1
|
Abstract
Organoids are self-organizing, expanding 3D cultures derived from stem cells. Using tissue derived from patients, these miniaturized models recapitulate various aspects of patient physiology and disease phenotypes including genetic profiles and drug sensitivities. As such, patient-derived organoid (PDO) platforms provide an unprecedented opportunity for improving preclinical drug discovery, clinical trial validation, and ultimately patient care. This article reviews the evolution and scope of organoid technology, highlights recent encouraging results using PDOs as potential patient "avatars" to predict drug response and outcomes, and discusses critical parameters for widespread clinical adoption. These include improvements in assay speed, reproducibility, standardization, and automation which are necessary to realize the translational potential of PDOs as clinical tools. The multiple entry points where PDOs may contribute valuable insights in drug discovery and lessen the risks associated with clinical trials are also discussed.
Collapse
Affiliation(s)
- Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Oncode, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
2
|
Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22073311. [PMID: 33805011 PMCID: PMC8037452 DOI: 10.3390/ijms22073311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (p-value = 4.36 × 10−9), primary heart tissue (p-value = 1.37 × 10−41) and cardiomyopathy (p-value = 1.13 × 10−21) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.
Collapse
|
3
|
Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020; 11:4283. [PMID: 32883967 PMCID: PMC7471119 DOI: 10.1038/s41467-020-18031-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2019] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the spatiotemporal regulation of cardiogenesis is hindered by the difficulties in modeling this complex organ currently by in vitro models. Here we develop a method to generate heart organoids from mouse embryonic stem cell-derived embryoid bodies. Consecutive morphological changes proceed in a self-organizing manner in the presence of the laminin-entactin (LN/ET) complex and fibroblast growth factor 4 (FGF4), and the resulting in vitro heart organoid possesses atrium- and ventricle-like parts containing cardiac muscle, conducting tissues, smooth muscle and endothelial cells that exhibited myocardial contraction and action potentials. The heart organoids exhibit ultrastructural, histochemical and gene expression characteristics of considerable similarity to those of developmental hearts in vivo. Our results demonstrate that this method not only provides a biomimetic model of the developing heart-like structure with simplified differentiation protocol, but also represents a promising research tool with a broad range of applications, including drug testing. Our understanding of the development of the heart has been limited by a lack of in vitro cellular models. Here, the authors treat mouse embryonic stem cell-derived embryoid bodies with laminin-entactin (to mimic the developing microenvironment) and FGF4 to form heart organoids, with atrial and ventricular-like parts.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Rin Kaneko
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Jun Takeuchi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kentaro Takahashi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Masahiro Yamazoe
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
4
|
HYDIN loss-of-function inhibits GATA4 expression and enhances atrial septal defect risk. Mech Dev 2020; 162:103611. [PMID: 32376282 DOI: 10.1016/j.mod.2020.103611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations affecting cardiac structural genes can lead to congenital heart diseases (CHDs). Axonemal Central Pair Apparatus Protein (HYDIN) is a ciliary protein previously linked to congenital cardiomyopathy. However, the role of HYDIN in the aetiology of CHDs is thus far unknown. Herein, we explore the function of HYDIN in heart development and CHDs. METHODS The function of HYDIN in cardiac differentiation was assessed in vitro using HYDIN siRNAs, HYDIN overexpression, and HYDIN short hairpin RNA (shRNA)-GATA binding protein 4 (GATA4) cDNA rescue constructs in the human embryonic stem cell (hESC) line HES3. To assess Hydin's function in vivo, we generated shRNA-mediated Hydin knockdown transgenic mice. We characterized the functional mechanisms of the most common human HYDIN variant associated with atrial septal defect (ASD) risk (71098693 mutant, c.A2207C) in cardiac-differentiating HES3 cells. RESULTS HYDIN functions as a positive regulator of human cardiomyocyte differentiation and promotes expression of cardiac contractile genes in hESC cells. This is mediated through GATA4, a critical transcription factor in heart development. Cardiac-specific Hydin knockdown in vivo leads to Gata4 downregulation and enhanced atrial septal defect (ASD) risk in mice. The c.A2207C HYDIN mutation reduces GATA4 expression in hESC cells. CONCLUSION HYDIN loss-of-function inhibits GATA4 expression and enhances ASD risk. We also establish the regulation of a key transcription factor in heart development by a ciliary protein.
Collapse
|
5
|
O'Grady BJ, Lippmann ES. Recent Advancements in Engineering Strategies for Manipulating Neural Stem Cell Behavior. ACTA ACUST UNITED AC 2020; 1:41-47. [PMID: 33748772 DOI: 10.1007/s43152-020-00003-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Purpose of Review Stem cells are exquisitely sensitive to biophysical and biochemical cues within the native microenvironment. This review focuses on emerging strategies to manipulate neural cell behavior using these influences in three-dimensional (3D) culture systems. Recent Findings Traditional systems for neural cell differentiation typically produce heterogeneous populations with limited diversity rather than the complex, organized tissue structures observed in vivo. Advancements in developing engineering tools to direct neural cell fates can enable new applications in basic research, disease modeling, and regenerative medicine. Summary This review article highlights engineering strategies that facilitate controlled presentation of biophysical and biochemical cues to guide differentiation and impart desired phenotypes on neural cell populations. Specific highlighted examples include engineered biomaterials and microfluidic platforms for spatiotemporal control over the presentation of morphogen gradients.
Collapse
Affiliation(s)
- Brian J O'Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
O’Grady BJ, Balikov DA, Lippmann ES, Bellan LM. Spatiotemporal Control of Morphogen Delivery to Pattern Stem Cell Differentiation in Three-Dimensional Hydrogels. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2019; 51:e97. [PMID: 31756050 PMCID: PMC6876696 DOI: 10.1002/cpsc.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
Morphogens are biological molecules that alter cellular identity and behavior across both space and time. During embryonic development, morphogen spatial localization can be confined to small volumes in a single tissue or permeate throughout an entire organism, and the temporal effects of morphogens can range from fractions of a second to several days. In most cases, morphogens are presented as a gradient to adjacent cells within tissues to pattern cell fate. As such, to appropriately model development and build representative multicellular architectures in vitro, it is vital to recapitulate these gradients during stem cell differentiation. However, the ability to control morphogen presentation within in vitro systems remains challenging. Here, we describe an innovative platform using channels patterned within thick, three-dimensional hydrogels that deliver multiple morphogens to embedded cells, thereby demonstrating exquisite control over both spatial and temporal variations in morphogen presentation. This generalizable approach should have broad utility for researchers interested in patterning in vitro tissue structures. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brian J. O’Grady
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
- BJO and DAB contributed equally to this work as co-first authors
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- BJO and DAB contributed equally to this work as co-first authors
| | - Ethan S. Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- ESL and LMB contributed equally to this work as co-senior authors
| | - Leon M. Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- ESL and LMB contributed equally to this work as co-senior authors
| |
Collapse
|
7
|
O'Grady B, Balikov DA, Wang JX, Neal EK, Ou YC, Bardhan R, Lippmann ES, Bellan LM. Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci 2019; 7:1358-1371. [PMID: 30778445 PMCID: PMC6485939 DOI: 10.1039/c8bm01199k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The process of cell differentiation in a developing embryo is influenced by numerous factors, including various biological molecules whose presentation varies dramatically over space and time. These morphogens regulate cell fate based on concentration profiles, thus creating discrete populations of cells and ultimately generating large, complex tissues and organs. Recently, several in vitro platforms have attempted to recapitulate the complex presentation of extrinsic signals found in nature. However, it has been a challenge to design versatile platforms that can dynamically control morphogen gradients over extended periods of time. To address some of these issues, we introduce a platform using channels patterned in hydrogels to deliver multiple morphogens to cells in a 3D scaffold, thus creating a spectrum of cell phenotypes based on the resultant morphogen gradients. The diffusion coefficient of a common small molecule morphogen, retinoic acid (RA), was measured within our hydrogel platform using Raman spectroscopy and its diffusion in our platform's geometry was modeled using finite element analysis. The predictive model of spatial gradients was validated in a cell-free hydrogel, and temporal control of morphogen gradients was then demonstrated using a reporter cell line that expresses green fluorescent protein in the presence of RA. Finally, the utility of this approach for regulating cell phenotype was demonstrated by generating opposing morphogen gradients to create a spectrum of mesenchymal stem cell differentiation states.
Collapse
Affiliation(s)
- Brian O'Grady
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | |
Collapse
|