1
|
Blaheta RA, Han J, Oppermann E, Bechstein WO, Burkhard K, Haferkamp A, Rieger MA, Malkomes P. Transglutaminase 2 promotes epithelial-to-mesenchymal transition by regulating the expression of matrix metalloproteinase 7 in colorectal cancer cells via the MEK/ERK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167538. [PMID: 39389321 DOI: 10.1016/j.bbadis.2024.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Tissue transglutaminase 2 (TGM2) and matrix metalloproteinase 7 (MMP7) are suggested to be involved in cancer development and progression, however, their specific role in colon cancer remains elusive. The present study investigated whether TGM2 and MMP7 influence epithelial-mesenchymal-transition (EMT) processes of colon cancer cells. TGM2 was either overexpressed or knocked down in SW480 and HCT-116 cells, and MMP7 expression and activity analyzed. Conversely, MMP7 was silenced and its correlation with TGM2 expression and activity examined. Co-immunoprecipitation served to evaluate TGM2-MMP7-interaction. TGM2 and MMP7 expression were correlated with invasion, migration, EMT marker expression (E-cadherin, N-cadherin, Slug, Snail), and ERK/MEK signaling. TGM2 overexpression enhanced MMP7 expression and activity, promoted cell invasion, migration and EMT, characterized by increased N-cadherin and Snail/Slug expression. TGM2 knockdown resulted in the opposite effects. Knocking down MMP7 was associated with reduced TGM2 protein expression, cell invasion and migration. Down-regulation of MMP7 diminished ERK/MEK signaling, whereas its up-regulation activated this pathway. The ERK-inhibitor GDC-0994 blocked phosphorylation of MEK/ERK and suppressed TGM2 and MMP7. TGM2 communicates with MMP7 in colon cancer cells forces cell migration and invasion by the MEK/ERK signaling pathway and triggers EMT. Inhibiting TGM2 could thus offer new therapeutic options to treat patients with colon cancer, particularly to prevent metastatic progression.
Collapse
Affiliation(s)
- Roman A Blaheta
- University Medical Center Mainz, Dept. of Urology and Pediatric Urology, 55131 Mainz, Germany.
| | - Jiaoyan Han
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany
| | - Katrin Burkhard
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany; Current affiliation: Department of Legal Medicine, University of Saarland Medical School, 66421 Homburg, Germany
| | - Axel Haferkamp
- University Medical Center Mainz, Dept. of Urology and Pediatric Urology, 55131 Mainz, Germany
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary-Institute, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Patrizia Malkomes
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Huang Y, Wang G, Zhang N, Zeng X. MAP3K4 kinase action and dual role in cancer. Discov Oncol 2024; 15:99. [PMID: 38568424 PMCID: PMC10992237 DOI: 10.1007/s12672-024-00961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
It is commonly known that the MAPK pathway is involved in translating environmental inputs, regulating downstream reactions, and maintaining the intrinsic dynamic balance. Numerous essential elements and regulatory processes are included in this pathway, which are essential to its functionality. Among these, MAP3K4, a member of the serine/threonine kinases family, plays vital roles throughout the organism's life cycle, including the regulation of apoptosis and autophagy. Moreover, MAP3K4 can interact with key partners like GADD45, which affects organism's growth and development. Notably, MAP3K4 functions as both a tumor promotor and suppressor, being activated by a variety of factors and triggering diverse downstream pathways that differently influence cancer progression. The aim of this study is to provide a brief overview of physiological functions of MAP3K4 and shed light on its contradictory roles in tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Kase Y, Sato T, Okano Y, Okano H. The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization. iScience 2022; 25:104089. [PMID: 35497000 PMCID: PMC9042895 DOI: 10.1016/j.isci.2022.104089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
GADD45G, one of the genes containing the human-specific conserved deletion enhancer-sequence (hCONDEL), has contributed to the evolution of the human cerebrum, but its function in human neurons has not been established. Here, we show that the GADD45G/p38 MAPK/CDC25B signaling pathway promotes neurite outgrowth in human neurons by facilitating microtubule polymerization. This pathway ultimately promotes dephosphorylation of phosphorylated CRMP2 which in turn promotes microtubule assembly. We also found that GADD45G was highly expressed in developing human cerebral specimens. In addition, RK-682, which is the inhibitor of a phosphatase of p38 MAPK and was found in Streptomyces sp., was shown to promote microtubule polymerization and neurite outgrowth by enhancing p38 MAPK/CDC25B signaling. These in vitro and in vivo results indicate that GADD45G/p38 MAPK/CDC25B enhances neurite outgrowth in human neurons.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
4
|
Li F, Wang M, Li X, Long Y, Chen K, Wang X, Zhong M, Cheng W, Tian X, Wang P, Ji M, Ma X. Inflammatory-miR-301a circuitry drives mTOR and Stat3-dependent PSC activation in chronic pancreatitis and PanIN. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:970-982. [PMID: 35211358 PMCID: PMC8829454 DOI: 10.1016/j.omtn.2022.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 02/09/2023]
Abstract
Activated pancreatic stellate cells (PSCs) are the main cells involved in chronic pancreatitis and pancreatic intraepithelial neoplasia lesion (PanIN). Fine-tuning the precise molecular targets in PSC activation might help the development of PSC-specific therapeutic strategies to tackle progression of pancreatic cancer-related fibrosis. miR-301a is a pro-inflammatory microRNA known to be activated by multiple inflammatory factors in the tumor stroma. Here, we show that miR-301a is highly expressed in activated PSCs in mice, sustained tissue fibrosis in caerulein-induced chronic pancreatitis, and accelerated PanIN formation. Genetic ablation of miR-301a reduced pancreatic fibrosis in mouse models with chronic pancreatitis and PanIN. Cell proliferation and activation of PSCs was inhibited by downregulation of miR-301a via two of its targets, Tsc1 and Gadd45g. Moreover, aberrant PSC expression of miR-301a and Gadd45g restricted the interplay between PSCs and pancreatic cancer cells in tumorigenesis. Our findings suggest that miR-301a activates two major cell proliferation pathways, Tsc1/mTOR and Gadd45g/Stat3, in vivo, to facilitate development of inflammatory-induced PanIN and maintenance of PSC activation and desmoplasia in pancreatic cancer.
Collapse
Affiliation(s)
- Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Miaomiao Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xun Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xinjie Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Mingtian Zhong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Weimin Cheng
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xuemei Tian
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong Province, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| |
Collapse
|
5
|
Gadd45 in Normal Hematopoiesis and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:41-54. [DOI: 10.1007/978-3-030-94804-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yu W, Schmachtel T, Fawaz M, Rieger MA. Isolation of murine bone marrow hematopoietic stem and progenitor cell populations via flow cytometry. Methods Cell Biol 2022; 171:173-195. [DOI: 10.1016/bs.mcb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
8
|
Schmidt J, Oppermann E, Blaheta RA, Schreckenbach T, Lunger I, Rieger MA, Bechstein WO, Holzer K, Malkomes P. Carbonic-anhydrase IX expression is increased in thyroid cancer tissue and represents a potential therapeutic target to eradicate thyroid tumor-initiating cells. Mol Cell Endocrinol 2021; 535:111382. [PMID: 34216643 DOI: 10.1016/j.mce.2021.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
The expression of Carbonic-anhydrase IX (CAIX) in thyroid cancer (TC) subtypes was determined and its role in cancer cell growth and tumor-initiating cells (TICs) investigated. Immunohistochemistry in 114 TC patients revealed that CAIX expression was increased in tumor specimens of papillary, follicular and anaplastic TCs compared to normal thyroid tissue. Clinicopathological data indicated that lymph node metastases were more frequent in patients with high CAIX expression. The Cancer Genome Atlas database analysis demonstrated that a strong CAIX-mRNA expression was associated with advanced tumor stages and poor survival in TCs. In TC cell lines, CAIX expression was elevated in tumorspheres compared to monolayer cultures and was associated with an increased expression of stemness markers. Genetic knockdown or pharmacological inhibition of CAIX suppressed cell proliferation and the TIC ability to form tumorspheres by an induction of apoptosis and cell-cycle arrest. These findings suggest CAIX as a potential prognostic marker and a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Jennifer Schmidt
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Hospital of the Goethe University Frankfurt, Department of Urology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Teresa Schreckenbach
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael A Rieger
- Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; German Cancer Consortium and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina Holzer
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Philipps University Hospital of Marburg, Section of Endocrine Surgery, Department of Visceral-, Thoracic- and Vascular Surgery, Baldingerstraße, 35043, Marburg, Germany
| | - Patrizia Malkomes
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Malkomes P, Lunger I, Oppermann E, Abou-El-Ardat K, Oellerich T, Günther S, Canbulat C, Bothur S, Schnütgen F, Yu W, Wingert S, Haetscher N, Catapano C, Dietz MS, Heilemann M, Kvasnicka HM, Holzer K, Serve H, Bechstein WO, Rieger MA. Transglutaminase 2 promotes tumorigenicity of colon cancer cells by inactivation of the tumor suppressor p53. Oncogene 2021; 40:4352-4367. [PMID: 34103685 PMCID: PMC8225513 DOI: 10.1038/s41388-021-01847-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Despite a high clinical need for the treatment of colorectal carcinoma (CRC) as the second leading cause of cancer-related deaths, targeted therapies are still limited. The multifunctional enzyme Transglutaminase 2 (TGM2), which harbors transamidation and GTPase activity, has been implicated in the development and progression of different types of human cancers. However, the mechanism and role of TGM2 in colorectal cancer are poorly understood. Here, we present TGM2 as a promising drug target.In primary patient material of CRC patients, we detected an increased expression and enzymatic activity of TGM2 in colon cancer tissue in comparison to matched normal colon mucosa cells. The genetic ablation of TGM2 in CRC cell lines using shRNAs or CRISPR/Cas9 inhibited cell expansion and tumorsphere formation. In vivo, tumor initiation and growth were reduced upon genetic knockdown of TGM2 in xenotransplantations. TGM2 ablation led to the induction of Caspase-3-driven apoptosis in CRC cells. Functional rescue experiments with TGM2 variants revealed that the transamidation activity is critical for the pro-survival function of TGM2. Transcriptomic and protein-protein interaction analyses applying various methods including super-resolution and time-lapse microscopy showed that TGM2 directly binds to the tumor suppressor p53, leading to its inactivation and escape of apoptosis induction.We demonstrate here that TGM2 is an essential survival factor in CRC, highlighting the therapeutic potential of TGM2 inhibitors in CRC patients with high TGM2 expression. The inactivation of p53 by TGM2 binding indicates a general anti-apoptotic function, which may be relevant in cancers beyond CRC.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Khalil Abou-El-Ardat
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Oellerich
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Department I Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Can Canbulat
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Weijia Yu
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Susanne Wingert
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Nadine Haetscher
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
| | - Claudia Catapano
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hans-Michael Kvasnicka
- Goethe University Frankfurt, Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - Katharina Holzer
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
- Philipps University of Marburg, Department of Visceral-, Thoracic- and Vascular Surgery, Marburg, Germany
| | - Hubert Serve
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Goethe University Hospital Frankfurt, Department of General, Visceral and Transplant Surgery, Frankfurt am Main, Germany
| | - Michael A Rieger
- Goethe University Hospital Frankfurt, Department of Medicine, Hematology/Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
GADD45g acts as a novel tumor suppressor and its activation confers new combination regimens for the treatment of AML. Blood 2021; 138:464-479. [PMID: 33945602 DOI: 10.1182/blood.2020008229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy for which there is an unmet need for novel treatment strategies. Here, we characterize the growth arrest and DNA damage-inducible gene gamma (GADD45g) as a novel tumor suppressor in AML. We show that GADD45g is preferentially silenced in AML, especially in AML with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations and mixed-lineage leukemia (MLL)-rearrangements, and reduced expression of GADD45g is correlated with poor prognosis in AML patients. Upregulation of GADD45g impairs homologous recombination (HR) DNA repair, leading to DNA damage accumulation, and dramatically induces apoptosis, differentiation, growth arrest and increases sensitivity of AML cells to chemotherapeutic drugs, without affecting normal cells. In addition, GADD45g is epigenetically silenced by histone deacetylation in AML, and its expression is further downregulated by oncogenes FLT3-ITD and MLL-AF9 in patients carrying these genetic abnormalities. Combination of histone deacetylase 1/2 inhibitor Romidepsin with FLT3 tyrosine kinase inhibitor AC220 or bromodomain inhibitor JQ1 exert synergistic anti-leukemic effects on FLT3-ITD+ and MLL-AF9+ AML, respectively, by dually activating GADD45g. These findings uncover hitherto unreported evidence for the selective anti-leukemia role of GADD45g and provide novel strategies for the treatment of FLT3-ITD+ and MLL-AF9+ AML.
Collapse
|
11
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are defined by their ability to self-renew and differentiate to replenish all blood lineages throughout adult life. Under homeostasis, the majority of HSCs are quiescent, and few stem cells are cycling to sustain hematopoiesis. However, HSCs can be induced to proliferate and differentiate in response to stress signals produced during infection, inflammation, chemotherapy, radiation, bone marrow transplantation, and aging. Recent evidence suggests that acute and chronic stress impact the number and function of HSCs including their ability to repopulate and produce mature cells. This review will focus on how chronic stress affects HSC biology and methods to mitigate HSC loss during chronic hematopoietic stress. RECENT FINDINGS Quiescent HSCs exit dormancy, divide, and differentiate to maintain steady-state hematopoiesis. Under conditions of acute stress including infection or blood loss some HSCs are pushed into division by cytokines and proinflammatory stimuli to differentiate and provide needed myeloid and erythroid cells to protect and reconstitute the host; after which, hematopoiesis returns to steady-state with minimal loss of HSC function. However, under conditions of chronic stress including serial bone marrow transplantation (BMT), chronic inflammation, and genotoxic stress (chemotherapy) and aging, HSCs are continuously induced to proliferate and undergo accelerated exhaustion. Recent evidence demonstrates that ablation of inhibitor of DNA binding 1 (Id1) gene can protect HSCs from exhaustion during chronic proliferative stress by promoting HSC quiescence. SUMMARY Increasing our understanding of the molecular processes that protect HSCs from chronic proliferative stress could lead to therapeutic opportunities to prevent accelerated HSC exhaustion during physiological stress, genotoxic stress, BMT, and aging.
Collapse
|
13
|
Simats A, Ramiro L, García-Berrocoso T, Briansó F, Gonzalo R, Martín L, Sabé A, Gill N, Penalba A, Colomé N, Sánchez A, Canals F, Bustamante A, Rosell A, Montaner J. A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke. Mol Cell Proteomics 2020; 19:1921-1936. [PMID: 32868372 PMCID: PMC7710142 DOI: 10.1074/mcp.ra120.002283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ferran Briansó
- Bioinformatics and Biostatistics Unit, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Genetics, Microbiology and Statistics Dept., Universitat de Barcelona, Barcelona, Spain
| | - Ricardo Gonzalo
- Bioinformatics and Biostatistics Unit, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luna Martín
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Sabé
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Gill
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Colomé
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Sánchez
- Bioinformatics and Biostatistics Unit, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Genetics, Microbiology and Statistics Dept., Universitat de Barcelona, Barcelona, Spain
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Rosenbloom AB, Tarczyński M, Lam N, Kane RS, Bugaj LJ, Schaffer DV. β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proc Natl Acad Sci U S A 2020; 117:28828-28837. [PMID: 33139571 PMCID: PMC7682555 DOI: 10.1073/pnas.2008509117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells undergo differentiation in complex and dynamic environments wherein instructive signals fluctuate on various timescales. Thus, cells must be equipped to properly respond to the timing of signals, for example, to distinguish sustained signaling from transient noise. However, how stem cells respond to dynamic variations in differentiation cues is not well characterized. Here, we use optogenetic activation of β-catenin signaling to probe the dynamic responses of differentiating adult neural stem cells (NSCs). We discover that, while elevated, sustained β-catenin activation sequentially promotes proliferation and differentiation, transient β-catenin induces apoptosis. Genetic perturbations revealed that the neurogenic/apoptotic fate switch was mediated through cell-cycle regulation by Growth Arrest and DNA Damage 45 gamma (Gadd45γ). Our results thus reveal a role for β-catenin dynamics in NSC fate decisions and may suggest a role for signal timing to minimize cell-fate errors, analogous to kinetic proofreading of stem-cell differentiation.
Collapse
Affiliation(s)
| | - Marcin Tarczyński
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Nora Lam
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332;
| | - Lukasz J Bugaj
- Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
15
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
16
|
Toboso-Navasa A, Gunawan A, Morlino G, Nakagawa R, Taddei A, Damry D, Patel Y, Chakravarty P, Janz M, Kassiotis G, Brink R, Eilers M, Calado DP. Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. J Exp Med 2020; 217:e20191933. [PMID: 32407433 PMCID: PMC7336312 DOI: 10.1084/jem.20191933] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.
Collapse
Affiliation(s)
| | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Giulia Morlino
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Andrea Taddei
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Djamil Damry
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Yash Patel
- Retroviral Immunology, Francis Crick Institute, London, UK
| | | | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dinis Pedro Calado
- Immunity and Cancer, Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
17
|
Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020; 8:498. [PMID: 32719792 PMCID: PMC7347797 DOI: 10.3389/fcell.2020.00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erik Arner
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Jessica Severin
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Yokohama, Japan
| | - Lucas van Duin
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Kim M Summers
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Matsushita M, Nakamura T, Moriizumi H, Miki H, Takekawa M. Stress-responsive MTK1 SAPKKK serves as a redox sensor that mediates delayed and sustained activation of SAPKs by oxidative stress. SCIENCE ADVANCES 2020; 6:eaay9778. [PMID: 32637591 PMCID: PMC7314524 DOI: 10.1126/sciadv.aay9778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/13/2020] [Indexed: 05/29/2023]
Abstract
Cells respond to oxidative stress by inducing intracellular signaling, including stress-activated p38 and JNK MAPK (SAPK) pathways, but the underlying mechanisms remain unclear. Here, we report that the MAP three kinase 1 (MTK1) SAPK kinase kinase (SAPKKK) functions as an oxidative-stress sensor that perceives the cellular redox state and transduces it into SAPK signaling. Following oxidative stress, MTK1 is rapidly oxidized and gradually reduced at evolutionarily conserved cysteine residues. These coupled oxidation-reduction modifications of MTK1 elicit its catalytic activity. Gene knockout experiments showed that oxidative stress-induced SAPK signaling is mediated by coordinated activation of the two SAPKKKs, MTK1 and apoptosis signal-regulating kinase 1 (ASK1), which have different time and dose-response characteristics. The MTK1-mediated redox sensing system is crucial for delayed and sustained SAPK activity and dictates cell fate decisions including cell death and interleukin-6 production. Our results delineate a molecular mechanism by which cells generate optimal biological responses under fluctuating redox environments.
Collapse
Affiliation(s)
- Moe Matsushita
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Rieger MA. How children's glue fixes a decades old enigma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S348. [PMID: 32016066 DOI: 10.21037/atm.2019.09.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
20
|
Chen S, Wang Q, Yu H, Capitano ML, Vemula S, Nabinger SC, Gao R, Yao C, Kobayashi M, Geng Z, Fahey A, Henley D, Liu SZ, Barajas S, Cai W, Wolf ER, Ramdas B, Cai Z, Gao H, Luo N, Sun Y, Wong TN, Link DC, Liu Y, Boswell HS, Mayo LD, Huang G, Kapur R, Yoder MC, Broxmeyer HE, Gao Z, Liu Y. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun 2019; 10:5649. [PMID: 31827082 PMCID: PMC6906427 DOI: 10.1038/s41467-019-13542-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hao Yu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Chonghua Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Aidan Fahey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Danielle Henley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Stephen Z Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Sergio Barajas
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Wenjie Cai
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Eric R Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhigang Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Na Luo
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Yang Sun
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Terrence N Wong
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Daniel C Link
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Yunlong Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - H Scott Boswell
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
El-Menshawy N, Abd-Aziz SM, Elkhamisy EM, Ebrahim MA. Leukemia propagating cells in Philadelphia chromosome-positive ALL: a resistant phenotype with an adverse prognosis. Blood Res 2018; 53:138-144. [PMID: 29963520 PMCID: PMC6021579 DOI: 10.5045/br.2018.53.2.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/06/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Targeted therapy has revolutionized the management of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL); however, relapse still occurs because of the presence of quiescent stem cells, termed leukemia propagating cells (LPCs). This study aimed to assess the phenotypic diversity of LPCs in adult patients with Ph+ B-Acute ALL (B-ALL) and to assess its prognostic impact. Methods Seventy adults with newly diagnosed Ph+ B-ALL were recruited at the Mansoura Oncology Center. Multiparameter flow cytometry studies of mononuclear blast cells for cluster of differentiation (CD)34, CD38, and CD58 were performed. Results Seventeen patients had blasts with the pattern of LPCs (CD34+CD38-CD58-), while 53 cases had other diverse phenotypic patterns. The rate of complete response was significantly lower in patients with the LPC phenotype (47% vs. 81%, P=0.006). The median time to achieve a complete response was prolonged in patients with the CD34+CD38-CD58- phenotype (48 vs. 32 days, P=0.016). The three-year overall survival was significantly lower in patients with the CD34+CD38-CD58- phenotype (37% vs. 55% respectively, P=0.028). Multivariate analysis showed that the CD34+CD38- CD58- phenotype was an independent risk factor for overall survival. Conclusion The presence of CD34+CD38-CD58- LPCs at diagnosis allows rapid identification of higher risk patients. Risk stratification of these patients is needed to further guide therapy and develop effective LPCs-targeted therapy to improve treatment outcome.
Collapse
Affiliation(s)
- Nadia El-Menshawy
- Clinical Pathology Department, Hematology Unit, Mansoura Medical School, Mansoura University, Mansoura, Egypt
| | - Sherin M Abd-Aziz
- Clinical Pathology Department, Hematology Unit, Mansoura Medical School, Mansoura University, Mansoura, Egypt
| | - Enas M Elkhamisy
- Internal Medicine Department, Specialized Medicine Hospital, Mansoura Medical School, Mansoura University, Mansoura, Egypt
| | - Mohammed A Ebrahim
- Medical Oncology, Faculty of Medicine, Oncology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Huang EY, Chang JC, Chen HH, Hsu CY, Hsu HC, Wu KL. Carcinoembryonic antigen as a marker of radioresistance in colorectal cancer: a potential role of macrophages. BMC Cancer 2018; 18:321. [PMID: 29580202 PMCID: PMC5870371 DOI: 10.1186/s12885-018-4254-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
Background We sought to identify the carcinoembryonic antigen (CEA) as a marker of radioresistance in rectal cancer. Methods From July 1997 to January 2008, 104 patients with stage II or III rectal cancer who were treated with post-operative radiotherapy (PORT) were included in this study. The doses of radiotherapy ranged from 45 to 54.6 Gy. The CEA levels were measured before surgery. We analyzed the actuarial rates of overall survival (OS), distant metastasis (DM), and local recurrence (LR) using Kaplan-Meier curves. Multivariate analyses were performed with Cox regression models. We used THP-1 monocyte cell lines for macrophage differentiation (M0, M1 or M2). The RNA extracted from the macrophages was analyzed via a genomic method in the core laboratory. The radiosensitivities of CEA-rich LS1034 cells were compared between cells with and without the conditioned media from CEA-stimulated macrophages. Results Preoperative CEA levels ≥10 ng/mL were independent predictive factors for OS (p = 0.005), DM (p = 0.026), and LR (p = 0.004). The OS rates among the patients with pretreatment CEA levels < 10 ng/mL and ≥10 ng/mL were 64.5% and 35.9% (p = 0.004), respectively. The corresponding rates of DM were 40.6% and 73.1% (p = 0.024). The corresponding rates of LR were 6.6% and 33.9% (p = 0.002). In the M0 macrophages, exogenous CEA elicited a dose-response relationship with M2 differentiation. In the CEA-stimulated M0 cells, some mRNAs were upregulated by as much as 5-fold, including MMP12, GDF15, and JAG1. In the CEA-stimulated M2 cells, a 4-fold up-regulation of GADD45G mRNA was noted. The conditioned media from the CEA-stimulated M2 cells elicited an increase in the numbers of LS180, SW620, and LS1034 cells after irradiation. CEA caused the M2 differentiation of the macrophages. Conclusion Pretreatment CEA levels ≥10 ng/mL are a significant risk factor for OS, DM, and LR following PORT for rectal cancer. CEA causes radioresistance in the presence of M2 macrophages. More comprehensive examinations prior to surgery and intensive adjuvant therapy are suggested for patients with CEA levels ≥10 ng/mL. Further studies of these mechanisms are needed.
Collapse
Affiliation(s)
- Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Jen-Chieh Chang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colonic and Rectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Ying Hsu
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Chih Hsu
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Keng-Liang Wu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Flach J, Milyavsky M. Replication stress in hematopoietic stem cells in mouse and man. Mutat Res 2018; 808:74-82. [PMID: 29079268 DOI: 10.1016/j.mrfmmm.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 04/14/2023]
Abstract
Life-long blood regeneration relies on a rare population of self-renewing hematopoietic stem cells (HSCs). These cells' nearly unlimited self-renewal potential and lifetime persistence in the body signifies the need for tight control of their genome integrity. Their quiescent state, tightly linked with low metabolic activity, is one of the main strategies employed by HSCs to preserve an intact genome. On the other hand, HSCs need to be able to quickly respond to increased blood demands and rapidly increase their cellular output in order to fight infection-associated inflammation or extensive blood loss. This increase in proliferation rate, however, comes at the price of exposing HSCs to DNA damage inevitably associated with the process of DNA replication. Any interference with normal replication fork progression leads to a specialized molecular response termed replication stress (RS). Importantly, increased levels of RS are a hallmark feature of aged HSCs, where an accumulating body of evidence points to causative relationships between RS and the aging-associated impairment of the blood system's functional capacity. In this review, we present an overview of RS in HSCs focusing on its causes and consequences for the blood system of mice and men.
Collapse
Affiliation(s)
- Johanna Flach
- Department of Hematology and Medical Oncology & Institute of Molecular Oncology, University Medical Center Goettingen, Germany; Department of Hematology and Oncology, Medical Faculty Mannheim of the Heidelberg University, Mannheim, Germany.
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
24
|
Lunger I, Fawaz M, Rieger MA. Single-cell analyses to reveal hematopoietic stem cell fate decisions. FEBS Lett 2017; 591:2195-2212. [PMID: 28600837 DOI: 10.1002/1873-3468.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best studied adult stem cells with enormous clinical value. Most of our knowledge about their biology relies on assays at the single HSC level. However, only the recent advances in developing new single cell technologies allowed the elucidation of the complex regulation of HSC fate decision control. This Review will focus on current attempts to investigate individual HSCs at molecular and functional levels. The advantages of these technologies leading to groundbreaking insights into hematopoiesis will be highlighted, and the challenges facing these technologies will be discussed. The importance of combining molecular and functional assays to enlighten regulatory networks of HSC fate decision control, ideally at high temporal resolution, becomes apparent for future studies.
Collapse
Affiliation(s)
- Ilaria Lunger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 2017; 169:807-823.e19. [PMID: 28479188 DOI: 10.1016/j.cell.2017.04.018] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Leticia P Roma
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Roberta Scognamiglio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carolina M Florian
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Malak Fawaz
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dominik Vonficht
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Plastic CD34 and CD38 expression in adult B-cell precursor acute lymphoblastic leukemia explains ambiguity of leukemia-initiating stem cell populations. Leukemia 2016; 31:731-734. [PMID: 27956738 PMCID: PMC5339428 DOI: 10.1038/leu.2016.315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Wingert S, Rieger MA. Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A. Exp Hematol 2016; 44:561-6. [PMID: 27262218 DOI: 10.1016/j.exphem.2016.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem cells (HSCs) sustain lifelong blood cell regeneration by balancing their ability for self-renewal with their ability to differentiate into all blood cell types. To prevent organ exhaustion and malignant transformation, long-lived HSCs, in particular, must be protected from exogenous and endogenous stress, which cause severe DNA damage. When DNA is damaged, distinct DNA repair mechanisms and cell fate controls occur in adult HSCs compared with committed cells. Growth arrest and DNA damage-inducible 45 alpha (GADD45A) is known to coordinate a variety of cellular stress responses, indicating the molecule is an important stress mediator. So far, the function of GADD45A in hematopoietic stem and progenitor cells is controversial and appears highly dependent on the cell type and stress stimulus. Recent studies have analyzed its role in cell fate decision control of prospectively isolated HSCs and have revealed unexpected functions of GADD45A, as discussed here. The upregulation of GADD45A by DNA damage-causing conditions results in enhanced HSC differentiation, probably to efficiently eliminate aberrant HSCs from the system. These findings, in concert with a few studies on other stem cell systems, have led us to propose DNA damage-induced differentiation as a novel DNA damage response mechanism in stem cells that circumvents the fatal consequences of cumulative DNA damage in the stem cell compartment.
Collapse
Affiliation(s)
- Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
28
|
Li J, Zhang J, Tang M, Xin J, Xu Y, Volk A, Hao C, Hu C, Sun J, Wei W, Cao Q, Breslin P, Zhang J. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism. Stem Cells 2016; 34:2130-44. [PMID: 27096933 DOI: 10.1002/stem.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/19/2016] [Accepted: 03/26/2016] [Indexed: 12/21/2022]
Abstract
The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144.
Collapse
Affiliation(s)
- Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Minghui Tang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Yan Xu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Caiqin Hao
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Chenglong Hu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jiewen Sun
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA
| | - Quichan Cao
- Department of Public Health Sciences, Loyola University Chicago, Chicago, Illinois, USA
| | - Peter Breslin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA.,Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Molecular and Cellular Physiology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, USA.,Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
29
|
Wingert S, Thalheimer FB, Haetscher N, Rehage M, Schroeder T, Rieger MA. DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival. Stem Cells 2016; 34:699-710. [PMID: 26731607 PMCID: PMC4832267 DOI: 10.1002/stem.2282] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/07/2015] [Accepted: 10/25/2015] [Indexed: 01/26/2023]
Abstract
Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system.
Collapse
Affiliation(s)
- Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Nadine Haetscher
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Maike Rehage
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Haetscher N, Feuermann Y, Wingert S, Rehage M, Thalheimer FB, Weiser C, Bohnenberger H, Jung K, Schroeder T, Serve H, Oellerich T, Hennighausen L, Rieger MA. STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling. Nat Commun 2015; 6:8928. [PMID: 26603207 PMCID: PMC4674773 DOI: 10.1038/ncomms9928] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Haematopoietic stem cells (HSCs) require the right composition of microRNAs (miR) for proper life-long balanced blood regeneration. Here we show a regulatory circuit that prevents excessive HSC self-renewal by upregulation of miR-193b upon self-renewal promoting thrombopoietin (TPO)-MPL-STAT5 signalling. In turn, miR-193b restricts cytokine signalling, by targeting the receptor tyrosine kinase c-KIT. We generated a miR-193b knockout mouse model to unravel the physiological function of miR-193b in haematopoiesis. MiR-193b−/− mice show a selective gradual enrichment of functional HSCs, which are fully competent in multilineage blood reconstitution upon transplantation. The absence of miR-193b causes an accelerated expansion of HSCs, without altering cell cycle or survival, but by decelerating differentiation. Conversely, ectopic miR-193b expression restricts long-term repopulating HSC expansion and blood reconstitution. MiR-193b-deficient haematopoietic stem and progenitor cells exhibit increased basal and cytokine-induced STAT5 and AKT signalling. This STAT5-induced microRNA provides a negative feedback for excessive signalling to restrict uncontrolled HSC expansion. MicroRNAs regulate haematopoietic stem cell (HSC) development to ensure the correct generation of blood cells. Haetscher et al. show in mice that miR-193b controls the life-long self-renewal ability of HSCs via AKT and STAT5 pathways, with loss of miR-193b accelerating HSC expansion and reducing differentiation.
Collapse
Affiliation(s)
- Nadine Haetscher
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany
| | - Yonatan Feuermann
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Laboratory of Genetics and Physiology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Susanne Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany
| | - Maike Rehage
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany
| | - Christian Weiser
- Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany
| | - Hanibal Bohnenberger
- Department of Pathology, University Medical Center Göttingen, Robert-Koch-Street 40, Goettingen 37075, Germany
| | - Klaus Jung
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Goettingen 37073, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Hubert Serve
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Thomas Oellerich
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.,Georg-Speyer-Haus, Paul-Ehrlich-Street 42-44, Frankfurt 60596, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
31
|
Rabenhorst U, Thalheimer F, Gerlach K, Kijonka M, Böhm S, Krause D, Vauti F, Arnold HH, Schroeder T, Schnütgen F, von Melchner H, Rieger M, Zörnig M. Single-Stranded DNA-Binding Transcriptional Regulator FUBP1 Is Essential for Fetal and Adult Hematopoietic Stem Cell Self-Renewal. Cell Rep 2015; 11:1847-55. [DOI: 10.1016/j.celrep.2015.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/08/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022] Open
|
32
|
The functional interplay between the t(9;22)-associated fusion proteins BCR/ABL and ABL/BCR in Philadelphia chromosome-positive acute lymphatic leukemia. PLoS Genet 2015; 11:e1005144. [PMID: 25919613 PMCID: PMC4412790 DOI: 10.1371/journal.pgen.1005144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/15/2015] [Indexed: 12/20/2022] Open
Abstract
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The t(9;22) is a reciprocal translocation, which causes chronic myeloid leukemia (CML) and a subset of high risk acute lymphatic leukemia (ALL). The derivative chromosome 22 is the so called Philadelphia chromosome (Ph) which encodes the BCR/ABL kinase. Targeting BCR/ABL by selective ATP competitors, such as imatinib or nilotinib, is a well validated therapeutic concept, but unable to definitively eradicate the disease. Little is known about the role of the fusion protein encoded by the reciprocal derivative chromosome 9, the ABL/BCR. In models of Ph+ ALL we show that the functional interplay between ABL/BCR and BCR/ABL not only increases the transformation potential of BCR/ABL but is also indispensable for the growth and survival of Ph+ ALL leukemic cells. The presence of ABL/BCR changed the phenotype of the leukemia most likely due to its capacity to influence the stem cell population as shown by our in vivo data. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Collapse
|
33
|
RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 2015; 125:3570-9. [PMID: 25911237 DOI: 10.1182/blood-2014-11-610519] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The activity of antagonizing transcription factors represents a mechanistic paradigm of bidirectional lineage-fate control during hematopoiesis. At the megakaryocytic/erythroid bifurcation, the cross-antagonism of krueppel-like factor 1 (KLF1) and friend leukemia integration 1 (FLI1) has such a decisive role. However, how this antagonism is resolved during lineage specification is poorly understood. We found that runt-related transcription factor 1 (RUNX1) inhibits erythroid differentiation of murine megakaryocytic/erythroid progenitors and primary human CD34(+) progenitor cells. We show that RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation by epigenetic repression of the erythroid master regulator KLF1. RUNX1 binding to the KLF1 locus is increased during megakaryocytic differentiation and counterbalances the activating role of T-cell acute lymphocytic leukemia 1 (TAL1). We found that corepressor recruitment by RUNX1 contributes to a block of the KLF1-dependent erythroid gene expression program. Our data indicate that the repressive function of RUNX1 influences the balance between erythroid and megakaryocytic differentiation by shifting the balance between KLF1 and FLI1 in the direction of FLI1. Taken together, we show that RUNX1 is a key player within a network of transcription factors that represses the erythroid gene expression program.
Collapse
|
34
|
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. ACTA ACUST UNITED AC 2015; 212:525-38. [PMID: 25824820 PMCID: PMC4387289 DOI: 10.1084/jem.20141438] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Tesio at al. identify a novel pathway controlled by the tumor suppressor and deubiquitinase cylindromatosis (CYLD), which is involved in the regulation of hematopoietic stem cell quiescence and repopulation potential. The status of long-term quiescence and dormancy guarantees the integrity of hematopoietic stem cells (HSCs) during adult homeostasis. However the molecular mechanisms regulating HSC dormancy remain poorly understood. Here we show that cylindromatosis (CYLD), a tumor suppressor gene and negative regulator of NF-κB signaling with deubiquitinase activity, is highly expressed in label-retaining dormant HSCs (dHSCs). Moreover, Cre-mediated conditional elimination of the catalytic domain of CYLD induced dHSCs to exit quiescence and abrogated their repopulation and self-renewal potential. This phenotype is dependent on the interactions between CYLD and its substrate TRAF2 (tumor necrosis factor–associated factor 2). HSCs expressing a mutant CYLD with an intact catalytic domain, but unable to bind TRAF2, showed the same HSC phenotype. Unexpectedly, the robust cycling of HSCs lacking functional CYLD–TRAF2 interactions was not elicited by increased NF-κB signaling, but instead by increased activation of the p38MAPK pathway. Pharmacological inhibition of p38MAPK rescued the phenotype of CYLD loss, identifying the CYLD–TRAF2–p38MAPK pathway as a novel important regulator of HSC function restricting HSC cycling and promoting dormancy.
Collapse
Affiliation(s)
- Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Katja Müdder
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elizabeth Macintyre
- Institut Necker-Enfants Malades (INEM) and Université Paris Sorbonne Cité at Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1151, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany The German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015; 520:549-52. [PMID: 25707806 DOI: 10.1038/nature14131] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/02/2014] [Indexed: 01/03/2023]
Abstract
Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.
Collapse
|