1
|
Goecke T, Ius F, Ruhparwar A, Martin U. Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair. Cells 2024; 13:635. [PMID: 38607074 PMCID: PMC11012168 DOI: 10.3390/cells13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field.
Collapse
Affiliation(s)
- Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Fabio Ius
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Arjang Ruhparwar
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Lower Saxony Center for Biomedical Engineering, Implant Research and Development /Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.I.); (A.R.)
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Vivekanandan R, Szepes M, Ricci Signorini ME, Kravchenko D, Kiefer J, Berger S, Fricke V, Göhring G, Gruh I. Generation of human induced pluripotent stem cell line encoding for a genetically encoded voltage indicator Arclight A242. Stem Cell Res 2023; 66:102981. [PMID: 36463634 DOI: 10.1016/j.scr.2022.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) allow for monitoring membrane potential changes in neurons and cardiomyocytes (CMs) as an alternative to patch-clamp techniques. GEVIs facilitate non-invasive, high throughput screening of electrophysiological properties of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). A dual transgenic hiPSC line with Arclight A242 (GEVI) and an antibiotic resistance cardiac selection cassette was successfully generated from an earlier established hiPSC line MHHi001-A. After cardiac differentiation and selection, purified populations of CMs with constitutive GEVI expression can be utilized for studying cardiac development, disease modeling, and drug testing.
Collapse
Affiliation(s)
- Rajesh Vivekanandan
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Maria Elena Ricci Signorini
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Denys Kravchenko
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Johanna Kiefer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Steffen Berger
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Veronika Fricke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Germany.
| |
Collapse
|
3
|
Wunderlich S, Haase A, Merkert S, Jahn K, Deest M, Frieling H, Glage S, Korte W, Martens A, Kirschning A, Zeug A, Ponimaskin E, Göhring G, Ackermann M, Lachmann N, Moritz T, Zweigerdt R, Martin U. Targeted biallelic integration of an inducible Caspase 9 suicide gene in iPSCs for safer therapies. Mol Ther Methods Clin Dev 2022; 26:84-94. [PMID: 35795779 PMCID: PMC9234009 DOI: 10.1016/j.omtm.2022.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.
Collapse
Affiliation(s)
- Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany
| | - Kirsten Jahn
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Maximillian Deest
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Helge Frieling
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Wilhelm Korte
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Andreas Martens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Andreas Kirschning
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Institute for Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Andre Zeug
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Department of Cellular Neurophysiology; Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Department of Cellular Neurophysiology; Hannover Medical School, 30625 Hannover, Germany
| | - Gudrun Göhring
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Moritz
- REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,RG Reprogramming and Gene Therapy, Hannover Medical School, 30625 Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany.,REBIRTH - Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany
| |
Collapse
|
4
|
Elena Ricci Signorini M, Szepes M, Melchert A, Bakar M, Merkert S, Haase A, Göhring G, Martin U, Gruh I. Generation of human induced pluripotent stem cell lines encoding for genetically encoded calcium indicators RCaMP1h and GCaMP6f. Stem Cell Res 2022; 60:102697. [DOI: 10.1016/j.scr.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
|
5
|
Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization. MICROMACHINES 2021; 12:mi12080981. [PMID: 34442603 PMCID: PMC8401467 DOI: 10.3390/mi12080981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
In order to provide an alternative treatment option to lung transplantation for patients with end-stage lung disease, we aim for the development of an implantable biohybrid lung (BHL), based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. Complete hemocompatibility of all blood contacting surfaces is crucial for long-lasting BHL durability and can be achieved by their endothelialization. Autologous endothelial cells (ECs) would be the ideal cell source, but their limited proliferation potential excludes them for this purpose. As induced pluripotent stem cell-derived ECs enable the generation of a large number of ECs, we assessed and compared their capacity to form a viable and confluent monolayer on HFM, while indicating physiologic EC-specific anti-thrombogenic and anti-inflammatory properties. ECs were generated from three different human iPSC lines, and seeded onto fibronectin-coated poly-4-methyl-1-pentene (PMP) HFM. Following phenotypical characterization, ECs were analyzed for their thrombogenic and inflammatory behavior with or without TNFα induction, using FACS and qRT-PCR. Complementary, leukocyte- and platelet adhesion assays were carried out. The capacity of the iPSC-ECs to reendothelialize cell-free monolayer areas was assessed in a scratch assay. ECs sourced from umbilical cord blood (hCBECs) were used as control. iPSC-derived ECs formed confluent monolayers on the HFM and showed the typical EC-phenotype by expression of VE-cadherin and collagen-IV. A low protein and gene expression level of E-selectin and tissue factor was detected for all iPSC-ECs and the hCBECs, while a strong upregulation of these markers was noted upon stimulation with TNFα. This was in line with the physiological and strong induction of leukocyte adhesion detected after treatment with TNFα, iPSC-EC and hCBEC monolayers were capable of reducing thrombocyte adhesion and repopulating scratched areas. iPSCs offer the possibility to provide patient-specific ECs in abundant numbers needed to cover all blood contacting surfaces of the BHL with a viable, non-thrombogenic and non-inflammatory monolayer. iPSC-EC clones can differ in terms of their reendothelialization rate, and pro-inflammatory response. However, a less profound inflammatory response may even be advantageous for BHL application. With the proven ability of the seeded iPSC-ECs to reduce thrombocyte adhesion, we expect that thrombotic events that could lead to BHL occlusion can be avoided, and thus, justifies further studies on enabling BHL long-term application.
Collapse
|
6
|
Efficient Genetic Safety Switches for Future Application of iPSC-Derived Cell Transplants. J Pers Med 2021; 11:jpm11060565. [PMID: 34204193 PMCID: PMC8234706 DOI: 10.3390/jpm11060565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived cell products hold great promise as a potential cell source in personalized medicine. As concerns about the potential risk of graft-related severe adverse events, such as tumor formation from residual pluripotent cells, currently restrict their applicability, we established an optimized tool for therapeutic intervention that allows drug-controlled, specific and selective ablation of either iPSCs or the whole graft through genetic safety switches. To identify the best working system, different tools for genetic iPSC modification, promoters to express safety switches and different safety switches were combined. Suicide effects were slightly stronger when the suicide gene was delivered through lentiviral (LV) vectors compared to integration into the AAVS1 locus through TALEN technology. An optimized HSV-thymidine kinase and the inducible Caspase 9 both mediated drug-induced, efficient in vitro elimination of transgene-positive iPSCs. Choice of promoter allowed selective elimination of distinct populations within the graft: the hOct4 short response element restricted transgene expression to iPSCs, while the CAGs promoter ubiquitously drove expression in iPSCs and their progeny. Remarkably, both safety switches were able to prevent in vivo teratoma development and even effectively eliminated established teratomas formed by LV CAGs-transgenic iPSCs. These optimized tools to increase safety provide an important step towards clinical application of iPSC-derived transplants.
Collapse
|
7
|
Genetic Correction of IL-10RB Deficiency Reconstitutes Anti-Inflammatory Regulation in iPSC-Derived Macrophages. J Pers Med 2021; 11:jpm11030221. [PMID: 33804706 PMCID: PMC8003874 DOI: 10.3390/jpm11030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Patient material from rare diseases such as very early-onset inflammatory bowel disease (VEO-IBD) is often limited. The use of patient-derived induced pluripotent stem cells (iPSCs) for disease modeling is a promising approach to investigate disease pathomechanisms and therapeutic strategies. We successfully developed VEO-IBD patient-derived iPSC lines harboring a mutation in the IL-10 receptor β-chain (IL-10RB) associated with defective IL-10 signaling. To characterize the disease phenotype, healthy control and VEO-IBD iPSCs were differentiated into macrophages. IL-10 stimulation induced characteristic signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) downstream signaling and anti-inflammatory regulation of lipopolysaccharide (LPS)-mediated cytokine secretion in healthy control iPSC-derived macrophages. In contrast, IL-10 stimulation of macrophages derived from patient iPSCs did not result in STAT3 phosphorylation and subsequent SOCS3 expression, recapitulating the phenotype of cells from patients with IL-10RB deficiency. In line with this, LPS-induced cytokine secretion (e.g., IL-6 and tumor necrosis factor-α (TNF-α)) could not be downregulated by exogenous IL-10 stimulation in VEO-IBD iPSC-derived macrophages. Correction of the IL-10RB defect via lentiviral gene therapy or genome editing in the adeno-associated virus integration site 1 (AAVS1) safe harbor locus led to reconstitution of the anti-inflammatory response. Corrected cells showed IL-10RB expression, IL-10-inducible phosphorylation of STAT3, and subsequent SOCS3 expression. Furthermore, LPS-mediated TNF-α secretion could be modulated by IL-10 stimulation in gene-edited VEO-IBD iPSC-derived macrophages. Our established disease models provide the opportunity to identify and validate new curative molecular therapies and to investigate phenotypes and consequences of additional individual IL-10 signaling pathway-dependent VEO-IBD mutations.
Collapse
|
8
|
Szepes M, Melchert A, Dahlmann J, Hegermann J, Werlein C, Jonigk D, Haverich A, Martin U, Olmer R, Gruh I. Dual Function of iPSC-Derived Pericyte-Like Cells in Vascularization and Fibrosis-Related Cardiac Tissue Remodeling In Vitro. Int J Mol Sci 2020; 21:E8947. [PMID: 33255686 PMCID: PMC7728071 DOI: 10.3390/ijms21238947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial interstitial fibrosis (MIF) is characterized by excessive extracellular matrix (ECM) deposition, increased myocardial stiffness, functional weakening, and compensatory cardiomyocyte (CM) hypertrophy. Fibroblasts (Fbs) are considered the principal source of ECM, but the contribution of perivascular cells, including pericytes (PCs), has gained attention, since MIF develops primarily around small vessels. The pathogenesis of MIF is difficult to study in humans because of the pleiotropy of mutually influencing pathomechanisms, unpredictable side effects, and the lack of available patient samples. Human pluripotent stem cells (hPSCs) offer the unique opportunity for the de novo formation of bioartificial cardiac tissue (BCT) using a variety of different cardiovascular cell types to model aspects of MIF pathogenesis in vitro. Here, we have optimized a protocol for the derivation of hPSC-derived PC-like cells (iPSC-PCs) and present a BCT in vitro model of MIF that shows their central influence on interstitial collagen deposition and myocardial tissue stiffening. This model was used to study the interplay of different cell types-i.e., hPSC-derived CMs, endothelial cells (ECs), and iPSC-PCs or primary Fbs, respectively. While iPSC-PCs improved the sarcomere structure and supported vascularization in a PC-like fashion, the functional and histological parameters of BCTs revealed EC- and PC-mediated effects on fibrosis-related cardiac tissue remodeling.
Collapse
Affiliation(s)
- Monika Szepes
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Anna Melchert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Julia Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | | | - Danny Jonigk
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; (M.S.); (A.M.); (J.D.); (A.H.); (U.M.); (R.O.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
9
|
Merkert S, Schubert M, Olmer R, Engels L, Radetzki S, Veltman M, Scholte BJ, Zöllner J, Pedemonte N, Galietta LJV, von Kries JP, Martin U. High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs. Stem Cell Reports 2019; 12:1389-1403. [PMID: 31080112 PMCID: PMC6565754 DOI: 10.1016/j.stemcr.2019.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022] Open
Abstract
Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Madline Schubert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Silke Radetzki
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Mieke Veltman
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Bob J Scholte
- ErasmusMC, Sophia Children's Hospital, Pediatric Pulmonology, 3015 AA Rotterdam, The Netherlands; Cell Biology Department Rotterdam, 3015 AA Rotterdam, The Netherlands
| | - Janina Zöllner
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | | | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Jens P von Kries
- Leibniz-Forschnungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
10
|
Jara Avaca M, Gruh I. Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:117-146. [PMID: 29218360 DOI: 10.1007/10_2017_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineered cardiac tissue might enable novel therapeutic strategies for the human heart in a number of acquired and congenital diseases. With recent advances in stem cell technologies, namely the availability of pluripotent stem cells, the generation of potentially autologous tissue grafts has become a realistic option. Nevertheless, a number of limitations still have to be addressed before clinical application of engineered cardiac tissue based on human stem cells can be realized. We summarize current progress and pending challenges regarding the optimal cell source, cardiomyogenic lineage specification, purification, safety of genetic cell engineering, and genomic stability. Cardiac cells should be combined with clinical grade scaffold materials for generation of functional myocardial tissue in vitro. Scale-up to clinically relevant dimensions is mandatory, and tissue vascularization is most probably required both for preclinical in vivo testing in suitable large animal models and for clinical application. Graphical Abstract.
Collapse
Affiliation(s)
- Monica Jara Avaca
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Vascular and Transplantation Surgery (HTTG), Hannover Medical School (MHH) & Cluster of Excellence REBIRTH, Hannover, Germany.
| |
Collapse
|
11
|
Merkert S, Martin U. Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:169-186. [PMID: 29124278 DOI: 10.1007/10_2017_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Introduction of induced pluripotent stem cell (iPSC) technology and site-directed nucleases brought a major breakthrough in the development of regenerative therapies and biomedical research. With the advancement of ZFNs, TALENs, and the CRISPR/Cas9 technology, straightforward and precise manipulation of the genome of human pluripotent stem cells (PSC) became possible, allowing relatively easy and fast generation of gene knockouts, integration of transgenes, or even introduction of single nucleotide changes for correction or introduction of disease-specific mutations. We review current applications of site-specific nucleases in human PSCs and focus on trends and challenges for efficient gene editing and improvement of targeting strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Sylvia Merkert
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany.,REBIRTH-Cluster of Excellence, German Center for Lung Research (DZL), Gießen, Germany.,Hannover Medical School, Hannover, Germany
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover, Germany. .,REBIRTH-Cluster of Excellence, German Center for Lung Research (DZL), Gießen, Germany. .,Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, Chichkov B. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication 2018; 10:035005. [DOI: 10.1088/1758-5090/aab981] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Olmer R, Engels L, Usman A, Menke S, Malik MNH, Pessler F, Göhring G, Bornhorst D, Bolten S, Abdelilah-Seyfried S, Scheper T, Kempf H, Zweigerdt R, Martin U. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture. Stem Cell Reports 2018; 10:1657-1672. [PMID: 29681541 PMCID: PMC5995343 DOI: 10.1016/j.stemcr.2018.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. Efficient generation of hiPSC-derived ECs in scalable suspension culture High degree of chromosomal stability of hiPSC-ECs after in vitro expansion Generation of relevant numbers of hiPSC-ECs for regenerative approaches
Collapse
Affiliation(s)
- Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lena Engels
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Abdulai Usman
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Muhammad Nasir Hayat Malik
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; Helmholtz-Centre for Infection Research Braunschweig, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine, 30625 Hannover, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Svenja Bolten
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany; Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Scheper
- REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
14
|
Manikowski D, Andrée B, Samper E, Saint-Marc C, Olmer R, Vogt P, Strauß S, Haverich A, Hilfiker A. Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vascul Pharmacol 2018; 106:28-36. [PMID: 29452238 DOI: 10.1016/j.vph.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 02/11/2018] [Indexed: 01/22/2023]
Abstract
In natural tissues, the nutrition of cells and removal of waste products is facilitated by a dense capillary network which is generated during development. This perfusion system is also indispensable for tissue formation in vitro. Nutrition depending solely on diffusion is not sufficient to generate tissues of clinically relevant dimensions, which is a core aim in tissue engineering research. In this study, the establishment of a vascular network was investigated in a self-assembling approach employing endothelial and mural cells. The process of vascularization was analyzed in constructs based on a carrier matrix of decellularized porcine small intestinal submucosa (SIS). A three-dimensional hydrogel containing Matrigel™, collagen, and respective cells was casted on top of the SIS. Various types of human endothelial cells (hECs), e.g. HUVECs, cardiac tissue ECs (hCECs), pulmonary artery ECs (hPAECs), and iPSC-derived ECs, were co-cultured with human adipose tissue-derived stromal cells (hASCs) within the hydrogel. Analyzed hECs were able to self-assemble and form three-dimensional networks harboring small caliber lumens within the hydrogel constructs in the presence of hASCs as supporting cells. Additionally, microvessel assembling required exogenous growth factor supplementation. This study demonstrates the development of stable vascularized hydrogels applying hASCs as mural cells in combination with various types of hECs, paving the way for the generation of clinically applicable tissue engineered constructs.
Collapse
Affiliation(s)
- Dominique Manikowski
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| | - Birgit Andrée
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| | - Esther Samper
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| | - Clémence Saint-Marc
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany; Hannover Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, Hannover, Germany.
| | - Peter Vogt
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany.
| | - Sarah Strauß
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany.
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Martin U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Front Med (Lausanne) 2017; 4:229. [PMID: 29312943 PMCID: PMC5735065 DOI: 10.3389/fmed.2017.00229] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Stem-cell-based therapies are considered to be promising and innovative but complex approaches. Induced pluripotent stem cells (iPSCs) combine the advantages of adult stem cells with the hitherto unique characteristics of embryonic stem cells (ESCs). Major progress has already been achieved with regard to reprogramming technology, but also regarding targeted genome editing and scalable expansion and differentiation of iPSCs and ESCs, in some cases yielding highly enriched preparations of well-defined cell lineages at clinically required dimensions. It is noteworthy, however, that for many applications critical requirements such as the targeted specification into distinct cellular subpopulations and a proper cell maturation remain to be achieved. Moreover, current hurdles such as low survival rates and insufficient functional integration of cellular transplants remain to be overcome. Nevertheless, PSC technologies obviously have come of age and matured to a stage where various clinical applications of PSC-based cellular therapies have been initiated and are conducted.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Gene editing & stem cells. J Cyst Fibros 2017; 17:10-16. [PMID: 29233638 DOI: 10.1016/j.jcf.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
|
17
|
Merkert S, Bednarski C, Göhring G, Cathomen T, Martin U. Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem Cell Res 2017; 23:95-97. [PMID: 28925369 DOI: 10.1016/j.scr.2017.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which affects multiple organs. Human induced pluripotent stem cells (iPSCs) derived from CF patients and the generation of isogeneic gene-corrected control cell lines enable disease modelling, drug discovery or toxicological studies and therefore the development of CF patient-specific therapies. We have previously generated a hiPSC line from a CF patient homozygous for the p.Phe508del mutation. Here we used TALENs and single-stranded oligonucleotides to correct the mutated triplet in our CF-iPSC line.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - Christien Bednarski
- Institute for Cell and Gene Therapy and Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy and Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
18
|
Ackermann M, Kuhn A, Kunkiel J, Merkert S, Martin U, Moritz T, Lachmann N. Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfus Med Hemother 2017. [PMID: 28626364 DOI: 10.1159/000477129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pluripotent stem cells, including induced pluripotent stem cells (iPSCs), have the capacity to differentiate towards all three germ layers and have been highlighted as an attractive cell source for the field of regenerative medicine. Thus, stable expression of therapeutic transgenes in iPSCs, as well as thereof derived progeny of hematopoietic lineage, may lay the foundation for innovative cell replacement therapies. METHODS We have utilized human iPSC lines genetically modified by lentiviral vector technology or targeted integration of reporter genes to evaluate transgene expression during hematopoietic specification and differentiation towards macrophages. RESULTS Use of lentiviral vectors equipped with an ubiquitous chromatin opening element (CBX3-UCOE) as well as zinc finger nuclease-mediated targeting of an expression cassette into the human adeno-associated virus integration site 1 (AAVS1) safe harbor resulted in stable transgene expression in iPSCs. When iPSCs were differentiated along the myeloid pathway into macrophages, both strategies yielded sustained transgene expression during the hematopoietic specification process including mature CD14+ and CD11b+ macrophages. CONCLUSION Combination of human iPSC technology with either lentiviral vector technology or designer nuclease-based genome editing allows for the generation of transgenic iPSC-derived macrophages with stable transgene expression which may be useful for novel cell and gene replacement therapies.
Collapse
Affiliation(s)
- Mania Ackermann
- JRG Translational Hematology, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany
| | - Alexandra Kuhn
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Jessica Kunkiel
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Nico Lachmann
- JRG Translational Hematology, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany
| |
Collapse
|
19
|
Bassett AR. Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome 2017; 28:348-364. [PMID: 28303292 PMCID: PMC5569153 DOI: 10.1007/s00335-017-9684-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
The advent of human-induced pluripotent stem cell (hiPSC) technology has provided a unique opportunity to establish cellular models of disease from individual patients, and to study the effects of the underlying genetic aberrations upon multiple different cell types, many of which would not normally be accessible. Combining this with recent advances in genome editing techniques such as the clustered regularly interspaced short palindromic repeat (CRISPR) system has provided an ability to repair putative causative alleles in patient lines, or introduce disease alleles into a healthy “WT” cell line. This has enabled analysis of isogenic cell pairs that differ in a single genetic change, which allows a thorough assessment of the molecular and cellular phenotypes that result from this abnormality. Importantly, this establishes the true causative lesion, which is often impossible to ascertain from human genetic studies alone. These isogenic cell lines can be used not only to understand the cellular consequences of disease mutations, but also to perform high throughput genetic and pharmacological screens to both understand the underlying pathological mechanisms and to develop novel therapeutic agents to prevent or treat such diseases. In the future, optimising and developing such genetic manipulation technologies may facilitate the provision of cellular or molecular gene therapies, to intervene and ultimately cure many debilitating genetic disorders.
Collapse
Affiliation(s)
- Andrew R Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
20
|
Abstract
Fluorescent reporter and epitope-tagged human pluripotent stem cells (hPSCs) greatly facilitate studies on the pluripotency and differentiation characteristics of these cells. Unfortunately traditional procedures to generate such lines are hampered by a low targeting efficiency that necessitates a lengthy process of selection followed by the removal of the selection cassette. Here we describe a procedure to generate fluorescent reporter and epitope tagged hPSCs in an efficient one-step process using the CRISPR/Cas technology. Although the method described uses our recently developed iCRISPR platform, the protocols can be adapted for general use with CRISPR/Cas or other engineered nucleases. The transfection procedures described could also be used for additional applications, such as overexpression or lineage tracing studies.
Collapse
Affiliation(s)
- Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY, 10065, USA
| | - Zengrong Zhu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
21
|
Site-Specific Genome Engineering in Human Pluripotent Stem Cells. Int J Mol Sci 2016; 17:ijms17071000. [PMID: 27347935 PMCID: PMC4964376 DOI: 10.3390/ijms17071000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.
Collapse
|
22
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY 2016. [PMID: 26916285 DOI: 10.1038/mt.2016.40.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. Mol Ther 2016; 24:685-96. [PMID: 26916285 DOI: 10.1038/mt.2016.40] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
24
|
Merkert S, Martin U. Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Res 2016; 16:377-86. [PMID: 26921872 DOI: 10.1016/j.scr.2016.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Within the last years numerous publications successfully applied sequence specific designer nucleases for genome editing in human PSCs. However, despite this abundance of reports together with the rapid development and improvement accomplished with the technology, it is still difficult to choose the optimal methodology for a specific application of interest. With focus on the most suitable approach for specific applications, we present a practical guidance for successful gene editing in human PSCs using designer nucleases. We discuss experimental considerations, limitations and critical aspects which will guide the investigator for successful implementation of this technology.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
25
|
Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016; 96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation.
Collapse
Affiliation(s)
- Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Birgit Andree
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
26
|
Martin U. Pluripotent stem cells for disease modeling and drug screening: new perspectives for treatment of cystic fibrosis? Mol Cell Pediatr 2015; 2:15. [PMID: 26666881 PMCID: PMC4678132 DOI: 10.1186/s40348-015-0023-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022] Open
Abstract
Despite continuous improvements in treating clinical symptoms and the identification of single compounds that effectively rescue some rare mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), associated lung and liver pathologies remain largely untreatable and no real breakthrough is visible for the majority of patients suffering from cystic fibrosis (CF). Novel compounds have to be identified and tailored in combination to specific CFTR mutations, to different tissues, or even to the individual patient. Immortalized cell lines overexpressing mutant CFTR are typically used to screen candidate molecules but have proven to be poor predictors of clinical efficacy. The complexity of CFTR maturation and turnover requires the use of cellular models that closely recapitulate the specific properties of the clinically most affected organs. Importantly, current screening efforts based on primary airway cells or intestinal organoids cannot specifically target single rare CFTR mutations or mimic multiple cell types. In the near future, genetically engineered induced pluripotent stem cells will provide an excellent basis for personalized organotypic models of CF disease and biological screens for identification of CFTR potentiators and correctors.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
27
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
28
|
Zhu Z, Verma N, González F, Shi ZD, Huangfu D. A CRISPR/Cas-Mediated Selection-free Knockin Strategy in Human Embryonic Stem Cells. Stem Cell Reports 2015; 4:1103-11. [PMID: 26028531 PMCID: PMC4471821 DOI: 10.1016/j.stemcr.2015.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/26/2022] Open
Abstract
The development of new gene-editing tools, in particular the CRISPR/Cas system, has greatly facilitated site-specific mutagenesis in human embryonic stem cells (hESCs), including the introduction or correction of patient-specific mutations for disease modeling. However, integration of a reporter gene into an endogenous locus in hESCs still requires a lengthy and laborious two-step strategy that involves first drug selection to identify correctly targeted clones and then excision of the drug-resistance cassette. Through the use of iCRISPR, an efficient gene-editing platform we recently developed, this study demonstrates a knockin strategy without drug selection for both active and silent genes in hESCs. Lineage-specific hESC reporter lines are useful for real-time monitoring of cell-fate decisions and lineage tracing, as well as enrichment of specific cell populations during hESC differentiation. Thus, this selection-free knockin strategy is expected to greatly facilitate the use of hESCs for developmental studies, disease modeling, and cell-replacement therapy.
Collapse
Affiliation(s)
- Zengrong Zhu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Federico González
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
29
|
Martin U. New Muscle for Old Hearts: Engineering Tissue from Pluripotent Stem Cells. Hum Gene Ther 2015; 26:305-11. [DOI: 10.1089/hum.2015.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
30
|
CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy: Report on the pre-conference meeting to the 11th ECFS Basic Science Conference, Malta, 26-29 March 2014. J Cyst Fibros 2014; 13:363-72. [PMID: 24882694 DOI: 10.1016/j.jcf.2014.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Genome editing 101: let's go digital. Nat Methods 2014; 11:248-9. [PMID: 24577275 DOI: 10.1038/nmeth.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|