1
|
Rehman Z, Franks WT, Nguyen B, Schmidt HF, Scrivens G, Brown SP. Discovering the Solid-State Secrets of Lorlatinib by NMR Crystallography: To Hydrogen Bond or not to Hydrogen Bond. J Pharm Sci 2023; 112:1915-1928. [PMID: 36868358 DOI: 10.1016/j.xphs.2023.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Lorlatinib is an active pharmaceutical ingredient (API) used in the treatment of lung cancer. Here, an NMR crystallography analysis is presented whereby the single-crystal X-ray diffraction structure (CSD: 2205098) determination is complemented by multinuclear (1H, 13C, 14/15N, 19F) magic-angle spinning (MAS) solid-state NMR and gauge-including projector augmented wave (GIPAW) calculation of NMR chemical shifts. Lorlatinib crystallises in the P21 space group, with two distinct molecules in the asymmetric unit cell, Z' = 2. Three of the four NH2 hydrogen atoms form intermolecular hydrogen bonds, N30-H…N15 between the two distinct molecules and N30-H…O2 between two equivalent molecules. This is reflected in one of the NH21H chemical shifts being significantly lower, 4.0 ppm compared to 7.0 ppm. Two-dimensional 1H-13C, 14N-1H and 1H (double-quantum, DQ)-1H (single-quantum, SQ) MAS NMR spectra are presented. The 1H resonances are assigned and specific HH proximities corresponding to the observed DQ peaks are identified. The resolution enhancement at a 1H Larmor frequency of 1 GHz as compared to 500 or 600 MHz is demonstrated.
Collapse
Affiliation(s)
- Zainab Rehman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
2
|
Tatman BP, Modha H, Brown SP. Comparison of methods for 14N- 1H recoupling in 14N- 1H HMQC MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107459. [PMID: 37148711 DOI: 10.1016/j.jmr.2023.107459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
1H-detected 14N heteronuclear multiple-quantum coherence (HMQC) magic-angle-spinning (MAS) NMR experiments performed at fast magic-angle spinning (≥50 kHz) are finding increasing application, e.g., to pharmaceuticals. Of importance to the efficacy of these techniques is the recoupling technique applied to reintroduce the 1H-14N dipolar coupling. In this paper, we compare, by experiment and 2-spin density matrix simulations, two classes of recoupling scheme: first, those based on n = 2 rotary resonance, namely R3 and spin-polarisation inversion SPI-R3, and the symmetry based SR412 method and, second, the TRAPDOR method. Both classes require optimisation depending on the magnitude of the quadrupolar interaction, and thus there is a compromise choice for samples with more than one nitrogen site, as is the case for the studied dipeptide β-AspAla that contains two nitrogen sites with a small and large quadrupolar coupling constant. Considering this, we observe better sensitivity for the TRAPDOR method, though noting the marked sensitivity of TRAPDOR to the 14N transmitter offset, with both SPI-R3 and SR412 giving similar recoupling performance.
Collapse
Affiliation(s)
- Ben P Tatman
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Haritosh Modha
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Scarperi A, Barcaro G, Pajzderska A, Martini F, Carignani E, Geppi M. Structural Refinement of Carbimazole by NMR Crystallography. Molecules 2021; 26:molecules26154577. [PMID: 34361730 PMCID: PMC8347463 DOI: 10.3390/molecules26154577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The characterization of the three-dimensional structure of solids is of major importance, especially in the pharmaceutical field. In the present work, NMR crystallography methods are applied with the aim to refine the crystal structure of carbimazole, an active pharmaceutical ingredient used for the treatment of hyperthyroidism and Grave’s disease. Starting from previously reported X-ray diffraction data, two refined structures were obtained by geometry optimization methods. Experimental 1H and 13C isotropic chemical shift measured by the suitable 1H and 13C high-resolution solid state NMR techniques were compared with DFT-GIPAW calculated values, allowing the quality of the obtained structure to be experimentally checked. The refined structure was further validated through the analysis of 1H-1H and 1H-13C 2D NMR correlation experiments. The final structure differs from that previously obtained from X-ray diffraction data mostly for the position of hydrogen atoms.
Collapse
Affiliation(s)
- Andrea Scarperi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.S.); (F.M.)
| | - Giovanni Barcaro
- Institute For Chemical And Physical Processes, Italian National Council for Research, CNR/IPCF, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Aleksandra Pajzderska
- Department of Radiospectroscopy, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland;
| | - Francesca Martini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.S.); (F.M.)
- Center for Instrument Sharing, University of Pisa (CISUP), 56126 Pisa, Italy
| | - Elisa Carignani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.S.); (F.M.)
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR/ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (E.C.); (M.G.); Tel.: +39-050-2219353 (E.C.); +39-050-2219289 (M.G.)
| | - Marco Geppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.S.); (F.M.)
- Center for Instrument Sharing, University of Pisa (CISUP), 56126 Pisa, Italy
- Institute for the Chemistry of OrganoMetallic Compounds, Italian National Council for Research, CNR/ICCOM, Via G. Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (E.C.); (M.G.); Tel.: +39-050-2219353 (E.C.); +39-050-2219289 (M.G.)
| |
Collapse
|
4
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. 5-amino-2-methylpyridinium hydrogen fumarate: An XRD and NMR crystallography analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1026-1035. [PMID: 32187751 DOI: 10.1002/mrc.5021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Single-crystal X-ray diffraction structures of the 5-amino-2-methylpyridinium hydrogen fumarate salt have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base-acid-base-acid ring is formed through pyridinium-carboxylate and amine-carboxylate hydrogen bonds that hold together chains formed from hydrogen-bonded hydrogen fumarate ions. 1 H and 13 C chemical shifts as well as 14 N shifts that additionally depend on the quadrupolar interaction are determined by experimental magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) and gauge-including projector-augmented wave (GIPAW) calculation. Two-dimensional homonuclear 1 H-1 H double-quantum (DQ) MAS and heteronuclear 1 H-13 C and 14 N-1 H spectra are presented. Only small differences of up to 0.1 and 0.6 ppm for 1 H and 13 C are observed between GIPAW calculations starting with the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not unit cell parameters). A comparison of GIPAW-calculated 1 H chemical shifts for isolated molecules and the full crystal structures is indicative of hydrogen bonding strength.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development, AstraZeneca, Macclesfield, UK
| | | | | | - David Walker
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
5
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
6
|
Venâncio T, Oliveira LM, Pawlak T, Ellena J, Boechat N, Brown SP. The use of variable temperature 13 C solid-state MAS NMR and GIPAW DFT calculations to explore the dynamics of diethylcarbamazine citrate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:200-210. [PMID: 30114322 DOI: 10.1002/mrc.4790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Experimental 13 C solid-state magic-angle spinning (MAS) Nuclear Magnetic Resonance (NMR) as well as Density-Functional Theory (DFT) gauge-including projector augmented wave (GIPAW) calculations were used to probe disorder and local mobility in diethylcarbamazine citrate, (DEC)+ (citrate)- . This compound has been used as the first option drug for the treatment of filariasis, a disease endemic in tropical countries and caused by adult worms of Wuchereria bancrofti, which is transmitted by mosquitoes. We firstly present 2D 13 C─1 H dipolar-coupling-mediated heteronuclear correlation spectra recorded at moderate spinning frequency, to explore the intermolecular interaction between DEC and citrate molecules. Secondly, we investigate the dynamic behavior of (DEC)+ (citrate)- by varying the temperature and correlating the experimental MAS NMR results with DFT GIPAW calculations that consider two (DEC)+ conformers (in a 70:30 ratio) for crystal structures determined at 293 and 235 K. Solid-state NMR provides insights on slow exchange dynamics revealing conformational changes involving particularly the DEC ethyl groups.
Collapse
Affiliation(s)
- Tiago Venâncio
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Tomasz Pawlak
- Department of Physics, University of Warwick, Coventry, UK
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Łodz, Poland
| | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Nubia Boechat
- Fundação Oswaldo Cruz-FioCruz, Instituto de Tecnologia em Fármacos-FarManguinhos, Rio de Janeiro, RJ, Brazil
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Malär AA, Dong S, Kehr G, Erker G, Meier BH, Wiegand T. Characterization of H 2 -Splitting Products of Frustrated Lewis Pairs: Benefit of Fast Magic-Angle Spinning. Chemphyschem 2019; 20:672-679. [PMID: 30663843 DOI: 10.1002/cphc.201900006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/19/2019] [Indexed: 11/09/2022]
Abstract
Proton spectroscopy in solid-state NMR on catalytic materials offers new opportunities in structural characterization, in particular of reaction products of catalytic reactions such as hydrogenation reactions. Unfortunately, the 1 H NMR line widths in magic-angle spinning solid-state spectra are often broadened by an incomplete averaging of 1 H-1 H dipolar couplings. We herein discuss two model compounds, namely the H2 -splitting products of two phosphane-borane Frustrated Lewis Pairs (FLPs), to study potentials and limitations of proton solid-state NMR experiments employing magic-angle spinning frequencies larger than 100 kHz at a static magnetic field strength of 20.0 T. The 1 H lines are homogeneously broadened as illustrated by spin-echo decay experiments. We study two structurally similar materials which however show significant differences in 1 H line widths which we explain by differences in their 1 H-1 H dipolar networks. We discuss the benefit of fast MAS experiments up to 110 kHz to detect the resonances of the H+ /H- pair in the hydrogenation products of FLPs.
Collapse
Affiliation(s)
- Alexander A Malär
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Shunxi Dong
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, WWU Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Giovine R, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:109-123. [PMID: 30594000 DOI: 10.1016/j.jmr.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
In solid-state NMR spectroscopy, the through-space transfer of magnetization from protons to quadrupolar nuclei is employed to probe proximities between those isotopes. Furthermore, such transfer, in conjunction with Dynamic Nuclear Polarization (DNP), can enhance the NMR sensitivity of quadrupolar nuclei, as it allows the transfer of DNP-enhanced 1H polarization to surrounding nuclei. We compare here the performances of two approaches to achieve such transfer: PRESTO (Phase-shifted Recoupling Effects a Smooth Transfer of Order), which is currently the method of choice to achieve the magnetization transfer from protons to quadrupolar nuclei and which has been shown to supersede Cross-Polarization under Magic-Angle Spinning (MAS) for quadrupolar nuclei and D-RINEPT (Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer) using symmetry-based SR412 recoupling, which has already been employed to transfer the magnetization in the reverse way from half-integer quadrupolar spin to protons. We also test the PRESTO sequence with R1676 recoupling using 270090180 composite π-pulses as inversion elements. This recoupling scheme, which has previously been proposed to reintroduce 1H Chemical Shift Anisotropy (CSA) at high MAS frequencies with high robustness to rf-field inhomogeneity, has not so far been employed to reintroduce dipolar couplings with protons. These various techniques to transfer magnetization from protons to quadrupolar nuclei are analyzed using (i) an average Hamiltonian theory, (ii) numerical simulations of spin dynamics, and (iii) experimental 1H → 27Al and 1H → 17O transfers in as-synthesized AlPO4-14 and 17O-labelled fumed silica, respectively. The experiments and simulations are done at two magnetic fields (9.4 and 18.8 T) and several spinning speeds (15, 18-24 and 60 kHz). This analysis indicates that owing to its γ-encoded character, PRESTO yields the highest transfer efficiency at low magnetic fields and MAS frequencies, whereas owing to its higher robustness to rf-field inhomogeneity and chemical shifts, D-RINEPT is more sensitive at high fields and MAS frequencies, notably for protons exhibiting large offset or CSA, such as those involved in hydrogen bonds.
Collapse
Affiliation(s)
- Raynald Giovine
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; IUF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France.
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France.
| |
Collapse
|
9
|
Corlett EK, Blade H, Hughes LP, Sidebottom PJ, Walker D, Walton RI, Brown SP. An XRD and NMR crystallographic investigation of the structure of 2,6-lutidinium hydrogen fumarate. CrystEngComm 2019. [DOI: 10.1039/c9ce00633h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A crystallographic study highlighting the benefits of a combined XRD and NMR approach in investigating both stability and variation within an organic multicomponent crystal.
Collapse
Affiliation(s)
| | - Helen Blade
- Pharmaceutical Development
- AstraZeneca
- Macclesfield
- UK
| | | | | | - David Walker
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|