1
|
Zhang R, Wei R, Yuan Y, Li N, Hu Y, Chan KH, Hung IFN, Tse HF. Human-induced pluripotent stem cell-derived hepatocyte platform in modeling of SARS-CoV-2 infection. JGH Open 2024; 8:e13039. [PMID: 39006099 PMCID: PMC11239974 DOI: 10.1002/jgh3.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/31/2023] [Accepted: 02/08/2024] [Indexed: 07/16/2024]
Abstract
Background and Aim Currently, SARS-CoV-2 is still spreading rapidly and globally. A large proportion of patients with COVID-19 developed liver injuries. The human-induced pluripotent stem cell (iPSC)-derived hepatocytes recapitulate primary human hepatocytes and have been widely used in studies of liver diseases. Methods To explore the susceptibility of hepatocytes to SARS-CoV-2, we differentiated iPSCs to functional hepatocytes and tried infecting them with different MOI (1, 0.1, 0.01) of SARS-CoV-2. Results The iPSC-derived hepatocytes are highly susceptible to virus infection, even at 0.01 MOI. Other than the ancestral strain, iHeps also support the replication of SARS-CoV-2 variants including alpha, beta, theta, and delta. More interestingly, the ACE2 expression significantly upregulated after infection, suggesting a vicious cycle between virus infection and liver injury. Conclusions The iPSC-derived hepatocytes can support the replication of SARS-CoV-2, and this platform could be used to investigate the SARS-CoV-2 hepatotropism and hepatic pathogenic mechanisms.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Rui Wei
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University Guangzhou China
- Center for Translational Stem Cell Biology Hong Kong SAR China
| | - Yangyang Yuan
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
- Center for Translational Stem Cell Biology Hong Kong SAR China
| | - Na Li
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Yang Hu
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
- Center for Translational Stem Cell Biology Hong Kong SAR China
- Cardiac and Vascular Center Hong Kong University Shenzhen Hospital Shenzhen China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
2
|
Generation of a Human iPSC Line CIBi010-A with a Reporter for ASGR1 Using CRISPR/Cas9. Stem Cell Res 2022; 62:102800. [DOI: 10.1016/j.scr.2022.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022] Open
|
3
|
Wei R, Yang J, Cheng CW, Ho WI, Li N, Hu Y, Hong X, Fu J, Yang B, Liu Y, Jiang L, Lai WH, Au KW, Tsang WL, Tse YL, Ng KM, Esteban MA, Tse HF. CRISPR-targeted genome editing of human induced pluripotent stem cell-derived hepatocytes for the treatment of Wilson's disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100389. [PMID: 34877514 PMCID: PMC8633686 DOI: 10.1016/j.jhepr.2021.100389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD. Methods We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b-/-/ Rag2-/-/ Il2rg-/-; ARG). Results We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene (ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored in vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in hepatic copper accumulation and consequently copper-induced hepatocyte toxicity. Conclusions Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders. Lay summary Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that originated from a patient with Wilson’s disease. These gene-corrected hepatocytes are potential cell sources for autologous cell therapy in patients with Wilson’s disease. Correction of the ATP7B R778L mutation restored the subcellular localization of ATP7B in iHeps. The copper exportation capability of ATP7B was restored in gene-corrected iHeps. Gene-corrected iHeps reduced hepatic copper accumulation and copper-induced hepatic toxicity in mice with Wilson’s disease. Gene-corrected iHeps are potential ex vivo cell sources for therapy in Wilson’s disease.
Collapse
Key Words
- AFP, alpha-fetoprotein
- ALB, albumin
- ATP7B, ATPase copper transporting beta
- ATPase copper transporting beta polypeptide (ATP7B)
- Clustered regularly interspaced palindromic repeats (CRISPR)/Cas9
- EB, embryoid body
- RFLP, restriction fragment length polymorphism
- Single-stranded Oligodeoxynucleotide (ssODN)
- TGN, trans-Golgi network
- WD, Wilson’s disease
- Wilson’s disease
- cell therapy
- gene correction
- iHep(s), iPSC-derived hepatocyte(s)
- iPSC, induced pluripotent stem cell
- iPSC-derived hepatocytes (iHeps)
- induced pluripotent stem cell (iPSC)
- sgRNA, single guide RNA
- ssODN, single-stranded oligodeoxynucleotide
Collapse
Affiliation(s)
- Rui Wei
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
| | - Jiayin Yang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Chi-Wa Cheng
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Wai-In Ho
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Na Li
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Yang Hu
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Xueyu Hong
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian Fu
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Bo Yang
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Yuqing Liu
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Lixiang Jiang
- Cell Inspire Therapeutics Co., Ltd and Cell Inspire Biotechnology Co., Ltd, Shenzhen 518102, China
| | - Wing-Hon Lai
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Ka-Wing Au
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Wai-Ling Tsang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiu-Lam Tse
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
| | - Kwong-Man Ng
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
| | - Miguel A. Esteban
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China
- Corresponding authors. Address: Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China; Tel.: (852) 2255-4694, fax: (852) 2818-6304.
| | - Hung-Fat Tse
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong, China
- Center for Translational Stem Cell Biology, Hong Kong, China
- Heart and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Corresponding authors. Address: Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China; Tel.: (852) 2255-4694, fax: (852) 2818-6304.
| |
Collapse
|
4
|
Abstract
The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain.
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
6
|
Zhang J, Chou OHI, Tse YL, Ng KM, Tse HF. Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22158132. [PMID: 34360897 PMCID: PMC8347533 DOI: 10.3390/ijms22158132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.
Collapse
Affiliation(s)
- Jennifer Zhang
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Oscar Hou-In Chou
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
- Correspondence: (K.-M.N.); (H.-F.T.); Tel.: +852-3917-9955 (K.-M.N.); +852-2255-3598 (H.-F.T.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
- Centre of Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong, China
- Correspondence: (K.-M.N.); (H.-F.T.); Tel.: +852-3917-9955 (K.-M.N.); +852-2255-3598 (H.-F.T.)
| |
Collapse
|
7
|
Ge W, Song Y, Chu M, Liu Y, Yang B, Wang K, Yu B, Song C, Wang Y, Yang J. Generation of a human iPSC line CIBi009-A from a patient with familial hypercholesterolemia carrying variants of LDLR c.T1241G and APOB c.G1618T. Stem Cell Res 2021; 53:102347. [PMID: 33892292 DOI: 10.1016/j.scr.2021.102347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022] Open
Abstract
Patients with familial hypercholesterolemia (FH) are susceptible to premature coronary artery disease. We generated a human iPSC line CIBi009-A from a patient with FH who carried variants of LDLR c.T1241G and APOB c.G1618T. This line will be a valuable resource for investigating novel therapeutic approaches to FH.
Collapse
Affiliation(s)
- Wenkun Ge
- Department of Cardiology, The First People's Hospital of Shangqiu, Shangqiu 476100, China
| | - Yizhe Song
- Department of Histology and Embryology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Meng Chu
- Cell Inspire Biotechnology Co., Ltd., Shenzhen 518101, China
| | - Yuqing Liu
- Cell Inspire Biotechnology Co., Ltd., Shenzhen 518101, China
| | - Bo Yang
- Cell Inspire Biotechnology Co., Ltd., Shenzhen 518101, China
| | - Kejian Wang
- The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan 250031, China
| | - Baorong Yu
- Cell Inspire Biotechnology Co., Ltd., Shenzhen 518101, China
| | - Chunyang Song
- Department of Cardiology, Shangqiu Municipal Hospital, Shangqiu 476100, China
| | - Yong Wang
- Department of Cardiology, The First People's Hospital of Shangqiu, Shangqiu 476100, China
| | - Jiayin Yang
- Cell Inspire Biotechnology Co., Ltd., Shenzhen 518101, China; Cell Inspire Therapeutics Co., Ltd., Shenzhen 518101, China.
| |
Collapse
|
8
|
Michielin F, Giobbe GG, Luni C, Hu Q, Maroni I, Orford MR, Manfredi A, Di Filippo L, David AL, Cacchiarelli D, De Coppi P, Eaton S, Elvassore N. The Microfluidic Environment Reveals a Hidden Role of Self-Organizing Extracellular Matrix in Hepatic Commitment and Organoid Formation of hiPSCs. Cell Rep 2020; 33:108453. [PMID: 33264615 PMCID: PMC8237389 DOI: 10.1016/j.celrep.2020.108453] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/26/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The specification of the hepatic identity during human liver development is strictly controlled by extrinsic signals, yet it is still not clear how cells respond to these exogenous signals by activating secretory cascades, which are extremely relevant, especially in 3D self-organizing systems. Here, we investigate how the proteins secreted by human pluripotent stem cells (hPSCs) in response to developmental exogenous signals affect the progression from endoderm to the hepatic lineage, including their competence to generate nascent hepatic organoids. By using microfluidic confined environment and stable isotope labeling with amino acids in cell culture-coupled mass spectrometry (SILAC-MS) quantitative proteomic analysis, we find high abundancy of extracellular matrix (ECM)-associated proteins. Hepatic progenitor cells either derived in microfluidics or exposed to exogenous ECM stimuli show a significantly higher potential of forming hepatic organoids that can be rapidly expanded for several passages and further differentiated into functional hepatocytes. These results prove an additional control over the efficiency of hepatic organoid formation and differentiation for downstream applications.
Collapse
Affiliation(s)
- Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Giovanni G Giobbe
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China
| | - Qianjiang Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China
| | - Ida Maroni
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Michael R Orford
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078 Pozzuoli, Italy
| | | | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, WC1E 6AU London, UK
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, 80078 Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II," 80131 Naples, Italy
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK; Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, WC1N 3JH London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK
| | - Nicola Elvassore
- Great Ormond Street Institute of Child Health, University College London, WC1N1EH London, UK; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 201210 Shanghai, China; Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), 35129 Padova, Italy.
| |
Collapse
|
9
|
Generation of a human iPSC line CIBi008-A from amniotic fluid-derived cells of a fetus with β-thalassemia carrying variants of -28A > G and IVS-II-654C > T in HBB. Stem Cell Res 2020; 49:102074. [PMID: 33157391 DOI: 10.1016/j.scr.2020.102074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
β-thalassemia is mostly caused by homozygous or compound heterozygous variants in HBB. We generated a human iPSC line CIBi008-A from amniotic fluid-derived cells of a fetus with β-thalassemia major, carrying compound heterozygous -28A > G and IVS-II-654C > T variants in HBB gene. This line will be a valuable resource for disease modeling and testing gene therapies for β-thalassemia.
Collapse
|
10
|
Nowak-Imialek M, Wunderlich S, Herrmann D, Breitschuh-Leibling S, Gohring G, Petersen B, Klein S, Baulain U, Lucas-Hahn A, Martin U, Niemann H. In Vitro and In Vivo Interspecies Chimera Assay Using Early Pig Embryos. Cell Reprogram 2020; 22:118-133. [PMID: 32429746 DOI: 10.1089/cell.2019.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chimeric pigs harboring organs derived from human stem cells are promising for patient-specific regenerative therapies. Induced pluripotent stem cells (iPSCs) can contribute to all cell types of the fetus, including germline after injection into embryos. However, ethical concerns prohibit testing human iPSCs in chimera assays. Here, we evaluated porcine embryos as hosts for an interspecies chimera assay using iPSCs from either cynomolgus monkeys (cyiPSCs) or mouse (miPSCs). To establish an in vitro culture system compatible for cyiPSCs and porcine embryos, we determined blastocyst development in eight different stem cell media. The highest developmental rates of blastocysts were achieved in Knockout Dulbecco's modified Eagle's medium with 20% knockout serum replacement. We found that cyiPSCs injected into porcine embryos survived in vitro and were mostly located in the trophectoderm (TE). Instead, when miPSCs were injected into porcine embryos, the cells rapidly proliferated. The behavior of chimeras developed in vitro was recapitulated in vivo; cyiPSCs were observed in the TE, but not in the porcine epiblast. However, when miPSCs were injected into in vivo derived porcine embryos, mouse cells were found in both, the epiblast and TE. These results demonstrate that porcine embryos could be useful for evaluating the interspecies chimera-forming ability of iPSCs from different species.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-LEBAO, Hannover Medical School, Hannover, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Sabine Klein
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Ulrich Martin
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs-LEBAO, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Larsen LE, Smith MA, Abbey D, Korn A, Reeskamp LF, Hand NJ, Holleboom AG. Hepatocyte-like cells derived from induced pluripotent stem cells: A versatile tool to understand lipid disorders. Atherosclerosis 2020; 303:8-14. [PMID: 32460140 DOI: 10.1016/j.atherosclerosis.2020.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Dyslipidemias are strongly linked to the development of atherosclerotic cardiovascular disease. Most dyslipidemias find their origin in the liver. In recent years, the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells has provided a versatile platform for the functional study of various dyslipidemias, both rare genetic dyslipidemia as well as common lipid disorders associated with insulin resistance or non-alcoholic fatty liver disease. In addition, iPSC-derived hepatocytes can serve as a cell model for developing novel lipid lowering therapies and have the potential of regenerative medicine. This review provides an overview of these developments.
Collapse
Affiliation(s)
- Lars E Larsen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Mikhaila A Smith
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Deepti Abbey
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amber Korn
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Nicholas J Hand
- Departments of Genetics and Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Adriaan G Holleboom
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands; Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Lu Y, Zhou Y, Ju R, Chen J. Human-animal chimeras for autologous organ transplantation: technological advances and future perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:576. [PMID: 31807557 DOI: 10.21037/atm.2019.10.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Organ transplantation is the most promising curation for end-stage organ disease. However, the donor organ shortage has become a global problem that has limited the development of organ transplantation. Human-animal chimeras provide the ability to produce human organs in other species using autologous stem cells [e.g., induced pluripotent stem cells (iPSCs) or adult stem cells], which would be patient-specific and immune-matched for transplantation. Due to the potential application prospect of interspecies chimeras in basic and translational research, this technology has attracted much interest. This review focuses primarily on technological advances, including options of donor stem cell types and gene editing in donor cells and host animals, in addition to perspectives on human-animal chimeras in clinical and basic research.
Collapse
Affiliation(s)
- Yingfei Lu
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Yu Zhou
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.,Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.,Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
13
|
Ray RM, Hansen AH, Slott S, Taskova M, Astakhova K, Morris KV. Control of LDL Uptake in Human Cells by Targeting the LDLR Regulatory Long Non-coding RNA BM450697. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:264-276. [PMID: 31279228 PMCID: PMC6611981 DOI: 10.1016/j.omtn.2019.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 10/31/2022]
Abstract
Hypercholesterolemia is a condition that is characterized by very high levels of cholesterol in the blood and is a major correlating factor with heart disease. Indeed, high levels of the low-density lipoprotein (LDL) have been causally linked to the development of atherosclerotic cardiovascular disease (ASCVD). A method to specifically reduce cholesterol in the blood in a long-term, stable manner could prove therapeutically relevant. Cholesterol is removed from the blood by the LDL receptor (LDLR) in the liver. Others and we have discovered that a long non-coding RNA (lncRNA; BM450697) functions as an endogenous epigenetic regulator of LDLR and that the repression of this lncRNA by the action of small interfering RNAs (siRNAs) results in the activation of LDLR. We found here, through the interrogation of two siRNAs that can target this lncRNA, both in a transcriptional and post-transcriptional manner, that BM450697 functions as a local scaffold for modulating LDLR transcription. Moreover, we found that conjugation of α-N-acetylgalactosamine (GalNAc) with two lncRNA-directed siRNAs allows for direct liver cell targeting of this lncRNA and functional enhanced uptake of cholesterol. Collectively, these data suggest that targeting the BM450697 lncRNA regulator of LDLR may result in a more specific, long-term, targeted approach to regulating cholesterol in the blood.
Collapse
Affiliation(s)
- Roslyn M Ray
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Anders Højgaard Hansen
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
14
|
Overeem AW, Klappe K, Parisi S, Klöters-Planchy P, Mataković L, du Teil Espina M, Drouin CA, Weiss KH, van IJzendoorn SCD. Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity. J Hepatol 2019; 71:344-356. [PMID: 30965071 DOI: 10.1016/j.jhep.2019.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Hepatocyte polarity is essential for the development of bile canaliculi and for safely transporting bile and waste products from the liver. Functional studies of autologous mutated proteins in the context of the polarized hepatocyte have been challenging because of the lack of appropriate cell models. The aims of this study were to obtain a patient-specific hepatocyte model that recapitulated hepatocyte polarity and to employ this model to study endogenous mutant proteins in liver diseases that involve hepatocyte polarity. METHODS Urine cell-derived pluripotent stem cells, taken from a patient with a homozygous mutation in ATP7B and a patient with a heterozygous mutation, were differentiated towards hepatocyte-like cells (hiHeps). HiHeps were also derived from a patient with MEDNIK syndrome. RESULTS Polarized hiHeps that formed in vivo-like bile canaliculi could be generated from embryonic and patient urine cell-derived pluripotent stem cells. HiHeps recapitulated polarized protein trafficking processes, exemplified by the Cu2+-induced redistribution of the copper transporter protein ATP7B to the bile canalicular domain. We demonstrated that, in contrast to the current dogma, the most frequent yet enigmatic Wilson disease-causing ATP7B-H1069Q mutation per se did not preclude trafficking of ATP7B to the trans-Golgi Network. Instead, it prevented its Cu2+-induced polarized redistribution to the bile canalicular domain, which could not be reversed by pharmacological folding chaperones. Finally, we demonstrate that hiHeps from a patient with MEDNIK syndrome, suffering from liver copper overload of unclear etiology, showed no defect in the Cu2+-induced redistribution of ATP7B to the bile canaliculi. CONCLUSIONS Functional cell polarity can be achieved in patient pluripotent stem cell-derived hiHeps, enabling, for the first time, the study of the endogenous mutant proteins, patient-specific pathogenesis and drug responses for diseases where hepatocyte polarity is a key factor. LAY SUMMARY This study demonstrates that cells that are isolated from urine can be reprogrammed in a dish towards hepatocytes that display architectural characteristics similar to those seen in the intact liver. The application of this methodology to cells from patients diagnosed with inherited copper metabolism-related liver diseases (that is, Wilson disease and MEDNIK syndrome) revealed unexpected and novel insights into patient mutation-specific disease mechanisms and drug responses.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Lavinija Mataković
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marines du Teil Espina
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian A Drouin
- Service de Dermatologie, Centre Hospitalier du Grand Portage, Rivière du Loup, Québec, Canada
| | - Karl Heinz Weiss
- University Hospital Heidelberg, Internal Medicine IV, Heidelberg, Germany
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Caron J, Pène V, Tolosa L, Villaret M, Luce E, Fourrier A, Heslan JM, Saheb S, Bruckert E, Gómez-Lechón MJ, Nguyen TH, Rosenberg AR, Weber A, Dubart-Kupperschmitt A. Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Res Ther 2019; 10:221. [PMID: 31358055 PMCID: PMC6664765 DOI: 10.1186/s13287-019-1342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Familial hypercholesterolemia type IIA (FH) is due to mutations in the low-density lipoprotein receptor (LDLR) resulting in elevated levels of low-density lipoprotein cholesterol (LDL-c) in plasma and in premature cardiovascular diseases. As hepatocytes are the only cells capable of metabolizing cholesterol, they are therefore the target cells for cell/gene therapy approaches in the treatment of lipid metabolism disorders. Furthermore, the LDLR has been reported to be involved in hepatitis C virus (HCV) entry into hepatocytes; however, its role in the virus infection cycle is still disputed. METHODS We generated induced pluripotent stem cells (iPSCs) from a homozygous LDLR-null FH-patient (FH-iPSCs). We constructed a correction cassette bearing LDLR cDNA under the control of human hepatic apolipoprotein A2 promoter that targets the adeno-associated virus integration site AAVS1. We differentiated both FH-iPSCs and corrected FH-iPSCs (corr-FH-iPSCs) into hepatocytes to study statin-mediated regulation of genes involved in cholesterol metabolism. Upon HCV particle inoculation, viral replication and production were quantified in these cells. RESULTS We showed that FH-iPSCs displayed the disease phenotype. Using homologous recombination mediated by the CRISPR/Cas9 system, FH-iPSCs were genetically corrected by the targeted integration of a correction cassette at the AAVS1 locus. Both FH-iPSCs and corr-FH-iPSCs were then differentiated into functional polarized hepatocytes using a stepwise differentiation approach (FH-iHeps and corr-FH-iHeps). The correct insertion and expression of the correction cassette resulted in restoration of LDLR expression and function (LDL-c uptake) in corr-FH-iHeps. We next demonstrated that pravastatin treatment increased the expression of genes involved in cholesterol metabolism in both cell models. Moreover, LDLR expression and function were also enhanced in corr-FH-iHeps after pravastatin treatment. Finally, we demonstrated that both FH-iHeps and corr-FH-iHeps were as permissive to viral infection as primary human hepatocytes but that virus production in FH-iHeps was significantly decreased compared to corr-FH-iHeps, suggesting a role of the LDLR in HCV morphogenesis. CONCLUSIONS Our work provides the first LDLR-null FH cell model and its corrected counterpart to study the regulation of cholesterol metabolism and host determinants of HCV life cycle, and a platform to screen drugs for treating dyslipidemia and HCV infection.
Collapse
Affiliation(s)
- Jérôme Caron
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | | | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - Eléanor Luce
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Angélique Fourrier
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Jean-Marie Heslan
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Samir Saheb
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - Eric Bruckert
- Service d'Endocrinologie Métabolisme, Hôpital Pitié-Salpêtrière, Paris, France
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,CIBERehd, FIS, Barcelona, Spain
| | - Tuan Huy Nguyen
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France
| | - Arielle R Rosenberg
- Université Paris Descartes, EA4474, Paris, France.,AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| | - Anne Weber
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM UMR_S1193, Hôpital Paul Brousse, Villejuif, France; UMR-S1193, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France; DHU Hepatinov, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
16
|
Abstract
The derivation of induced pluripotent stem cells (iPSCs) over a decade ago sparked widespread enthusiasm for the development of new models of human disease, enhanced platforms for drug discovery and more widespread use of autologous cell-based therapy. Early studies using directed differentiation of iPSCs frequently uncovered cell-level phenotypes in monogenic diseases, but translation to tissue-level and organ-level diseases has required development of more complex, 3D, multicellular systems. Organoids and human-rodent chimaeras more accurately mirror the diverse cellular ecosystems of complex tissues and are being applied to iPSC disease models to recapitulate the pathobiology of a broad spectrum of human maladies, including infectious diseases, genetic disorders and cancer.
Collapse
|
17
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
18
|
Nuclear-cytoplasmic shuttling of class IIa histone deacetylases regulates somatic cell reprogramming. CELL REGENERATION 2019; 8:21-29. [PMID: 31205685 PMCID: PMC6557759 DOI: 10.1016/j.cr.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Class IIa histone deacetylases (HDACs) are a subfamily of HDACs with important functions in development and adult tissue homeostasis. As opposed to other HDACs, they lack catalytic function and bind transcription factors to recruit transcriptional co-regulators, mostly co-repressors such as nuclear receptor co-repressor (NCoR)/silencing mediator of retinoid and thyroid hormone receptor (SMRT). Class IIa HDACs enhance mouse somatic cell reprogramming to induced pluripotent stem cells (iPSCs) by repressing the function of the pro-mesenchymal transcription factor myocyte enhancer factor 2 (MEF2), which is upregulated during this process. Here, we describe, using HDAC4 and 7 as examples, that class IIa HDACs exhibit nuclear-cytoplasmic trafficking in reprogramming, being mostly cytoplasmic in donor fibroblasts and intermediate cells but translocating to the nucleus in iPSCs. Importantly, over-expressing a mutant form of HDAC4 or 7 that becomes trapped in the nucleus enhances the early phase of reprogramming but is deleterious afterwards. The latter effect is mediated through binding to the exogenous reprogramming factors at pluripotency loci, and the subsequent recruitment of NCoR/SMRT co-repressors. Thus, our findings uncover a context-dependent function of class IIa HDACs in reprogramming and further reinforce the idea that recruitment of co-repressors by the exogenous factors is a major obstacle for reactivating the pluripotency network in this process.
Collapse
|
19
|
Yang J, Wong LY, Tian XY, Wei R, Lai WH, Au KW, Luo Z, Ward C, Ho WI, Ibañez DP, Liu H, Bao X, Qin B, Huang Y, Esteban MA, Tse HF. A Familial Hypercholesterolemia Human Liver Chimeric Mouse Model Using Induced Pluripotent Stem Cell-derived Hepatocytes. J Vis Exp 2018. [PMID: 30272645 DOI: 10.3791/57556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Familial hypercholesterolemia (FH) is mostly caused by low-density lipoprotein receptor (LDLR) mutations and results in an increased risk of early-onset cardiovascular disease due to marked elevation of LDL cholesterol (LDL-C) in blood. Statins are the first line of lipid-lowering drugs for treating FH and other types of hypercholesterolemia, but new approaches are emerging, in particular PCSK9 antibodies, which are now being tested in clinical trials. To explore novel therapeutic approaches for FH, either new drugs or new formulations, we need appropriate in vivo models. However, differences in the lipid metabolic profiles compared to humans are a key problem of the available animal models of FH. To address this issue, we have generated a human liver chimeric mouse model using FH induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps). We used Ldlr-/-/Rag2-/-/Il2rg-/- (LRG) mice to avoid immune rejection of transplanted human cells and to assess the effect of LDLR-deficient iHeps in an LDLR null background. Transplanted FH iHeps could repopulate 5-10% of the LRG mouse liver based on human albumin staining. Moreover, the engrafted iHeps responded to lipid-lowering drugs and recapitulated clinical observations of increased efficacy of PCSK9 antibodies compared to statins. Our human liver chimeric model could thus be useful for preclinical testing of new therapies to FH. Using the same protocol, similar human liver chimeric mice for other FH genetic variants, or mutations corresponding to other inherited liver diseases, may also be generated.
Collapse
Affiliation(s)
- Jiayin Yang
- Department of Medicine, University of Hong Kong-Shenzhen Hospital; The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Research Centre of Heart, Brain, Hormone, and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Lai-Yung Wong
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | - Rui Wei
- Department of Medicine, University of Hong Kong-Shenzhen Hospital; The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Wing-Hon Lai
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Ka-Wing Au
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Zhiwei Luo
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Carl Ward
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Wai-In Ho
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - David P Ibañez
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Hao Liu
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Xichen Bao
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Baoming Qin
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University; Laboratory of RNA, Chromatin, and Human Disease, CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong and Guangzhou Institutes of Biomedicine and Health;
| | - Hung-Fat Tse
- Department of Medicine, University of Hong Kong-Shenzhen Hospital; The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Research Centre of Heart, Brain, Hormone, and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong; Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, University of Hong Kong and Guangzhou Institutes of Biomedicine and Health;
| |
Collapse
|
20
|
Induced Pluripotent Stem Cell-Derived Hepatocytes and Precision Medicine in Human Liver Disease. J Pediatr Gastroenterol Nutr 2018; 66:716-719. [PMID: 29509632 DOI: 10.1097/mpg.0000000000001948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver-like human cells can be generated from human skin by converting fibroblasts to "induced pluripotent stem cells" (iPSCs), then differentiating the iPSCs into "induced hepatocytes". Although still primarily used as a research tool, emerging applications involving iPSC-derived induced hepatocytes have exciting and provocative clinical and translational potential. This review provides a brief summary of the current status of this field and obstacles that must be overcome before this novel tool will enable precision medicine-based approaches to human liver disease.
Collapse
|
21
|
Du C, Feng Y, Qiu D, Xu Y, Pang M, Cai N, Xiang AP, Zhang Q. Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Res Ther 2018. [PMID: 29523187 PMCID: PMC5845228 DOI: 10.1186/s13287-018-0794-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The advent of human-induced pluripotent stem cells holds great promise for producing ample individualized hepatocytes. Although previous efforts have succeeded in generating hepatocytes from human pluripotent stem cells in vitro by viral-based expression of transcription factors and/or addition of growth factors during the differentiation process, the safety issue of viral transduction and high cost of cytokines would hinder the downstream applications. Recently, the use of small molecules has emerged as a powerful tool to induce cell fate transition for their superior stability, safety, cell permeability, and cost-effectiveness. Methods In the present study, we established a novel efficient hepatocyte differentiation strategy of human pluripotent stem cells with pure small-molecule cocktails. This method induced hepatocyte differentiation in a stepwise manner, including definitive endoderm differentiation, hepatic specification, and hepatocyte maturation within only 13 days. Results The differentiated hepatic-like cells were morphologically similar to hepatocytes derived from growth factor-based methods and primary hepatocytes. These cells not only expressed specific hepatic markers at the transcriptional and protein levels, but also possessed main liver functions such as albumin production, glycogen storage, cytochrome P450 activity, and indocyanine green uptake and release. Conclusions Highly efficient and expedited hepatic differentiation from human pluripotent stem cells could be achieved by our present novel, pure, small-molecule cocktails strategy, which provides a cost-effective platform for in vitro studies of the molecular mechanisms of human liver development and holds significant potential for future clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-0794-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yuan Feng
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Dongbo Qiu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Nan Cai
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Andy Peng Xiang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China. .,Biotherapy Center & Cell-gene Therapy Translational Medicine Research Center, Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Induced Pluripotent Stem Cells in Disease Modelling and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:91-99. [DOI: 10.1007/5584_2018_290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Bryson TE, Anglin CM, Bridges PH, Cottle RN. Nuclease-Mediated Gene Therapies for Inherited Metabolic Diseases of the Liver. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:553-566. [PMID: 29259521 PMCID: PMC5733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inherited metabolic diseases (IMDs) of the liver represent a vast and diverse group of rare genetic diseases characterized by the loss or dysfunction of enzymes or proteins essential for metabolic pathways in the liver. Conventional gene therapy involving adeno-associated virus (AAV) serotype 8 vectors provide therapeutically high levels of hepatic transgene expression facilitating the correction of the disease phenotype in pre-clinical studies and are currently being evaluated in clinical trials for multiple IMDs. However, insertional mutagenesis and immunogenicity risks as well as efficacy limitations represent major drawbacks for the AAV system. Genome editing tools, particularly the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system, offer multiple advantages over conventional gene transfer and have the potential to further advance the promises of gene therapy. Here, we provide a critical assessment of conventional gene therapy and genome editing approaches for therapeutic correction of the most investigated metabolic liver disorders, namely familial hypercholesterolemia, hemophilia, ornithine transcarbamylase deficiency, hereditary tyrosinemia type 1, and alpha-1 antitrypsin deficiency. In addition, we elaborate on the barriers and future directions for advancing novel nuclease mediated gene therapies for IMDs.
Collapse
Affiliation(s)
| | | | | | - Renee N. Cottle
- To whom all correspondence should be addressed: Renee N. Cottle, Department of Bioengineering, Clemson University, Clemson, SC 29634. Tel: (864) 656-3071; Fax: (864) 656-4466; .
| |
Collapse
|
24
|
Gao Y, Zhang X, Zhang L, Cen J, Ni X, Liao X, Yang C, Li Y, Chen X, Zhang Z, Shu Y, Cheng X, Hay DC, Lai D, Pan G, Wei G, Hui L. Distinct Gene Expression and Epigenetic Signatures in Hepatocyte-like Cells Produced by Different Strategies from the Same Donor. Stem Cell Reports 2017; 9:1813-1824. [PMID: 29173899 PMCID: PMC5785700 DOI: 10.1016/j.stemcr.2017.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte-like cells (HLCs) can be generated through directed differentiation or transdifferentiation. Employing two strategies, we generated induced pluripotent stem cell (iPSC)-HLCs and hiHeps from the same donor cell line. Both types of HLCs clustered distinctly from each other during gene expression profiling. In particular, differences existed in gene expression for phase II drug metabolism and lipid accumulation, underpinned by H3K27 acetylation status in iPSC-HLCs and hiHeps. While distinct phenotypes were achieved in vitro, both types of HLCs demonstrated similar phenotypes following transplantation into Fah-deficient mice. In conclusion, functional HLCs can be obtained from the same donor using two strategies. Global gene expression defined the differences between those populations in vitro. Importantly, both HLCs displayed partial but markedly improved hepatic function following transplantation in vivo, demonstrating plasticity and the potential for cell-based modeling in the dish and cell-based therapy in the future. hiHeps and iPSC-HLCs from the same donor are compared hiHeps and iPSC-HLCs show distinct expression patterns and hepatic functions Different expressions in hiHeps and iPSC-HLCs are partially attributed to H3K27ac Both HLCs are further matured in the in vivo microenvironment of livers
Collapse
Affiliation(s)
- Yimeng Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoran Zhang
- CAS Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Ni
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaoying Liao
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chenxi Yang
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajing Shu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Collaborative Innovation Center for Genetics and Developmental Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|