1
|
Cohen LRZ, Meshorer E. The many faces of H3.3 in regulating chromatin in embryonic stem cells and beyond. Trends Cell Biol 2024:S0962-8924(24)00052-7. [PMID: 38614918 DOI: 10.1016/j.tcb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
H3.3 is a highly conserved nonreplicative histone variant. H3.3 is enriched in promoters and enhancers of active genes, but it is also found within suppressed heterochromatin, mostly around telomeres. Accordingly, H3.3 is associated with seemingly contradicting functions: It is involved in development, differentiation, reprogramming, and cell fate, as well as in heterochromatin formation and maintenance, and the silencing of developmental genes. The emerging view is that different cellular contexts and histone modifications can promote opposing functions for H3.3. Here, we aim to provide an update with a focus on H3.3 functions in early mammalian development, considering the context of embryonic stem cell maintenance and differentiation, to finally conclude with emerging roles in cancer development and cell fate transition and maintenance.
Collapse
Affiliation(s)
- Lea R Z Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Sun Y, Zhang L, Fang Z, Liu D, Shao M, Liu Y, Liao B, Jin Y. PRPF8 controls alternative splicing of PIRH2 to modulate the p53 pathway and survival of human ESCs. J Cell Physiol 2023; 238:1909-1920. [PMID: 37357506 DOI: 10.1002/jcp.31066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/27/2023]
Abstract
Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs. In this study, we report that PRPF8, an RNA spliceosome component, is essential for hESC survival. PRPF8 knockdown (KD) induces p53 protein accumulation and activates the p53 pathway, leading to apoptosis in hESCs. Strikingly, silencing of p53 rescues PRPF8 KD-induced apoptosis, indicating that PRPF8 KD triggers hESC apoptosis through activating the p53 pathway. In search for the mechanism by which p53 pathway is activated by PRPF8 KD, we find that PRPF8 KD alters alternative splicing of many genes, including PIRH2 which encodes an E3 ubiquitin ligase of p53. PIRH2 has several isoforms such as PIRH2A, PIRH2B, and PIRH2C. Intriguingly, PRPF8 KD specifically increases the transcript level of the PIRH2B isoform, which lacks a RING domain and E3 ligase activity. Functionally, PIRH2B KD partially rescues the reduction in cell numbers and upregulation of P21 caused by PRPF8 KD in hESCs. The finding suggests that PRPF8 controls alternative splicing of PIRH2 to maintain the balance of p53 pathway activity and survival of hESCs. The PRPF8/PIRH2/p53 axis identified here provides new insights into how p53 pathway and hESC survival are precisely regulated at multiple layers, highlighting an important role of posttranscriptional machinery in supporting hESC survival.
Collapse
Affiliation(s)
- Yiyang Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dingyu Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujie Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Liao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhu Z, Chen X, Guo A, Manzano T, Walsh PJ, Wills KM, Halliburton R, Radko-Juettner S, Carter RD, Partridge JF, Green DR, Zhang J, Roberts CWM. Mitotic bookmarking by SWI/SNF subunits. Nature 2023; 618:180-187. [PMID: 37225980 PMCID: PMC10303083 DOI: 10.1038/s41586-023-06085-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
For cells to initiate and sustain a differentiated state, it is necessary that a 'memory' of this state is transmitted through mitosis to the daughter cells1-3. Mammalian switch/sucrose non-fermentable (SWI/SNF) complexes (also known as Brg1/Brg-associated factors, or BAF) control cell identity by modulating chromatin architecture to regulate gene expression4-7, but whether they participate in cell fate memory is unclear. Here we provide evidence that subunits of SWI/SNF act as mitotic bookmarks to safeguard cell identity during cell division. The SWI/SNF core subunits SMARCE1 and SMARCB1 are displaced from enhancers but are bound to promoters during mitosis, and we show that this binding is required for appropriate reactivation of bound genes after mitotic exit. Ablation of SMARCE1 during a single mitosis in mouse embryonic stem cells is sufficient to disrupt gene expression, impair the occupancy of several established bookmarks at a subset of their targets and cause aberrant neural differentiation. Thus, SWI/SNF subunit SMARCE1 has a mitotic bookmarking role and is essential for heritable epigenetic fidelity during transcriptional reprogramming.
Collapse
Affiliation(s)
- Zhexin Zhu
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaolong Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ao Guo
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trishabelle Manzano
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick J Walsh
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kendall M Wills
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca Halliburton
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sandi Radko-Juettner
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Raymond D Carter
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
5
|
Zhang Z, Tao W, Huang S, Sun W, Wang Y, Jiang W, Huang X, Lin CP. Engineering an adenine base editor in human embryonic stem cells with minimal DNA and RNA off-target activities. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:502-510. [PMID: 35991312 PMCID: PMC9375152 DOI: 10.1016/j.omtn.2022.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/22/2022] [Indexed: 12/26/2022]
Abstract
Genome editing in pluripotent stem cells (PSCs) using CRISPR technology holds great promise for therapeutic applications. Yet, it has been reported that Cas9-mediated cleavage could cause large deletions or rearrangements of DNA, and the selection of edited PSCs could acquire p53 mutations. Adenine base editors (ABEs) do not introduce DNA double-strand breaks and thus have been proposed as alternatives to circumvent those problems, but their off-target effects still limit their applications. Here, we tested different combinations of off-target reduction methods to further diminish off-target effects of ABEs without compromising their on-target editing efficiencies. We subsequently chose the best editor, CE-8e-dV, which contains V106W substitution, R153 deletion, and Cas-embedding strategy, to establish a single-cell-derived human embryonic stem cell (hESC) line expressing tetracycline-inducible CE-8e-dV. By performing RNA and whole-genome sequencing, we demonstrated that the expression of CE-8e-dV did not produce nearly any DNA or RNA off-target effects in hESCs. Our results provide stringent proof of the safety of ABEs in PSCs and suggest that CE-8e-dV could be suitable for related therapeutic strategies, such as generation of engineered stem cells in vitro and gene therapy in vivo.
Collapse
Affiliation(s)
- Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wanyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Jiang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
- Corresponding author Xingxu Huang, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author Chao-Po Lin, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Tong R, Wang H, Jin Y, Li H. Transcription factor HESX1 enhances mesendodermal commitment of human embryonic stem cells by modulating ERK1/2 signaling. Biochem Biophys Res Commun 2022; 619:27-33. [PMID: 35728281 DOI: 10.1016/j.bbrc.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
Transcription factors are key determinants of lineage commitment during mammalian development. However, the function and molecular mechanism for the transcription factors in the formation of three primary germ layers during human embryonic development are not fully elucidated. Here, we report that homeobox-containing transcription factor HESX1 plays a critical role in mesendodermal (ME) commitment of human embryonic stem cells (hESCs). Our results show that expression of HESX1 in hESCs is regulated by OCT4 and NANOG, and that its expression level changes with hESC differentiation. We find that knockdown of HESX1 does not disrupt the undifferentiated state of hESCs, in terms of cell morphology and expression levels of pluripotency-associated genes. However, HESX1 deficiency in hESCs impairs their ME commitment, whereas forced expression of HESX1 significantly enhances ME marker expression during ME commitment. Interestingly, HESX1 knockdown in hESCs represses ERK1/2 signaling activated by ME induction, while overexpression of HESX1 markedly enhances ERK1/2 activity during ME commitment of hESCs. Of note, MEK inhibitor PD0325901 weakens or even eliminates HESX1 overexpression-mediated promotive effects on ME induction in a dosage-dependent manner. Together, this study identifies a novel role of HESX1 in hESC commitment to ME cells and establishes the functional link between a transcription factor and lineage-associated signaling. These findings would help to better understand early human development and develop more efficient protocols to induce hESC differentiation to desired lineages.
Collapse
Affiliation(s)
- Ran Tong
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
8
|
Liu Y, Wang H, Shao M, Jin Y, Liao B. The functional role of OGDH for maintaining mitochondrial respiration and identity of primed human embryonic stem cells. Biochem Biophys Res Commun 2022; 612:30-36. [DOI: 10.1016/j.bbrc.2022.04.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
|
9
|
Ray-Gallet D, Almouzni G. H3–H4 histone chaperones and cancer. Curr Opin Genet Dev 2022; 73:101900. [DOI: 10.1016/j.gde.2022.101900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022]
|
10
|
Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat Commun 2021; 12:3835. [PMID: 34158510 PMCID: PMC8219801 DOI: 10.1038/s41467-021-24153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.
Collapse
Affiliation(s)
- Déborah Bouvier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Juliette Ferrand
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie E Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
11
|
Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance. Nat Commun 2021; 12:3720. [PMID: 34140524 PMCID: PMC8211793 DOI: 10.1038/s41467-021-24108-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Low levels of reactive oxygen species (ROS) are crucial for maintaining cancer stem cells (CSCs) and their ability to resist therapy, but the ROS regulatory mechanisms in CSCs remains to be explored. Here, we discover that prohibitin (PHB) specifically regulates mitochondrial ROS production in glioma stem-like cells (GSCs) and facilitates GSC radiotherapeutic resistance. We find that PHB is upregulated in GSCs and is associated with malignant gliomas progression and poor prognosis. PHB binds to peroxiredoxin3 (PRDX3), a mitochondrion-specific peroxidase, and stabilizes PRDX3 protein through the ubiquitin-proteasome pathway. Knockout of PHB dramatically elevates ROS levels, thereby inhibiting GSC self-renewal. Importantly, deletion or pharmacological inhibition of PHB potently slows tumor growth and sensitizes tumors to radiotherapy, thus providing significant survival benefits in GSC-derived orthotopic tumors and glioblastoma patient-derived xenografts. These results reveal a selective role of PHB in mitochondrial ROS regulation in GSCs and suggest that targeting PHB improves radiotherapeutic efficacy in glioblastoma. How ROS levels are regulated in cancer stem cells and their contribution to cancer resistance is currently not clear. Here, the authors show that prohibitin regulates mitochondrial ROS production stabilizing the peroxidase PRDX3 and this accounts for radiotherapy resistance in glioma stem-like cells.
Collapse
|
12
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
13
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Chen C, Sun MA, Warzecha C, Bachu M, Dey A, Wu T, Adams PD, Macfarlan T, Love P, Ozato K. HIRA, a DiGeorge Syndrome Candidate Gene, Confers Proper Chromatin Accessibility on HSCs and Supports All Stages of Hematopoiesis. Cell Rep 2021; 30:2136-2149.e4. [PMID: 32075733 DOI: 10.1016/j.celrep.2020.01.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
HIRA is a histone chaperone that deposits the histone variant H3.3 in transcriptionally active genes. In DiGeorge syndromes, a DNA stretch encompassing HIRA is deleted. The syndromes manifest varied abnormalities, including immunodeficiency and thrombocytopenia. HIRA is essential in mice, as total knockout (KO) results in early embryonic death. However, the role of HIRA in hematopoiesis is poorly understood. We investigate hematopoietic cell-specific Hira deletion in mice and show that it dramatically reduces bone marrow hematopoietic stem cells (HSCs), resulting in anemia, thrombocytopenia, and lymphocytopenia. In contrast, fetal hematopoiesis is normal in Hira-KO mice, although fetal HSCs lack the reconstitution capacity. Transcriptome analysis reveals that HIRA is required for expression of many transcription factors and signaling molecules critical for HSCs. ATAC-seq analysis demonstrates that HIRA establishes HSC-specific DNA accessibility, including the SPIB/PU.1 sites. Together, HIRA provides a chromatin environment essential for HSCs, thereby steering their development and survival.
Collapse
Affiliation(s)
- Chao Chen
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-An Sun
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claude Warzecha
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anup Dey
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiyun Wu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Todd Macfarlan
- Mammalian Epigenome Reprogramming Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Love
- Hematopoiesis and Lymphocyte Biology Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Chen H, Zeng Y, Shao M, Zhao H, Fang Z, Gu J, Liao B, Jin Y. Calcineurin A gamma and NFATc3/SRPX2 axis contribute to human embryonic stem cell differentiation. J Cell Physiol 2021; 236:5698-5714. [PMID: 33393109 DOI: 10.1002/jcp.30255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
Our understanding of signaling pathways regulating the cell fate of human embryonic stem cells (hESCs) is limited. Calcineurin-NFAT signaling is associated with a wide range of biological processes and diseases. However, its role in controlling hESC fate remains unclear. Here, we report that calcineurin A gamma and the NFATc3/SRPX2 axis control the expression of lineage and epithelial-mesenchymal transition (EMT) markers in hESCs. Knockdown of PPP3CC, the gene encoding calcineurin A gamma, or NFATC3, downregulates certain markers both at the self-renewal state and during differentiation of hESCs. Furthermore, NFATc3 interacts with c-JUN and regulates the expression of SRPX2, the gene encoding a secreted glycoprotein known as a ligand of uPAR. We show that SRPX2 is a downstream target of NFATc3. Both SRPX2 and uPAR participate in controlling expression of lineage and EMT markers. Importantly, SRPX2 knockdown diminishes the upregulation of multiple lineage and EMT markers induced by co-overexpression of NFATc3 and c-JUN in hESCs. Together, this study uncovers a previously unknown role of calcineurin A gamma and the NFATc3/SRPX2 axis in modulating the fate determination of hESCs.
Collapse
Affiliation(s)
- Hao Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanwu Zeng
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanzhi Zhao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Gu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Liao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Cieslar-Pobuda A, Ahrens TD, Caglayan S, Behringer S, Hannibal L, Staerk J. DNMT3B deficiency alters mitochondrial biogenesis and α-ketoglutarate levels in human embryonic stem cells. Stem Cells 2020; 38:1409-1422. [PMID: 32652733 DOI: 10.1002/stem.3256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Embryonic stem cell renewal and differentiation is regulated by metabolites that serve as cofactors for epigenetic enzymes. An increase of α-ketoglutarate (α-KG), a cofactor for histone and DNA demethylases, triggers multilineage differentiation in human embryonic stem cells (hESCs). To gain further insight into how the metabolic fluxes in pluripotent stem cells can be influenced by inactivating mutations in epigenetic enzymes, we generated hESCs deficient for de novo DNA methyltransferases (DNMTs) 3A and 3B. Our data reveal a bidirectional dependence between DNMT3B and α-KG levels: a-KG is significantly upregulated in cells deficient for DNMT3B, while DNMT3B expression is downregulated in hESCs treated with α-KG. In addition, DNMT3B null hESCs exhibit a disturbed mitochondrial fission and fusion balance and a switch from glycolysis to oxidative phosphorylation. Taken together, our data reveal a novel link between DNMT3B and the metabolic flux of hESCs.
Collapse
Affiliation(s)
- Artur Cieslar-Pobuda
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Theresa D Ahrens
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Safak Caglayan
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sidney Behringer
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Huang X, Liu J, Ma Q. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines. FEBS Open Bio 2020; 10:2182-2190. [PMID: 32865342 PMCID: PMC7530387 DOI: 10.1002/2211-5463.12966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Prohibitin (PHB) is a highly conserved, ubiquitously expressed, multifunctional protein with a well‐characterized function as a chaperone‐stabilizing mitochondrial proteins. Recently it was reported that nuclear PHB participates in HIRA chaperone complexes and regulates downstream gene expression via cell cycle independent deposition of H3.3 into DNA. However, the role of PHB in cancer progression remains controversial with conflicting reports in the literature, perhaps due to its cell type‐dependent subcellular localization. Here, we report that the increased expression of nuclear PHB is positively correlated with metastasis of breast cancer cell lines. We showed PHB participates in the HIRA complex by interacting with HIRA through the linker region of the PHB domain and stabilizes all components of the HIRA complex in breast cancer. Overexpression of nuclear PHB resulted in a higher enrichment of histone H3.3 deposited by the HIRA complex at the promoters of mesenchymal markers. This coincided with an increased gene expression level of these markers, and induced EMT in breast cancer. Overall, these molecular and structural mechanisms suggest that nuclear PHB could hold promise as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| | - Jinji Liu
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| | - Qinghui Ma
- Department of Oncology and Hematology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University), China
| |
Collapse
|
18
|
Qu Y, Konrad C, Anderson C, Qian L, Yin T, Manfredi G, Iadecola C, Zhou P. Prohibitin S-Nitrosylation Is Required for the Neuroprotective Effect of Nitric Oxide in Neuronal Cultures. J Neurosci 2020; 40:3142-3151. [PMID: 32152200 PMCID: PMC7159891 DOI: 10.1523/jneurosci.1804-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Prohibitin (PHB) is a critical protein involved in many cellular activities. In brain, PHB resides in mitochondria, where it forms a large protein complex with PHB2 in the inner TFmembrane, which serves as a scaffolding platform for proteins involved in mitochondrial structural and functional integrity. PHB overexpression at moderate levels provides neuroprotection in experimental brain injury models. In addition, PHB expression is involved in ischemic preconditioning, as its expression is enhanced in preconditioning paradigms. However, the mechanisms of PHB functional regulation are still unknown. Observations that nitric oxide (NO) plays a key role in ischemia preconditioning compelled us to postulate that the neuroprotective effect of PHB could be regulated by NO. Here, we test this hypothesis in a neuronal model of ischemia-reperfusion injury and show that NO and PHB are mutually required for neuronal resilience against oxygen and glucose deprivation stress. Further, we demonstrate that NO post-translationally modifies PHB through protein S-nitrosylation and regulates PHB neuroprotective function, in a nitric oxide synthase-dependent manner. These results uncover the mechanisms of a previously unrecognized form of molecular regulation of PHB that underlies its neuroprotective function.SIGNIFICANCE STATEMENT Prohibitin (PHB) is a critical mitochondrial protein that exerts a potent neuroprotective effect when mildly upregulated in mice. However, how the neuroprotective function of PHB is regulated is still unknown. Here, we demonstrate a novel regulatory mechanism for PHB that involves nitric oxide (NO) and shows that PHB and NO interact directly, resulting in protein S-nitrosylation on residue Cys69 of PHB. We further show that nitrosylation of PHB may be essential for its ability to preserve neuronal viability under hypoxic stress. Thus, our study reveals a previously unknown mechanism of functional regulation of PHB that has potential therapeutic implications for neurologic disorders.
Collapse
Affiliation(s)
- Youyang Qu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
- Department of Neurology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Corey Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Liping Qian
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Tina Yin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
19
|
Pan T, Liu J, Xu S, Yu Q, Wang H, Sun H, Wu J, Zhu Y, Zhou J, Zhu Y. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics 2020; 10:516-536. [PMID: 31903135 PMCID: PMC6929986 DOI: 10.7150/thno.37472] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The leading cause of poor prognosis in colorectal cancer (CRC) is the presence of colorectal cancer-initiating cells (CCICs). The interplay between the tumor microenvironment (TME) and CRC cells induces reacquisition of initiating cell characteristics, but the underlying mechanisms remain elusive. Methods: Candidate molecules were screened by global differential cDNA expression profiles of CCICs, which were enriched from patient-derived tumor xenograft models. Luciferase reporters and chromatin immunoprecipitation assays were used to explore the mechanism of TME factors regulating the transcription of ANKRD22. The effects of Ankyrin repeat domain-containing protein 22 (ANKRD22) on energy metabolism were monitored by extracellular flux and 13C-based metabolic flux analysis. Mass spectrometry was used to identify the interacting partners of ANKRD22. Morphological changes of CCICs overexpressing ANKRD22 were observed by electron microscopy. The effects of ANKRD22 on mitochondrial lipid metabolism were analyzed by lipidomics. Results: We identified a novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs. We found that ANKRD22 was induced by the p38/MAX pathway activated by different TME stimuli. As a key transcription factor, MAX promoted the transcription of ANKRD22. Expression of ANKRD22 promoted glycolysis associated with a decrease in ATP/ADP and an increase in AMP/ATP levels, which were related to its interaction with pyruvate dehydrogenase kinase isoform 1 (PDK1) and multiple subunits of ATP synthase. Further, in CCICs, ANKRD22 cooperated with the lipid transport protein, Extended Synaptotagmin-1 (E-Syt1), to transport excess lipids into mitochondria and reduced the number of mitochondria in an autophagy-independent manner, thus meeting the metabolic requirements of CCICs. Conclusion: ANKRD22 induced by TME promotes the metabolic reprogramming of CRC cells. Our study has identified ANKRD22/E-Syt1 as a potential target for eradicating CCICs.
Collapse
|
20
|
Fang Z, Liu X, Wen J, Tang F, Zhou Y, Jing N, Jin Y. SOX21 Ensures Rostral Forebrain Identity by Suppression of WNT8B during Neural Regionalization of Human Embryonic Stem Cells. Stem Cell Reports 2019; 13:1038-1052. [PMID: 31761677 PMCID: PMC6915843 DOI: 10.1016/j.stemcr.2019.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
The generation of brain region-specific progenitors from human embryonic stem cells (hESCs) is critical for their application. However, transcriptional regulation of neural regionalization in humans is poorly understood. Here, we applied a rostrocaudal patterning system from hESCs to dissect global transcriptional networks controlling early neural regionalization. We found that SOX21 is required for rostral forebrain fate specification. SOX21 knockout led to activation of Wnt signaling, resulting in caudalization of regional identity of rostral forebrain neural progenitor cells. Moreover, we identified WNT8B as a SOX21 direct target. Deletion of WNT8B or inhibition of Wnt signaling in SOX21 knockout neural progenitor cells restored rostral forebrain identity. Furthermore, SOX21 interacted with β-catenin, interfering with the binding of TCF4/β-catenin complex to the WNT8B enhancer. Collectively, these results unveil the unknown role of SOX21 and shed light on how a transcriptional factor modulates early neural regionalization through crosstalk with a key component of Wnt signaling. The transcriptomic analysis of rostrocaudal patterning of hESC-derived NPCs SOX21 KO leads to caudalized regional identity in rostral forebrain progenitors SOX21 represses Wnt signaling to ensure the rostral forebrain identity WNT8B is a major downstream target of SOX21
Collapse
Affiliation(s)
- Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xinyuan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fan Tang
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Yang Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
21
|
Ding J, Fang Z, Liu X, Zhu Z, Wen C, Wang H, Gu J, Li QR, Zeng R, Li H, Jin Y. CDK11 safeguards the identity of human embryonic stem cells via fine-tuning signaling pathways. J Cell Physiol 2019; 235:4279-4290. [PMID: 31612516 DOI: 10.1002/jcp.29305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Signaling pathways transmit extracellular cues into cells and regulate transcriptome and epigenome to maintain or change the cell identity. Protein kinases and phosphatases are critical for signaling transduction and regulation. Here, we report that CDK11, a member of the CDK family, is required for the maintenance of human embryonic stem cell (hESC) self-renewal. Our results show that, among the three main isoforms of CDK11, CDK11p46 is the main isoform safeguarding the hESC identity. Mechanistically, CDK11 constrains two important mitogen-activated protein kinase (MAPK) signaling pathways (JNK and p38 signaling) through modulating the activity of protein phosphatase 1. Furthermore, CDK11 knockdown activates transforming growth factor β (TGF-β)/SMAD2/3 signaling and upregulates certain nonneural differentiation-associated genes. Taken together, this study uncovers a kinase required for hESC self-renewal through fine-tuning MAPK and TGF-β signaling at appropriate levels. The kinase-phosphatase axis reported here may shed new light on the molecular mechanism sustaining the identity of hESCs.
Collapse
Affiliation(s)
- Jianyi Ding
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Xinyuan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Zhexin Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Chunsheng Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Han Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Gu
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Run Li
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China.,Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
22
|
Fernandes CFDL, Iglesia RP, Melo-Escobar MI, Prado MB, Lopes MH. Chaperones and Beyond as Key Players in Pluripotency Maintenance. Front Cell Dev Biol 2019; 7:150. [PMID: 31428613 PMCID: PMC6688531 DOI: 10.3389/fcell.2019.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Pluripotency is orchestrated by distinct players and chaperones and their partners have emerged as pivotal molecules in proteostasis control to maintain stemness. The proteostasis network consists of diverse interconnected pathways that function dynamically according to the needs of the cell to quality control and maintain protein homeostasis. The proteostasis machinery of pluripotent stem cells (PSCs) is finely adjusted in response to distinct stimuli during cell fate commitment to determine successful organism development. Growing evidence has shown different classes of chaperones regulating crucial cellular processes in PSCs. Histones chaperones promote proper nucleosome assembly and modulate the epigenetic regulation of factors involved in PSCs’ rapid turnover from pluripotency to differentiation. The life cycle of pluripotency proteins from synthesis and folding, transport and degradation is finely regulated by chaperones and co-factors either to maintain the stemness status or to cell fate commitment. Here, we summarize current knowledge of the chaperone network that govern stemness and present the versatile role of chaperones in stem cells resilience. Elucidation of the intricate regulation of pluripotency, dissecting in detail molecular determinants and drivers, is fundamental to understanding the properties of stem cells in order to provide a reliable foundation for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochem J 2019; 476:1585-1604. [PMID: 31036718 DOI: 10.1042/bcj20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 (Slc25a36) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, Slc25a36 was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of Slc25a36 was characterized as a maintenance factor of mESCs pluripotency. Slc25a36 deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers (Pou5f1, Sox2, Nanog, and Utf1) decreased, while that of key TE genes (Cdx2, Gata3, and Hand1) increased. Cdx2-positive cells emerged in Slc25a36-deficient colonies under trophoblast stem cell culture conditions. As a result of Slc25a36 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of Slc25a36, as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.
Collapse
|
24
|
Kong X, Tian H, Yu Q, Zhang F, Wang R, Gao S, Xu W, Liu J, Shani E, Fu C, Zhou G, Zhang L, Zhang X, Ding Z. PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis. Cell Rep 2019; 22:1350-1363. [PMID: 29386120 DOI: 10.1016/j.celrep.2017.12.105] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/23/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
The root stem cell niche, which is composed of four mitotically inactive quiescent center (QC) cells and the surrounding actively divided stem cells in Arabidopsis, is critical for growth and root development. Here, we demonstrate that the Arabidopsis prohibitin protein PHB3 is required for the maintenance of root stem cell niche identity by both inhibiting proliferative processes in the QC and stimulating cell division in the proximal meristem (PM). PHB3 coordinates cell division and differentiation in the root apical meristem by restricting the spatial expression of ethylene response factor (ERF) transcription factors 115, 114, and 109. ERF115, ERF114, and ERF109 mediate ROS signaling, in a PLT-independent manner, to control root stem cell niche maintenance and root growth through phytosulfokine (PSK) peptide hormones in Arabidopsis.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Qianqian Yu
- College of Life Sciences, Liaocheng University, Liaocheng, 252000 Shandong, China
| | - Feng Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Rong Wang
- College of Nursing, Xi'an Siyuan University, Xi'an, 710038 Shaanxi, China
| | - Shan Gao
- College of Life Sciences, Qilu Normal University, Jinan, 250200 Shandong, China
| | - Wenhong Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Eilon Shani
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong, China
| | - Gongke Zhou
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong, China
| | - Liangran Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, 271018 Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan, 250100 Shandong, China.
| |
Collapse
|
25
|
Abstract
In contrast to terminally differentiated cells, cancer cells and stem cells retain the ability to re-enter the cell cycle and proliferate. In order to proliferate, cells must increase the uptake and catabolism of nutrients to support anabolic cell growth. Intermediates of central metabolic pathways have emerged as key players that can influence cell differentiation 'decisions', processes relevant for both oncogenesis and normal development. Consequently, how cells rewire metabolic pathways to support proliferation may have profound consequences for cellular identity. Here, we discuss the metabolic programs that support proliferation and explore how metabolic states are intimately entwined with the cell fate decisions that characterize stem cells and cancer cells. By comparing the metabolism of pluripotent stem cells and cancer cells, we hope to illuminate common metabolic strategies as well as distinct metabolic features that may represent specialized adaptations to unique cellular demands.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Ruan L, Xin X, Zhang J, Zhao B, Cheng H, Zhang C, Ma D, Chen L. Potential Root Foraging Strategy of Wheat ( Triticum aestivum L.) for Potassium Heterogeneity. FRONTIERS IN PLANT SCIENCE 2018; 9:1755. [PMID: 30538717 PMCID: PMC6277704 DOI: 10.3389/fpls.2018.01755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Potassium (K) distribution is horizontally heterogeneous under the conservation agriculture approach of no-till with strip fertilization. The root foraging strategy of wheat for K heterogeneity is poorly understood. In this study, WinRHIZO, microarray, Non-invasive Micro-test Technology (NMT) and a split-root system were performed to investigate root morphology, gene expression profiling and fluxes of K+ and O2 under K heterogeneity and homogeneity conditions. The split-root system was performed as follows: C. LK (both compartments had low K), C. NK (both compartments had normal K), Sp. LK (one compartment had low K) and Sp. NK (the other compartment had normal K). The ratio of total root length and root tips in Sp. NK was significantly higher than that in C. NK, while no significant differences were found between Sp. LK and C. LK. Differential expression genes in C. LK vs. C. NK had opposite responses in Sp. LK vs. C. LK and similar responses in Sp. NK vs. C. NK. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding, glutathione transferase and cellular respiration genes were found to be up-regulated in Sp. NK. However, methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, and protein kinase activity genes were found to be down-regulated in Sp. LK. The up-regulated gene with function in respiration tended to increase K+ uptake through improving O2 influx on the root surface in Sp. NK, while the down-regulated genes with functions of K+ and O2 transport tended to reduce K+ uptake on the root surface in Sp. LK. To summarize, wheat roots tended to perform active-foraging strategies in Sp. NK and dormant-foraging strategies in Sp. LK through the following patterns: (1) root development in Sp. NK but not in Sp. LK; (2) low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, were up-regulated in Sp. NK but not in Sp. LK; and (3) root K+ and O2 influxes increased in Sp. NK but not in Sp. LK. Our findings may better explain the optimal root foraging strategy for wheat grown with heterogeneous K distribution in the root zone.
Collapse
Affiliation(s)
- Li Ruan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiuli Xin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
27
|
Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nat Commun 2018; 9:3103. [PMID: 30082790 PMCID: PMC6078998 DOI: 10.1038/s41467-018-05581-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
The HIRA histone chaperone complex deposits the histone variant H3.3 onto chromatin in a DNA synthesis-independent manner. It comprises three identified subunits, HIRA, UBN1 and CABIN1, however the functional oligomerization state of the complex has not been investigated. Here we use biochemical and crystallographic analysis to show that the HIRA subunit forms a stable homotrimer that binds two subunits of CABIN1 in vitro. A HIRA mutant that is defective in homotrimer formation interacts less efficiently with CABIN1, is not enriched at DNA damage sites upon UV irradiation and cannot rescue new H3.3 deposition in HIRA knockout cells. The structural homology with the homotrimeric replisome component Ctf4/AND-1 enables the drawing of parallels and discussion of the functional importance of the homotrimerization state of the HIRA subunit. The HIRA histone chaperone complex is involved in the deposition of the histone variant H3.3. Here the authors, by using biochemical and crystallographic approaches, report the homotrimerization of the HIRA subunit which is critical for the functional activity of the complex.
Collapse
|
28
|
Mathieu J, Ruohola-Baker H. Metabolic remodeling during the loss and acquisition of pluripotency. Development 2017; 144:541-551. [PMID: 28196802 DOI: 10.1242/dev.128389] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pluripotent cells from the early stages of embryonic development have the unlimited capacity to self-renew and undergo differentiation into all of the cell types of the adult organism. These properties are regulated by tightly controlled networks of gene expression, which in turn are governed by the availability of transcription factors and their interaction with the underlying epigenetic landscape. Recent data suggest that, perhaps unexpectedly, some key epigenetic marks, and thereby gene expression, are regulated by the levels of specific metabolites. Hence, cellular metabolism plays a vital role beyond simply the production of energy, and may be involved in the regulation of cell fate. In this Review, we discuss the metabolic changes that occur during the transitions between different pluripotent states both in vitro and in vivo, including during reprogramming to pluripotency and the onset of differentiation, and we discuss the extent to which distinct metabolites might regulate these transitions.
Collapse
Affiliation(s)
- Julie Mathieu
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
29
|
Jenull S, Tscherner M, Gulati M, Nobile CJ, Chauhan N, Kuchler K. The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Sci Rep 2017; 7:8308. [PMID: 28814742 PMCID: PMC5559454 DOI: 10.1038/s41598-017-08239-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023] Open
Abstract
Morphological plasticity such as the yeast-to-hyphae transition is a key virulence factor of the human fungal pathogen Candida albicans. Hyphal formation is controlled by a multilayer regulatory network composed of environmental sensing, signaling, transcriptional modulators as well as chromatin modifications. Here, we demonstrate a novel role for the replication-independent HIR histone chaperone complex in fungal morphogenesis. HIR operates as a crucial modulator of hyphal development, since genetic ablation of the HIR complex subunit Hir1 decreases sensitivity to morphogenetic stimuli. Strikingly, HIR1-deficient cells display altered transcriptional amplitudes upon hyphal initiation, suggesting that Hir1 affects transcription by establishing transcriptional thresholds required for driving morphogenetic cell-fate decisions. Furthermore, ectopic expression of the transcription factor Ume6, which facilitates hyphal maintenance, rescues filamentation defects of hir1Δ/Δ cells, suggesting that Hir1 impacts the early phase of hyphal initiation. Hence, chromatin chaperone-mediated fine-tuning of transcription is crucial for driving morphogenetic conversions in the fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Neeraj Chauhan
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria.
| |
Collapse
|
30
|
Dutta D. Histone chaperone in regulation of cellular metabolism dictating stem cell fate? Stem Cell Investig 2017; 4:50. [PMID: 28725646 DOI: 10.21037/sci.2017.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Debasree Dutta
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
31
|
Marmorstein R, Adams PD. Epigenetics meets metabolism through PHB-mediated histone H3.3 deposition by HIRA. Stem Cell Investig 2017; 4:46. [PMID: 28607920 DOI: 10.21037/sci.2017.05.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ronen Marmorstein
- Department of Biochemistry and Biophysics, the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Valenzuela N, Soibam B, Li L, Wang J, Byers LA, Liu Y, Schwartz RJ, Stewart MD. HIRA deficiency in muscle fibers causes hypertrophy and susceptibility to oxidative stress. J Cell Sci 2017; 130:2551-2563. [PMID: 28600325 DOI: 10.1242/jcs.200642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/05/2017] [Indexed: 01/14/2023] Open
Abstract
Nucleosome assembly proceeds through DNA replication-coupled or replication-independent mechanisms. For skeletal myocytes, whose nuclei have permanently exited the cell cycle, replication-independent assembly is the only mode available for chromatin remodeling. For this reason, any nucleosome composition alterations accompanying transcriptional responses to physiological signals must occur through a DNA replication-independent pathway. HIRA is the histone chaperone primarily responsible for replication-independent incorporation of histone variant H3.3 across gene bodies and regulatory regions. Thus, HIRA would be expected to play an important role in epigenetically regulating myocyte gene expression. The objective of this study was to determine the consequence of eliminating HIRA from mouse skeletal myocytes. At 6 weeks of age, myofibers lacking HIRA showed no pathological abnormalities; however, genes involved in transcriptional regulation were downregulated. By 6 months of age, myofibers lacking HIRA exhibited hypertrophy, sarcolemmal perforation and oxidative damage. Genes involved in muscle growth and development were upregulated, but those associated with responses to cellular stresses were downregulated. These data suggest that elimination of HIRA produces a hypertrophic response in skeletal muscle and leaves myofibers susceptible to stress-induced degeneration.
Collapse
Affiliation(s)
- Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.,Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA .,Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|