1
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
2
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024:10.1007/s13353-024-00843-6. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated with [Formula: see text] T cells, positively with [Formula: see text] T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated with [Formula: see text] T cells, negatively with [Formula: see text] T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
4
|
He YL, Zhang B. Clinical significance of expression of CBX2 in gastric cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:872-877. [DOI: 10.11569/wcjd.v27.i14.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The incidence of gastric cancer (GC) is high in recent years and it is very urgent to explore new targets for the diagnosis and treatment of GC.
AIM To investigate the expression and clinical significance of chromobox homolog 2 (CBX2) in GC cells and tissues.
METHODS The expression levels of CBX2 mRNA and protein in GC cells, normal gastric mucosal epithelial cells, GC tissues, and their adjacent normal tissues were detected by real-time fluorescent quantitative PCR and Western blot, respectively. The expression of CBX2 in 66 cases of GC and matched paracancerous tissues was detected by immunohistochemistry. The relationship between the expression of CBX2 and the clinicopathological features and prognosis of GC patients was analyzed.
RESULTS The expression of CBX2 mRNA in GC cells was higher than that in normal gastric mucosal epithelial cells (P < 0.05). The expression of CBX2 mRNA and protein in GC tissues was higher than that in adjacent tissues (P < 0.05). The positive expression rate of CBX2 in GC tissues was 40.9% (27/66), and it was 12.1% (8/66) in normal tissues adjacent to cancer. CBX2 was positively expressed in GC tissues. The expression rate was higher than that of adjacent tissues (P < 0.05). The expression of CBX2 protein was correlated with tumor metastasis (P < 0.05).
CONCLUSION CBX2 is overexpressed in GC cells and tissues, and it has a certain degree of connection with the prognosis and outcome of patients with GC.
Collapse
Affiliation(s)
- Yi-Lan He
- Department of Oncology, Third People's Hospital of Yuhang District, Hangzhou 311115, Zhejiang Province, China
| | - Bo Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, China
| |
Collapse
|
5
|
Gu X, Wang X, Su D, Su X, Lin L, Li S, Wu Q, Liu S, Zhang P, Zhu X, Jiang X. CBX2 Inhibits Neurite Development by Regulating Neuron-Specific Genes Expression. Front Mol Neurosci 2018. [PMID: 29541019 PMCID: PMC5835719 DOI: 10.3389/fnmol.2018.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the epigenetic status of transcription regulatory states during development. Progression from pluripotency to differentiation requires the sequential activation and repression of different PcG target genes, however, the relationship between early patterning signals, PcG expression, and the development of the central nervous system is still unclear. Using various models of neuronal differentiation, we provide evidence that CBX2 is a negative regulator of neuronal differentiation. Knock-down of CBX2 expression promotes neurite development, while overexpression of CBX2 inhibits neurite development. Further, we found that CBX2 is a direct target gene of miR-124. During neuronal differentiation, CBX2 was decreased while miR-124 was increased. Mechanistically, CBX2 directly interacts with the promoter region of several neuro-associated genes and regulates their expression. We found that the neuron-specific GAP-43 gene could contribute to the stimulating effect on neurite development associated with inhibition of CBX2.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Qiaoqi Wu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xinhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
6
|
Oza J, Ganguly B, Kulkarni A, Ginjala V, Yao M, Ganesan S. A Novel Role of Chromodomain Protein CBX8 in DNA Damage Response. J Biol Chem 2016; 291:22881-22893. [PMID: 27555324 DOI: 10.1074/jbc.m116.725879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Indexed: 12/18/2022] Open
Abstract
Induction of DNA damage induces a dynamic repair process involving DNA repair factors and epigenetic regulators. Chromatin alterations must occur for DNA repair factors to gain access to DNA lesions and restore original chromatin configuration to preserve the gene expression profile. We characterize the novel role of CBX8, a chromodomain-containing protein with established roles in epigenetic regulation in DNA damage response. CBX8 protein rapidly accumulates at the sites of DNA damage within 30 s and progresses to accumulate until 4 min before gradually dispersing back to its predamage distribution by 15 min. CBX8 recruitment to the sites of DNA damage is dependent upon PARP1 activation and not dependent on ATM activation. CBX8 biochemically interacts with TRIM33, and its recruitment to DNA damage is also dependent on the presence of TRIM33. Knockdown of CBX8 using siRNA significantly reduces the efficiency of both homologous and the other non-homologous recombination, as well as increases sensitivity of cells to ionizing radiation. These findings demonstrate that CBX8 functions in the PARP-dependent DNA damage response partly through interaction with TRIM33 and is required for efficient DNA repair.
Collapse
Affiliation(s)
- Jay Oza
- From the MD-PhD Program, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903.,the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854.,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and.,the Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Bratati Ganguly
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Atul Kulkarni
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Vasudeva Ginjala
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Ming Yao
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Shridar Ganesan
- the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854, .,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| |
Collapse
|
7
|
Jung J, Buisman S, de Haan G. Hematopoiesis during development, aging, and disease. Exp Hematol 2016; 44:689-95. [DOI: 10.1016/j.exphem.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
|