1
|
Bell D, Lindemann F, Gerland L, Aucharova H, Klein A, Friedrich D, Hiller M, Grohe K, Meier T, van Rossum B, Diehl A, Hughes J, Mueller LJ, Linser R, Miller AF, Oschkinat H. Sedimentation of large, soluble proteins up to 140 kDa for 1H-detected MAS NMR and 13C DNP NMR - practical aspects. JOURNAL OF BIOMOLECULAR NMR 2024; 78:179-192. [PMID: 38904893 PMCID: PMC7616530 DOI: 10.1007/s10858-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric β-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.
Collapse
Affiliation(s)
- Dallas Bell
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Florian Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lisa Gerland
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Hanna Aucharova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Daniel Friedrich
- Department of Chemistry and Biochemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
| | - Matthias Hiller
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co. KG, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Tobias Meier
- Bruker BioSpin GmbH & Co. KG, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Barth van Rossum
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstr. 3, 35360, Gießen, Germany
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Leonard J Mueller
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, USA
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA.
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
2
|
Shi F, Zhang T, Li J, Shi C, Xiang S. Studying large biomolecules as sedimented solutes with solid-state NMR. BIOPHYSICS REPORTS 2024; 10:201-212. [PMID: 39281198 PMCID: PMC11399891 DOI: 10.52601/bpr.2024.240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024] Open
Abstract
Sedimentation solid-state NMR is a novel method for sample preparation in solid-state NMR (ssNMR) studies. It involves the sedimentation of soluble macromolecules such as large protein complexes. By utilizing ultra-high centrifugal forces, the molecules in solution are driven into a high-concentrated hydrogel, resulting in a sample suitable for solid-state NMR. This technique has the advantage of avoiding the need for chemical treatment, thus minimizing the loss of sample biological activity. Sediment ssNMR has been successfully applied to a variety of non-crystalline protein solids, significantly expanding the scope of solid-state NMR research. In theory, using this method, any biological macromolecule in solution can be transferred into a sedimented solute appropriate for solid-state NMR analysis. However, specialized equipment and careful handling are essential for effectively collecting and loading the sedimented solids to solid-state NMR rotors. To improve efficiency, we have designed a series of loading tools to achieve the loading process from the solution to the rotor in one step. In this paper, we illustrate the sample preparation process of sediment NMR using the H1.4-NCP167 complex, which consists of linker histone H1.4 and nucleosome core particle, as an example.
Collapse
Affiliation(s)
- Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tong Zhang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juan Li
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
5
|
Mann SK, Pham TN, McQueen LL, Lewandowski JR, Brown SP. Revealing Intermolecular Hydrogen Bonding Structure and Dynamics in a Deep Eutectic Pharmaceutical by Magic-Angle Spinning NMR Spectroscopy. Mol Pharm 2020; 17:622-631. [PMID: 31887061 PMCID: PMC7007282 DOI: 10.1021/acs.molpharmaceut.9b01075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Liquid forms of pharmaceuticals (ionic liquids and deep eutectic solvents) offer a number of potential advantages over solid-state drugs; a key question is the role of intermolecular hydrogen bonding interactions in enabling membrane transport. Characterization is challenging since high sample viscosities, typical of liquid pharmaceutical formulations, hamper the use of conventional solution NMR at ambient temperature. Here, we report the application of magic-angle spinning (MAS) NMR spectroscopy to the deep eutectic pharmaceutical, lidocaine ibuprofen. Using variable temperature MAS NMR, the neat system, at a fixed molar ratio, can be studied over a wide range of temperatures, characterized by changing mobility, using a single experimental setup. Specific intermolecular hydrogen bonding interactions are identified by two-dimensional 1H-1H NOESY and ROESY MAS NMR experiments. Hydrogen-bonding dynamics are quantitatively determined by following the chemical exchange process between the labile protons by means of line-width analysis of variable temperature 1H MAS NMR spectra.
Collapse
Affiliation(s)
- Sarah K Mann
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| | - Tran N Pham
- GSK R&D , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Lisa L McQueen
- GSK R&D , Collegeville , Pennsylvania 19426 , United States
| | | | - Steven P Brown
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| |
Collapse
|
6
|
Johnson RL, Perras FA, Hanrahan MP, Mellmer M, Garrison TF, Kobayashi T, Dumesic JA, Pruski M, Rossini AJ, Shanks BH. Condensed Phase Deactivation of Solid Brønsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert L. Johnson
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | | | | | - Max Mellmer
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Thomas F. Garrison
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | | - James A. Dumesic
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Marek Pruski
- Ames Laboratory, U.S. DOE, Ames, Iowa 50011-3020, United States
| | | | - Brent H. Shanks
- Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Ciambellotti S, Turano P. Structural Biology of Iron‐Binding Proteins by NMR Spectroscopy. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Ciambellotti
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- Resonance Magnetic Center (CERM) University of Florence via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry University of Florence via della Lastruccia 3 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
9
|
Barbet-Massin E, van der Sluis E, Musial J, Beckmann R, Reif B. Reconstitution of Isotopically Labeled Ribosomal Protein L29 in the 50S Large Ribosomal Subunit for Solution-State and Solid-State NMR. Methods Mol Biol 2018; 1764:87-100. [PMID: 29605910 DOI: 10.1007/978-1-4939-7759-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) has recently emerged as a method of choice to study structural and dynamic properties of large biomolecular complexes at atomic resolution. Indeed, recent technological and methodological developments have enabled the study of ever more complex systems in the solid-state. However, to explore multicomponent protein complexes by NMR, specific labeling schemes need to be developed that are dependent on the biological question to be answered. We show here how to reconstitute an isotopically labeled protein within the unlabeled 50S or 70S ribosomal subunit. In particular, we focus on the 63-residue ribosomal protein L29 (~7 kDa), which is located at the exit of the tunnel of the large 50S ribosomal subunit (~1.5 MDa). The aim of this work is the preparation of a suitable sample to investigate allosteric conformational changes in a ribosomal protein that are induced by the nascent polypeptide chain and that trigger the interaction with different chaperones (e.g., trigger factor or SRP).
Collapse
Affiliation(s)
- Emeline Barbet-Massin
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Garching, Germany.,Dynamic Biosensors, Planegg, Germany
| | - Eli van der Sluis
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Bionanoscience, Faculty of Applied Sciences, TU Delft, Delft, The Netherlands
| | - Joanna Musial
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Garching, Germany. .,Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz-Zentrum München (HMGU), Neuherberg, Germany.
| |
Collapse
|
10
|
Mandal A, Boatz JC, Wheeler TB, van der Wel PCA. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. JOURNAL OF BIOMOLECULAR NMR 2017; 67:165-178. [PMID: 28229262 PMCID: PMC5445385 DOI: 10.1007/s10858-017-0089-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 05/07/2023]
Abstract
A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Travis B Wheeler
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| |
Collapse
|