynamics from phase I to phase II. From the temperature-dependence of the 1H, 13C, 14N, and 113Cd NMR chemical shifts, the structural geometry underwent a continuous change, without anomalous changes around (TC = 390 K). However, the linewidths in phase I were narrower than those in phase II, indicating that the motional averaging effects were caused by the rapid rotation of the N(CH3)4 group. Sudden changes in T1 and T1ρ were observed near TC, for which the activation energy Ea in phase I was approximately 12 times larger than that in phase II; the small Ea values in phase II indicate a large degree of freedom for the methyl group and CdBr6 octahedra, whereas the large Ea in phase I was primarily attributed to the overall N(CH3)4 and the 113Cd in the CdBr6 groups. Consequently, the phase transition mechanisms of N(CH3)4CdBr3 are related to reorientation of the N(CH3)4 group and the arrangement of the CdBr6 groups.
Collapse
Affiliation(s)
- Ae Ran Lim
- Graduate School of Carbon Convergence Engineering, Jeonju University Jeonju 55069 Korea
- Department of Science Education, Jeonju University Jeonju 55069 Korea
| | - Sun Ha Kim
- Korea Basic Science Institute, Seoul Western Center Seoul 03759 Korea
- Department of Chemistry, Kyungpook National University Daegu 41566 Korea
| |
Collapse
|
5
|
Yekefallah M, van Aalst EJ, van Beekveld RAM, Eason IR, Breukink E, Weingarth M, Wylie BJ. Cooperative Gating of a K + Channel by Unmodified Biological Anionic Lipids Viewed by Solid-State NMR Spectroscopy. J Am Chem Soc 2024; 146:4421-4432. [PMID: 38334076 PMCID: PMC10885140 DOI: 10.1021/jacs.3c09266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.
Collapse
Affiliation(s)
- Maryam Yekefallah
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Evan J. van Aalst
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Roy A. M. van Beekveld
- Department
of Chemistry, Faculty of Science, Utrecht
University, Padualaan 8, Utrecht3584
CH, The Netherlands
| | - Isaac R. Eason
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Eefjan Breukink
- Membrane
Biochemistry and Biophysics, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584
CH, The Netherlands
| | - Markus Weingarth
- Department
of Chemistry, Faculty of Science, Utrecht
University, Padualaan 8, Utrecht3584
CH, The Netherlands
| | - Benjamin J. Wylie
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Bakhmutov VI, Elliott DW, Zhou HC. Kinetics of 1H → 31P NMR cross-polarization and dynamics in a layered crystalline α-Sn(IV) phosphate. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 127:101898. [PMID: 37639882 DOI: 10.1016/j.ssnmr.2023.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The proton-phosphorus (H-P) cross-polarization (CP) is effective in Sn(HPO4)2·H2O despite of the presence of paramagnetic ion impurities. Polarization constants TH-P and 1H T1ρ times are measured in static Sn(HPO4)2·H2O by the kinetic variable-temperature H-P CP experiments. The temperature dependence of the 1H T1ρ times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The MAS effect on the 1H T1ρ times is shown and discussed.
Collapse
Affiliation(s)
- Vladimir I Bakhmutov
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States.
| | - Douglas W Elliott
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| |
Collapse
|
7
|
van Aalst EJ, Jang J, Halligan TC, Wylie BJ. Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study. JOURNAL OF BIOMOLECULAR NMR 2023; 77:191-202. [PMID: 37493866 PMCID: PMC10838152 DOI: 10.1007/s10858-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2' experiments indicate sample temperatures below - 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of - 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of - 30 °C, corroborated by linewidth analysis in 3D NCACX at - 30 °C compared to - 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between - 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Jun Jang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Ty C Halligan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA.
| |
Collapse
|
8
|
Wang H, Falcoz S, Morales J, Berteau JP. Investigating bone resorption in Atlantic herring fish intermuscular bones with solid-state NMR. Phys Chem Chem Phys 2023; 25:9336-9348. [PMID: 36920434 DOI: 10.1039/d2cp03023c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Bones are connective tissues mainly made of collagen proteins with calcium phosphate deposits. They undergo constant remodeling, including destroying existing bones tissues (known as bone resorption) and rebuilding new ones. Bone remodeling has been well-described in mammals, but it is not the case in fish. Here, we focused on the mobile phase of the bone vascular system by carefully preserving moisture in adult Atlantic herring intermuscular bones. We detected pore water with high ionic strength and soluble degraded peptides whose 1H-transverse relaxation times, T2s, exceed 15 milliseconds. With favorable T2s, we incorporated a solution state spinlock scheme into the INEPT techniques to unequivocally demonstrate collagen degradation. In addition, we detected a substantial amount of inorganic phosphate in solution with 31P-NMR in the considerable background of solid hydroxyapatite calcium phosphate by saturation recovery experiment. It is consistent with the idea that bone resorption degrades bone collagen and releases calcium ions and phosphate ions in the pore water with increased ionic strength. Our report is the first to probe the resorption process in the heterogenous bone microstructure with a rigorous characterization of 1H and 13C relaxation behavior and direct assignments. In addition, we contribute to the fish bones literature by investigating fish bone remodeling using NMR for the first time.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jorge Morales
- Department of Chemistry and Biochemistry, The City College of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA.
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, NY 10314, USA.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York 10031, USA.,Nanosciences Initiative, City University of New York - Advanced Science Research Center, New York 10031, USA
| |
Collapse
|
9
|
Ince R, Doudouh A, Claiser N, Furet É, Guizouarn T, Le Pollès L, Kervern G. Determining Local Magnetic Susceptibility Tensors in Paramagnetic Lanthanide Crystalline Powders from Solid-State NMR Chemical Shift Anisotropies. J Phys Chem A 2023; 127:1547-1554. [PMID: 36744789 DOI: 10.1021/acs.jpca.2c06955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exploring magnetic properties at the molecular level is a challenge that has been met by developing many experimental and theoretical solutions, such as polarized neutron diffraction (PND), muon-spin rotation (μ-SR), electron paramagnetic resonance (EPR), SQUID-based magnetometry measurements, and advanced modeling on open-shell systems and relativistic calculations. These methods are powerful tools that shed light on the local magnetic response in specifically designed magnetic materials such as contrast agents, for MRI, molecular magnets, magnetic tags for biological NMR, etc. All of these methods have their advantages and disadvantages. In order to complement the possibilities offered by these methods, we propose a new tool that implements a new approach combining simulation and fitting for high-resolution solid-state NMR spectra of lanthanide-based paramagnetic species. This method relies on a rigorous acquisition thanks to short high-power adiabatic pulses (SHAP) of high-resolution solid-state NMR isotropic and anisotropic data on a powdered magnetic material. It is also based on an efficient modeling of this data thanks to a semiempirical model based on a parametrization of the local magnetism and the crystal structure provided by diffraction methods. The efficiency of the calculation relies on a thorough simplification of the electron-nucleus interactions (point-dipole interaction, no Fermi contact) which is validated by experimental analysis. By taking advantage of the efficient calculation possibilities offered by our method, we can compare a great number of simulated spectra to experimental data and find the best-matching local magnetic susceptibility tensor. This method was applied to a series of isostructural lanthanide oxalates which are used as a benchmark system for many analytical methods. We present the results of thorough solid-state NMR and extensive modeling of the hyperfine interaction (including up to 400 paramagnetic centers) that yield local magnetic susceptibility tensor measurements that are self-consistent as well as consistent with bulk susceptibility measurements.
Collapse
Affiliation(s)
- Ridvan Ince
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Abdelatif Doudouh
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Nicolas Claiser
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| | - Éric Furet
- ENSCR, UMR 6226 (UL-CNRS) École Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Thierry Guizouarn
- ISCR, UMR 6226 (UL-CNRS) Université de Rennes 1, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Laurent Le Pollès
- ENSCR, UMR 6226 (UL-CNRS) École Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu - Bâtiment 10B, F 35042Rennes Cedex, France
| | - Gwendal Kervern
- Université de Lorraine, UMR 7036 (UL-CNRS) CRM2, BP 70239 Boulevard des Aiguillettes, F 54506Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Zwitterionic or Not? Fast and Reliable Structure Determination by Combining Crystal Structure Prediction and Solid-State NMR. Molecules 2023; 28:molecules28041876. [PMID: 36838863 PMCID: PMC9966216 DOI: 10.3390/molecules28041876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
When it comes to crystal structure determination, computational approaches such as Crystal Structure Prediction (CSP) have gained more and more attention since they offer some insight on how atoms and molecules are packed in the solid state, starting from only very basic information without diffraction data. Furthermore, it is well known that the coupling of CSP with solid-state NMR (SSNMR) greatly enhances the performance and the accuracy of the predictive method, leading to the so-called CSP-NMR crystallography (CSP-NMRX). In this paper, we present the successful application of CSP-NMRX to determine the crystal structure of three structural isomers of pyridine dicarboxylic acid, namely quinolinic, dipicolinic and dinicotinic acids, which can be in a zwitterionic form, or not, in the solid state. In a first step, mono- and bidimensional SSNMR spectra, i.e., 1H Magic-Angle Spinning (MAS), 13C and 15N Cross Polarisation Magic-Angle Spinning (CPMAS), 1H Double Quantum (DQ) MAS, 1H-13C HETeronuclear CORrelation (HETCOR), were used to determine the correct molecular structure (i.e., zwitterionic or not) and the local molecular arrangement; at the end, the RMSEs between experimental and computed 1H and 13C chemical shifts allowed the selection of the correct predicted structure for each system. Interestingly, while quinolinic and dipicolinic acids are zwitterionic and non-zwitterionic, respectively, in the solid state, dinicotinic acid exhibits in its crystal structure a "zwitterionic-non-zwitterionic continuum state" in which the proton is shared between the carboxylic moiety and the pyridinic nitrogen. Very refined SSNMR experiments were carried out, i.e., 14N-1H Phase-Modulated (PM) pulse and Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR), to provide an accurate N-H distance value confirming the hybrid nature of the molecule. The CSP-NMRX method showed a remarkable match between the selected structures and the experimental ones. The correct molecular input provided by SSNMR reduced the number of CSP calculations to be performed, leading to different predicted structures, while RMSEs provided an independent parameter with respect to the computed energy for the selection of the best candidate.
Collapse
|
11
|
Choi MY, Lee SJ, Ju H, Lim AR. Phase transition, thermal stability, and molecular dynamics of organic-inorganic hybrid perovskite [NH 3(CH 2) 6NH 3]CuCl 4 crystals. RSC Adv 2022; 12:20679-20685. [PMID: 35919167 PMCID: PMC9297128 DOI: 10.1039/d2ra02975h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Organic-inorganic hybrid perovskites have various potential applications in fuel cells and solar cells. In this regard, the physicochemical properties of an organic-inorganic [NH3(CH2)6NH3]CuCl4 crystal was conducted. The crystals had a monoclinic structure with space group P21/n and lattice constants a = 7.2224 Å, b = 7.6112 Å, c = 23.3315 Å, β = 91.930°, and Z = 4 at 300 K, and the phase transition temperature (T C) was determined to be 363 K by X-ray diffraction and differential scanning calorimetry experiments. From the nuclear magnetic resonance experimental results, the changes in the 1H chemical shifts in NH3 and the influence of C1 located close to NH3 in the [NH3(CH2)6NH3] cation near T C are determined to be large, which implies that the structural change of CuCl4 linked to N-H⋯Cl is large. The 1H spin-lattice relaxation time (T 1ρ) in NH3 is shorter than that of CH2, and the 13C T 1ρ values for C1 close to NH3 are shorter than those of C2 and C3 due to the influence of the paramagnetic Cu2+ ion in square planar geometry CuCl4. The structural mechanism for the phase transition was the change in the N-H⋯Cl hydrogen bond and was associated with the structural dynamics of the CuCl4 anion.
Collapse
Affiliation(s)
- Moon Young Choi
- Graduate School of Carbon Convergence Engineering, Jeonju University Jeonju 55069 South Korea
| | - Seon Ju Lee
- Graduate School of Carbon Convergence Engineering, Jeonju University Jeonju 55069 South Korea
| | - Huiyeong Ju
- Korea Basic Science Institute, Seoul Western Center Seoul 03759 South Korea
| | - Ae Ran Lim
- Graduate School of Carbon Convergence Engineering, Jeonju University Jeonju 55069 South Korea
- Department of Science Education, Jeonju University Jeonju 55069 South Korea
| |
Collapse
|
12
|
van Aalst EJ, Borcik CG, Wylie BJ. Spectroscopic signatures of bilayer ordering in native biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183891. [PMID: 35217001 PMCID: PMC10793244 DOI: 10.1016/j.bbamem.2022.183891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane proteins and polycyclic lipids like cholesterol and hopanoids coordinate phospholipid bilayer ordering. This phenomenon manifests as partitioning of the liquid crystalline phase into liquid-ordered (Lo) and liquid-disordered (Ld) regions. In Eukaryotes, microdomains are rich in cholesterol and sphingolipids and serve as signal transduction scaffolds. In Prokaryotes, Lo microdomains increase pathogenicity and antimicrobial resistance. Previously, we identified spectroscopically distinct chemical shift signatures for all-trans (AT) and trans-gauche (TG) acyl chain conformations, cyclopropyl ring lipids (CPR), and hopanoids in prokaryotic lipid extracts and used Polarization Transfer (PT) SSNMR to investigate bilayer ordering. To investigate how these findings relate to native bilayer organization, we interrogate whole cell and whole membrane extract samples of Burkholderia thailendensis to investigate bilayer ordering in situ. In 13C-13C 2D SSNMR spectra, we assigned chemical shifts for lipid species in both samples, showing conservation of lipids of interest in our native membrane sample. A one-dimensional temperature series of PT SSNMR and transverse relaxation measurements of AT versus TG acyl conformations in the membrane sample confirm bilayer ordering and a broadened phase transition centered at a lower-than-expected temperature. Bulk protein backbone Cα dynamics and correlations consistent with lipid-protein contacts within are further indicative of microdomain formation and lipid ordering. In aggregate, these findings provide evidence for microdomain formation in vivo and provide insight into phase separation and transition mechanics in biological membranes.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA.
| |
Collapse
|
13
|
Makhlooghiazad F, O'Dell LA, Porcarelli L, Forsyth C, Quazi N, Asadi M, Hutt O, Mecerreyes D, Forsyth M, Pringle JM. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. NATURE MATERIALS 2022; 21:228-236. [PMID: 34795402 DOI: 10.1038/s41563-021-01130-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/13/2021] [Indexed: 05/21/2023]
Abstract
Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.
Collapse
Affiliation(s)
- Faezeh Makhlooghiazad
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Luca Porcarelli
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
- Joxe Mari Korta Center, POLYMAT, University of the Basque Country, Donostia-San Sebastian, Spain
| | - Craig Forsyth
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nurul Quazi
- Boron Molecular, Noble Park, Victoria, Australia
| | - Mousa Asadi
- Boron Molecular, Noble Park, Victoria, Australia
| | - Oliver Hutt
- Boron Molecular, Noble Park, Victoria, Australia
| | - David Mecerreyes
- Joxe Mari Korta Center, POLYMAT, University of the Basque Country, Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, ARC Centre of Excellence for Electromaterials Science, Waurn Ponds, Victoria, Australia.
| |
Collapse
|
14
|
Castellini E, Bernini F, Sebastianelli L, Bighi B, Ignacio Sainz‐Díaz C, Mucci A, Malferrari D, Ranieri A, Gorni G, Marini C, Franca Brigatti M, Borsari M. The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Castellini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Lorenzo Sebastianelli
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Beatrice Bighi
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Claro Ignacio Sainz‐Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras, 4 18100 Armilla, Granada Spain
| | - Adele Mucci
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Daniele Malferrari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Antonio Ranieri
- Department of Life Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Giulio Gorni
- ALBA Synchrotron Light Source Crta. BP 1413, Km. 3.3 08290, Cerdanyola Del Vallès Barcelona Spain
| | - Carlo Marini
- ALBA Synchrotron Light Source Crta. BP 1413, Km. 3.3 08290, Cerdanyola Del Vallès Barcelona Spain
| | - Maria Franca Brigatti
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences University of Modena and Reggio Emilia Via Campi 103 I-41125 Modena Italy
| |
Collapse
|
15
|
Novotný J, Jeremias L, Nimax P, Komorovsky S, Heinmaa I, Marek R. Crystal and Substituent Effects on Paramagnetic NMR Shifts in Transition-Metal Complexes. Inorg Chem 2021; 60:9368-9377. [PMID: 34133172 PMCID: PMC9597657 DOI: 10.1021/acs.inorgchem.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nuclear magnetic resonance (NMR)
spectroscopy of paramagnetic molecules
provides detailed information about their molecular and electron-spin
structure. The paramagnetic NMR spectrum is a very rich source of
information about the hyperfine interaction between the atomic nuclei
and the unpaired electron density. The Fermi-contact contribution
to ligand hyperfine NMR shifts is particularly informative about the
nature of the metal–ligand bonding and the structural arrangements
of the ligands coordinated to the metal center. In this account, we
provide a detailed experimental and theoretical NMR study of compounds
of Cr(III) and Cu(II) coordinated with substituted acetylacetonate
(acac) ligands in the solid state. For the first time, we report the
experimental observation of extremely paramagnetically deshielded 13C NMR resonances for these compounds in the range of 900–1200
ppm. We demonstrate an excellent agreement between the experimental
NMR shifts and those calculated using relativistic density-functional
theory. Crystal packing is shown to significantly influence the NMR
shifts in the solid state, as demonstrated by theoretical calculations
of various supramolecular clusters. The resonances are assigned to
individual atoms in octahedral Cr(acac)3 and square-planar
Cu(acac)2 compounds and interpreted by different electron
configurations and magnetizations at the central metal atoms resulting
in different spin delocalizations and polarizations of the ligand
atoms. Further, effects of substituents on the 13C NMR
resonance of the ipso carbon atom reaching almost 700 ppm for Cr(acac)3 compounds are interpreted based on the analysis of Fermi-contact
hyperfine contributions. The
ligand NMR shifts in paramagnetic acetylacetonato Cr(III)
and Cu(II) complexes have been predicted and measured in the solid
state and interpreted by relativistic DFT calculations. The effects
of the metal atom, ligand, and crystal packing on the spin delocalization
and polarization reflected in the Fermi-contact contribution to the
hyperfine interaction are rationalized.
Collapse
Affiliation(s)
- Jan Novotný
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Lukáš Jeremias
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University, Zemědělská 1, CZ-613 00 Brno, Czechia
| | - Patrick Nimax
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Ivo Heinmaa
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn, Estonia
| | - Radek Marek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
| |
Collapse
|
16
|
Dasgupta R, Gupta KBSS, Elam D, Ubbink M, de Groot HJM. Dipolar dephasing for structure determination in a paramagnetic environment. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 113:101728. [PMID: 33744671 DOI: 10.1016/j.ssnmr.2021.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate the efficacy of the REDOR-type sequences in determining dipolar coupling strength in a paramagnetic environment. Utilizing paramagnetic effects of enhanced relaxation rates and rapid electronic fluctuations in Cu(II)-(DL-Ala)2.H2O, the dipolar coupling for the methyl C-H that is 4.20 Å (methyl carbon) away from the Cu2+ ion, was estimated to be 8.8 ± 0.6 kHz. This coupling is scaled by a factor of ~0.3 in comparison to the rigid limit value of ~32 kHz, in line with partial averaging of the dipolar interaction by rotational motion of the methyl group. Limited variation in the scaling factor of the dipolar coupling strength at different temperatures is observed. The C-H internuclear distance derived from the size of the dipolar coupling is similar to that observed in the crystal structure. The errors in the dipolar coupling strength observed in the REDOR-type experiments are similar to those reported for diamagnetic systems. Increase in resolution due to the Fermi contact shifts, coupled with MAS frequencies of 30-35 kHz allowed to estimate the hyperfine coupling strengths for protons and carbons from the temperature dependence of the chemical shift and obtain a high resolution 1H-1H spin diffusion spectrum. This study shows the utility of REDOR-type sequences in obtaining reliable structural and dynamical information from a paramagnetic complex. We believe that this can help in studying the active site of paramagnetic metalloproteins at high resolution.
Collapse
Affiliation(s)
- Rubin Dasgupta
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg, 55 2333 CC, Leiden, the Netherlands
| | - Karthick B S S Gupta
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg, 55 2333 CC, Leiden, the Netherlands
| | - Derek Elam
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg, 55 2333 CC, Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg, 55 2333 CC, Leiden, the Netherlands
| | - Huub J M de Groot
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg, 55 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
17
|
Structures, local symmetries, and paramagnetic effects in Cs2Zn1-Cu Cl4 (y = 0, 0.3, 0.5, 0.7, and 1) mixed crystals by solid-state NMR. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Szell PMJ, Lewandowski JR, Blade H, Hughes LP, Nilsson Lill SO, Brown SP. Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm 2021. [DOI: 10.1039/d1ce01084k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV pharmaceutical efavirenz is highly dynamic in its crystalline state, and we show that these dynamics can be tamed through the introduction of a coformer.
Collapse
Affiliation(s)
| | | | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Sten O. Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
19
|
Falkenstein P, Wei R, Matysik J, Song C. Mechanistic investigation of enzymatic degradation of polyethylene terephthalate by nuclear magnetic resonance. Methods Enzymol 2020; 648:231-252. [PMID: 33579405 DOI: 10.1016/bs.mie.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biocatalytic degradation of polyethylene terephthalate (PET) by thermophilic microbial enzymes has recently emerged as an option for a future eco-friendly recycling process for plastic waste, as it occurs under mild conditions and requires no harmful additives. In this chapter, we present a brief overview of solution and solid-state nuclear magnetic resonance (NMR) spectroscopic methods for the characterization of composition and chemical microstructure of PET and also associated chain dynamics over multiple time scales. Such detailed information provides an understanding of the enzymatic PET degradation mechanism by polyester hydrolases at the molecular level.
Collapse
Affiliation(s)
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany; Junior Research Group Plastic Biodegradation, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Bernard GM, Michaelis VK. Lead-207 NMR spectroscopy at 1.4 T: Application of benchtop instrumentation to a challenging I = ½ nucleus. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1203-1212. [PMID: 32364623 DOI: 10.1002/mrc.5036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The practicality of obtaining liquid- and solid-state 207 Pb nuclear magnetic resonance (NMR) spectra with a low permanent-field magnet is investigated. Obtaining 207 Pb NMR spectra of salts in solution is shown to be viable for samples as dilute as 0.05 M. The concentration dependence of the 207 Pb chemical shifts for lead nitrate was investigated; the results are comparable with those obtained with high-field instruments. Likewise, the isotope effect of substituting D2 O for H2 O as the solvent was investigated and found to be comparable with those reported previously. Obtaining solid-state 207 Pb NMR spectra is challenging, but we demonstrate the ability to obtain such spectra for three unique solid samples. An axially symmetric 207 Pb powder pattern for lead nitrate and the powder pattern expected for lead chloride reveal linewidths dominated by shielding anisotropy, while 207 Pb-35/37 Cl J-coupling dominates in the methylammonium lead chloride perovskite material. Finally, recent innovations and the future potential of the instruments are considered.
Collapse
Affiliation(s)
- Guy M Bernard
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Vladimir K Michaelis
- Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Lim AR. Structural characterization, thermal properties, and molecular motions near the phase transition in hybrid perovskite [(CH 2) 3(NH 3) 2]CuCl 4 crystals: 1H, 13C, and 14N nuclear magnetic resonance. Sci Rep 2020; 10:20853. [PMID: 33257758 PMCID: PMC7705681 DOI: 10.1038/s41598-020-77931-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The structural characterization of the [(CH2]3(NH3)2]+ cation in the perovskite [(CH2)3(NH3)2]CuCl4 crystal was performed by solid-state 1H nuclear magnetic resonance (NMR) spectroscopy. The 1H NMR chemical shifts for NH3 changed more significantly with temperature than those for CH2. This change in cationic motion is enhanced at the N-end of the organic cation, which is fixed to the inorganic layer by N-H···Cl hydrogen bonds. The 13C chemical shifts for CH2-1 increase slowly without any anomalous change, while those for CH2-2 move abruptly compared to CH2-1 with increasing temperature. The four peaks of two groups in the 14N NMR spectra, indicating the presence of a ferroelastic multidomain, were reduced to two peaks of one group near TC2 (= 333 K); the 14N NMR data clearly indicated changes in atomic configuration at this temperature. In addition, 1H and 13C spin-lattice have shorter relaxation times (T1ρ), in the order of milliseconds because T1ρ is inversely proportional to the square of the magnetic moment of paramagnetic ions. The T1ρ values for CH2 and NH3 protons were almost independent of temperature, but the CH2 moiety located in the middle of the N-C-C-C-N bond undergoes tumbling motion according to the Bloembergen-Purcell-Pound theory. Ferroelasticity is the main cause for the phase transition near TC2.
Collapse
Affiliation(s)
- Ae Ran Lim
- Analytical Laboratory of Advanced Ferroelectric Crystals, Department of Science Eduction, Jeonju University, Jeonju, 55069, Korea.
| |
Collapse
|
22
|
Fornasari L, Olejniczak A, Rossi F, d'Agostino S, Chierotti MR, Gobetto R, Katrusiak A, Braga D. Solid-State Dynamics and High-Pressure Studies of a Supramolecular Spiral Gear. Chemistry 2020; 26:5061-5069. [PMID: 32039523 DOI: 10.1002/chem.201905744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Indexed: 12/11/2022]
Abstract
The structures and solid-state dynamics of the supramolecular salts of the general formula [(12-crown-4)2 ⋅DABCOH2 ](X)2 (where DABCO=1,4-diazabicyclo[2.2.2]octane, X=BF4 , ClO4 ) have been investigated as a function of temperature (from 100 to 360 K) and pressure (up to 3.4 GPa), through the combination of variable-temperature and variable-pressure XRD techniques and variable-temperature solid-state NMR spectroscopy. The two salts are isomorphous and crystallize in the enantiomeric space groups P32 21 and P31 21 . All building blocks composing the supramolecular complex display dynamic processes at ambient temperature and pressure. It has been demonstrated that the motion of the crown ethers is maintained on lowering the temperature (down to 100 K) or on increasing the pressure (up to 1.5 GPa) thanks to the correlation between neighboring molecules, which mesh and rotate in a concerted manner similar to spiral gears. Above 1.55 GPa, a collapse-type transition to a lower-symmetry ordered structure, not attainable at a temperature of 100 K, takes place, proving, thus, that the pressure acts as the means to couple and decouple the gears. The relationship between temperature and pressure effects on molecular motion in the solid state has also been discussed.
Collapse
Affiliation(s)
- Luca Fornasari
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Anna Olejniczak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614, Poznań, Poland
| | - Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| | - Simone d'Agostino
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614, Poznań, Poland
| | - Dario Braga
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| |
Collapse
|
23
|
Conformational fitting of a flexible oligomeric substrate does not explain the enzymatic PET degradation. Nat Commun 2019; 10:5581. [PMID: 31811142 PMCID: PMC6897938 DOI: 10.1038/s41467-019-13492-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
|
24
|
Wu G, Hung I, Gan Z, Terskikh V, Kong X. Solid-State 17O NMR Study of Carboxylic Acid Dimers: Simultaneously Accessing Spectral Properties of Low- and High-Energy Tautomers. J Phys Chem A 2019; 123:8243-8253. [DOI: 10.1021/acs.jpca.9b07224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
25
|
Hydrates and polymorphs of lead squarate Pb(C4O4): Structural transformations studied by in situ X-ray powder diffraction and solid state NMR. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Ohkubo T, Okamoto T, Kawamura K, Guégan R, Deguchi K, Ohki S, Shimizu T, Tachi Y, Iwadate Y. New Insights into the Cs Adsorption on Montmorillonite Clay from 133Cs Solid-State NMR and Density Functional Theory Calculations. J Phys Chem A 2018; 122:9326-9337. [DOI: 10.1021/acs.jpca.8b07276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiro Ohkubo
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
| | - Takuya Okamoto
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
| | - Katsuyuki Kawamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Régis Guégan
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institut des Sciences de la Terre d’Orléans, UMR 7327, Univ Orléans, CNRS, BRGM, 1A Rue de la Férollerie, 45071 Orléans, France
| | - Kenzo Deguchi
- National Institute of Material Science, Sakura-site, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- National Institute of Material Science, Sakura-site, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tadashi Shimizu
- National Institute of Material Science, Sakura-site, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Yukio Tachi
- Japan Atomic Energy Agency, Muramatsu 4-33, Tokai, Ibaraki 319-1194, Japan
| | - Yasuhiko Iwadate
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
27
|
d'Agostino S, Fornasari L, Grepioni F, Braga D, Rossi F, Chierotti MR, Gobetto R. Precessional Motion in Crystalline Solid Solutions of Ionic Rotors. Chemistry 2018; 24:15059-15066. [PMID: 30011358 DOI: 10.1002/chem.201803071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 11/09/2022]
Abstract
The order-disorder phase transition associated with the uprise of reorientational motion in (DABCOH2)2+ , in the supramolecular salts of general formula [1⋅(DABCOH2 )]X2 (where 1=12-crown-4, DABCO=1,4-diazabicyclo[2.2.2]octane, and X=Cl- or Br- ), has been investigated by variable temperature X-ray diffraction on single crystals and powder samples, as well as by DSC and solid-state NMR spectroscopy (SSNMR). The two compounds undergo a reversible phase change at 292 and 290 K, respectively. The two crystalline materials form solid solutions [1⋅(DABCOH2 )]Cl2x Br2(1-x) in the whole composition range (0 < x<1), with a decrease in the temperature of transition to a minimum of ca 280 K, corresponding to x=0.5. Activation energy values for the dynamic processes, evaluated by variable-temperature 13 C magic-angle spinning (MAS) SSNMR and line-shape analysis are ca. 50 kJ mol-1 in all cases. Combined diffraction and spectroscopic evidence has allowed the detection of a novel dynamic process for the (DABCOH2 )2+ dications, based on a room temperature precessional motion that is frozen out below the disorder-order transition; to the best of the authors' knowledge this phenomenon has never been observed before.
Collapse
Affiliation(s)
- Simone d'Agostino
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Luca Fornasari
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Fabrizia Grepioni
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Dario Braga
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Federica Rossi
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, 10125, Torino, Italy
| |
Collapse
|
28
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
29
|
Azadi-Chegeni F, Schiphorst C, Pandit A. In vivo NMR as a tool for probing molecular structure and dynamics in intact Chlamydomonas reinhardtii cells. PHOTOSYNTHESIS RESEARCH 2018; 135:227-237. [PMID: 28646418 PMCID: PMC5783995 DOI: 10.1007/s11120-017-0412-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/07/2017] [Indexed: 06/14/2023]
Abstract
We report the application of NMR dynamic spectral editing for probing the structure and dynamics of molecular constituents in fresh, intact cells and in freshly prepared thylakoid membranes of Chlamydomonas reinhardtii (Cr.) green algae. For isotope labeling, wild-type Cr. cells were grown on 13C acetate-enriched minimal medium. 1D 13C J-coupling based and dipolar-based MAS NMR spectra were applied to distinguish 13C resonances of different molecular components. 1D spectra were recorded over a physiological temperature range, and whole-cell spectra were compared to those taken from thylakoid membranes, evaluating their composition and dynamics. A theoretical model for NMR polarization transfer was used to simulate the relative intensities of direct, J-coupling, and dipolar-based polarization from which the degree of lipid segmental order and rotational dynamics of the lipid acyl chains were estimated. We observe that thylakoid lipid signals dominate the lipid spectral profile of whole algae cells, demonstrating that with our novel method, thylakoid membrane characteristics can be detected with atomistic precision inside intact photosynthetic cells. The experimental procedure is rapid and applicable to fresh cell cultures, and could be used as an original approach for detecting chemical profiles, and molecular structure and dynamics of photosynthetic membranes in vivo in functional states.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Christo Schiphorst
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Anjali Pandit
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
30
|
Wittmann T, Mondal A, Tschense CBL, Wittmann JJ, Klimm O, Siegel R, Corzilius B, Weber B, Kaupp M, Senker J. Probing Interactions of N-Donor Molecules with Open Metal Sites within Paramagnetic Cr-MIL-101: A Solid-State NMR Spectroscopic and Density Functional Theory Study. J Am Chem Soc 2018; 140:2135-2144. [DOI: 10.1021/jacs.7b10148] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thomas Wittmann
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Arobendo Mondal
- Institute
of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technical University of Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carsten B. L. Tschense
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Johannes J. Wittmann
- Institute
of Physical and Theoretical Chemistry and Institute of Biophysical
Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7-9, 60438 Frankfurt am Main, Germany
| | - Ottokar Klimm
- Inorganic
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Renée Siegel
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Björn Corzilius
- Institute
of Physical and Theoretical Chemistry and Institute of Biophysical
Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7-9, 60438 Frankfurt am Main, Germany
| | - Birgit Weber
- Inorganic
Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Martin Kaupp
- Institute
of Chemistry, Theoretical Chemistry/Quantum Chemistry, Technical University of Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Juergen Senker
- Inorganic
Chemistry III, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
31
|
Bernard GM, Goyal A, Miskolzie M, McKay R, Wu Q, Wasylishen RE, Michaelis VK. Methylammonium lead chloride: A sensitive sample for an accurate NMR thermometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 283:14-21. [PMID: 28843057 DOI: 10.1016/j.jmr.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
A new solid-state nuclear magnetic resonance (NMR) thermometry sample is proposed. The 207Pb NMR chemical shift of a lead halide perovskite, methylammonium lead chloride (MAPbCl3) is very sensitive to temperature, 0.905±0.010ppmK-1. The response to temperature is linear over a wide temperature range, from its tetragonal to cubic phase transition at 178K to >410K, making it an ideal standard for temperature calibrations in this range. Because the 207Pb NMR lineshape for MAPbCl3 appears symmetric, the sample is ideal for calibration of variable temperature NMR data acquired for spinning or non-spinning samples. A frequency-ratio method is proposed for referencing 207Pb chemical shifts, based on the 1H and 13C frequencies of the methylammonium cation, which are used asan internal standard. Finally, this new NMR thermometer has been used to measure the degree of frictional heating asa function of spinning frequency for a series of MAS rotors ranging in outer diameter from 1.3 to 7.0mm. As expected, the largest diameter rotors are more susceptible to frictional heating, but lower diameter rotors are subjected to higher frictional heating temperatures as they are typically spun at much higher spinning frequencies.
Collapse
Affiliation(s)
- Guy M Bernard
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Atul Goyal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ryan McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Qichao Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
32
|
Pilgrim CD, Callahan JR, Colla CA, Ohlin CA, Mason HE, Casey WH. 27Al MQMAS of the δ-Al 13-Keggin. Dalton Trans 2017; 46:2249-2254. [PMID: 28128830 DOI: 10.1039/c6dt04263e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Collapse
Affiliation(s)
- C D Pilgrim
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - J R Callahan
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - C A Colla
- Department of Earth and Planetary Sciences, University of California-Davis, Davis, CA, USA.
| | - C A Ohlin
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - H E Mason
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - W H Casey
- Department of Chemistry, University of California-Davis, Davis, CA, USA and Department of Earth and Planetary Sciences, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Protein and lipid dynamics in photosynthetic thylakoid membranes investigated by in-situ solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1849-1859. [PMID: 27626974 DOI: 10.1016/j.bbabio.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
Photosynthetic thylakoid membranes contain the protein machinery to convert sunlight in chemical energy and regulate this process in changing environmental conditions via interplay between lipid, protein and xanthophyll molecular constituents. This work addresses the molecular effects of zeaxanthin accumulation in thylakoids, which occurs in native systems under high light conditions through the conversion of the xanthophyll violaxanthin into zeaxanthin via the so called xanthophyll cycle. We applied biosynthetic isotope labeling and 13C solid-state NMR spectroscopy to simultaneously probe the conformational dynamics of protein, lipid and xanthophyll constituents of thylakoids isolated from wild type (cw15) and npq2 mutant of the green alga Chlamydomonas reinhardtii, that accumulates zeaxanthin constitutively. Results show differential dynamics of wild type and npq2 thylakoids. Ordered-phase lipids have reduced mobility and mobile-phase lipids have enlarged dynamics in npq2 membranes, together spanning a broader dynamical range. The fraction of ordered lipids is much larger than the fraction of mobile lipids, which explains why zeaxanthin appears to cause overall reduction of thylakoid membrane fluidity. In addition to the ordered lipids, also the xanthophylls and a subset of protein sites in npq2 thylakoids have reduced conformational dynamics. Our work demonstrates the applicability of solid-state NMR spectroscopy for obtaining a microscopic picture of different membrane constituents simultaneously, inside native, heterogeneous membranes.
Collapse
|
34
|
Wang J, Zhang Z, Zhao W, Wang L, Yang J. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:753-759. [PMID: 27161041 DOI: 10.1002/mrc.4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 05/15/2023]
Abstract
The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using 1 H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical 1 H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l-1 of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of 1 H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weijing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
35
|
Aboudzadeh M, Zhu H, Pozo-Gonzalo C, Shaplov AS, Mecerreyes D, Forsyth M. Ionic conductivity and molecular dynamic behavior in supramolecular ionic networks; the effect of lithium salt addition. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Munavirov B, Gnezdilov O, Rudakova M, Antzutkin ON, Filippov A. Interaction of polyacrylic acid with lipid bilayers: effect of polymer mass. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:750-755. [PMID: 25939341 DOI: 10.1002/mrc.4013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/04/2023]
Abstract
Polyanion-coated lipid vesicles are proposed to have an appreciable potential for drug delivery because of their ability to control the permeability of lipid bilayers by environmental parameters such as pH and temperature. However, details of the interaction of this class of polymers with lipids and their mechanisms of induced permeability are still being debated. In this work, we applied (1)H NOESY to study details of the interaction of polyacrylic acid (PAA) fractions of molecular weights 5 and 240 kDa with dimyristoylphosphatidylcholine vesicles. We showed that PAA of two different molecular masses modifies lipid bilayers increasing disorder and probability of close contact between polar and hydrophobic groups. PAA molecules adsorb near the interface of lipid bilayers but do not penetrate into the hydrophobic core of the bilayer and, thus, cannot participate in formation of transbilayer channels, proposed in earlier works. Increasing the molecular mass of PAA from 5 kDa to 240 kDa does not change the effect of PAA on the bilayer, although PAA240 forms a more compact structure (either intra-molecular or inter-molecular) and interacts more strongly with interface lipid protons.
Collapse
|
37
|
Honda H. ¹H-MAS-NMR chemical shifts in hydrogen-bonded complexes of chlorophenols (pentachlorophenol, 2,4,6-trichlorophenol, 2,6-dichlorophenol, 3,5-dichlorophenol, and p-chlorophenol) and amine, and H/D isotope effects on ¹H-MAS-NMR spectra. Molecules 2013; 18:4786-802. [PMID: 23609627 PMCID: PMC6270458 DOI: 10.3390/molecules18044786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/12/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022] Open
Abstract
Chemical shifts (CS) of the ¹H nucleus in N···H···O type hydrogen bonds (H-bond) were observed in some complexes between chlorophenols [pentachlorophenol (PCP), 2,4,6-tricholorophenol (TCP), 2,6-dichlorophenol (26DCP), 3,5-dichlorophenol (35DCP), and p-chlorophenol (pCP)] and nitrogen-base (N-Base) by solid-state high-resolution ¹H-NMR with the magic-angle-spinning (MAS) method. Employing N-Bases with a wide range of pKa values (0.65-10.75), ¹H-MAS-NMR CS values of bridging H atoms in H-bonds were obtained as a function of the N-Base's pKa. The result showed that the CS values were increased with increasing pKa values in a range of DpKa < 0 [DpKa = pKa(N-Base)-pKa(chlorophenols)] and decreased when DpKa > 2: The maximum CS values was recorded in the PCP (pKa = 5.26)-4-methylpyridine (6.03), TCP (6.59)-imidazole (6.99), 26DCP (7.02)-2-amino-4-methylpyridine (7.38), 35DCP (8.04)-4-dimethylaminopyridine (9.61), and pCP (9.47)-4-dimethylaminopyridine (9.61) complexes. The largest CS value of 18.6 ppm was recorded in TCP-imidazole crystals. In addition, H/D isotope effects on ¹H-MAS-NMR spectra were observed in PCP-2-amino-3-methylpyridine. Based on the results of CS simulation using a B3LYP/6-311+G** function, it can be explained that a little changes of the N-H length in H-bond contribute to the H/D isotope shift of the ¹H-MAS-NMR peaks.
Collapse
Affiliation(s)
- Hisashi Honda
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
38
|
KITAMURA M, ASANO A. Temperature Distribution in a Solid State NMR Sample Rotor during MAS Experiments. ANAL SCI 2013; 29:1089-93. [DOI: 10.2116/analsci.29.1089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Atsushi ASANO
- Department of Applied Chemistry, National Defense Academy
| |
Collapse
|
39
|
Geiger C.A, Gatta GD, Xue X, McIntyre GJ. A neutron/X-Ray diffraction, IR, and 1H/ 29Si NMR Spectroscopic investigation of armenite: behavior of extra framework Ca cations and H 2O molecules in microporous silicates. Z KRIST-CRYST MATER 2012. [DOI: 10.1524/zkri.2012.1515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Zhang J, Zhao Y, Guan X, Stark RE, Akins DL, Lee JW. Formation of Graphene Oxide Nanocomposites from Carbon Dioxide Using Ammonia Borane. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2012; 116:2639-2644. [PMID: 22337562 PMCID: PMC3277841 DOI: 10.1021/jp210295e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To efficiently recycle CO(2) to economically viable products such as liquid fuels and carbon nanomaterials, the reactivity of CO(2) is required to be fully understood. We have investigated the reaction of CO(2) with ammonia borane (AB), both molecules being able to function as either an acid or a base, to obtain more insights into the amphoteric activity of CO(2). In the present work, we demonstrate that CO(2) can be converted to graphene oxide (GO) using AB at moderate conditions. The conversion consists of two consecutive steps: CO(2) fixation (CO(2) pressure < 3 MPa and temperature < 100 °C) and graphenization (600-750 °C under 0.1 MPa of N(2)). The first step generates a solid compound that contains methoxy (OCH(3)), formate (HCOO) and aliphatic groups while the second graphenization is the pyrolysis of the solid compound to produce graphene oxide-boron oxide nanocomposites, which have been confirmed by micro-Raman spectroscopy, solid state (13)C and (11)B magic angle spinning-nuclear magnetic resonance (MAS-NMR), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Our observations also show that the mass of solid product in CO(2) fixation process and raw graphene oxide nanocomposites is twice and 1.2 times that of AB initially charged, respectively. The formation of aliphatic groups without using metal-containing compounds at mild conditions is of great interest to the synthesis of various organic products starting from CO(2.).
Collapse
Affiliation(s)
- Junshe Zhang
- Department of Chemical Engineering Department, The City College of New York, NY 10031
| | - Yu Zhao
- Chemistry Department and Center for Analysis of Structures and Interfaces, The City College of New York, NY 10031
| | - Xudong Guan
- Chemistry Department and CUNY Institute for Macromolecular Assemblies, The City College of New York, NY 10031
| | - Ruth E. Stark
- Chemistry Department and CUNY Institute for Macromolecular Assemblies, The City College of New York, NY 10031
| | - Daniel L. Akins
- Chemistry Department and Center for Analysis of Structures and Interfaces, The City College of New York, NY 10031
| | - Jae W. Lee
- Department of Chemical Engineering Department, The City College of New York, NY 10031
| |
Collapse
|
41
|
Mao Y, Jeong M, Wang T, Ba Y. Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via ¹³C-¹⁵N dynamic REDOR NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 39:7-13. [PMID: 21470833 PMCID: PMC3100732 DOI: 10.1016/j.ssnmr.2011.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Antifreeze proteins (AFPs) provide survival mechanism for species living in subzero environments by lowering the freezing points of their body fluids effectively. The mechanism is attributed to AFPs' ability to inhibit the growth of seed ice crystals through adsorption on specific ice surfaces. We have applied dynamic REDOR (Rotational Echo Double Resonance) solid state NMR to study the threonine (Thr) side chain conformational population distribution of a site-specific Thr ¹³C(γ) and ¹⁵N doubly labeled type I AFP in frozen aqueous solution. It is known that the Thr side chains together with those of the 4th and 8th Alanine (Ala) residues commencing from the Thrs (the 1st) in the four 11-residue repeat units form the peptide ice-binding surface. The conformational information can provide structural insight with regard to how the AFP side chains structurally interact with the ice surface. χ-squared statistical analysis of the experimental REDOR data in fitting the theoretically calculated dynamic REDOR fraction curves indicates that when the AFP interacted with the ice surface in the frozen AFP solution, the conformations of the Thr side chains changed from the anti-conformations, as in the AFP crystal structure, to partial population in the anti-conformation and partial population in the two gauche conformations. This change together with the structural analysis indicates that the simultaneous interactions of the methyl groups and the hydroxyl groups of the Thr side chains with the ice surface could be the reason for the conformational population change. The analysis of the theoretical dynamic REDOR fraction curves shows that the set of experimental REDOR data may fit a number of theoretical curves with different population distributions. Thus, other structural information is needed to assist in determining the conformational population distribution of the Thr side chains.
Collapse
Affiliation(s)
- Yougang Mao
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| | - Myongho Jeong
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| | - Tieli Wang
- Department of Chemistry, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Yong Ba
- Department of Chemistry and Biochemistry, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032
| |
Collapse
|