1
|
Zhao M, Zhao S, Pang Z, Jia C, Tao C. Comparison of Nucleosome Landscapes Between Porcine Embryonic Fibroblasts and GV Oocytes. Animals (Basel) 2024; 14:3392. [PMID: 39682359 DOI: 10.3390/ani14233392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation. (3) Methods: We compared the nucleosome occupancy, distribution, and transcription of genes between two types of cells: fully grown GV oocytes from big follicles (BF) and somatic cells (porcine embryonic fibroblast, PEF). (4) Results: The nucleosome occupancy in the promoter of BF was 4.85%, which was significantly higher than that of 3.3% in PEF (p < 0.05), and the nucleosome distribution showed a noticeable increase surrounding transcriptional start sites (TSSs) in BF. Next, we reanalyzed the currently published transcriptome of fully grown GV oocytes and PEF, and a total of 51 genes in BF and 80 genes in PEF were identified as being uniquely expressed. The nucleosome distribution around gene TSSs correlated with expression levels in somatic cells, yet the results in BF differed from those in PEF. (5) Conclusion: This study uncovers the dynamic nature and significance of nucleosome positioning and chromatin organization across various cell types, providing a basis for nuclear transplantation.
Collapse
Affiliation(s)
- Minjun Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Shunran Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zhaoqi Pang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Chunhui Jia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
2
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
3
|
Kondalaji SG, Bowman GD. In Vitro Mapping of Nucleosome Positions at Base-Pair Resolution Using Ortho-Phenanthroline. Curr Protoc 2022; 2:e518. [PMID: 35943282 PMCID: PMC9373710 DOI: 10.1002/cpz1.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The positions of nucleosomes along genomic DNA play a role in defining patterns of gene expression and chromatin organization. Determination of nucleosome positions in vivo and in vitro, as revealed by the locations of histones on DNA, has provided insight into mechanisms of nucleosome sliding, spacing, assembly, and disassembly. Here, we describe methods for the in vitro determination of histone-DNA contacts at base-pair (bp) resolution. The protocol involves the labeling of histones with ortho-phenanthroline (OP), site-specific cleavage of nucleosomal DNA, and processing and analysis of the resulting DNA fragments. This methodology provides an efficient and high-resolution means for studying kinetics and behavior of enzymes that alter nucleosome structure and/or positioning, and can be used to identify preferred distributions of nucleosomes on natural DNA sequences. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Cysteine-specific chemical modification of folded histones with ortho-phenanthroline (OP) Basic Protocol 2: Nucleosome sliding assay adapted for OP mapping of histone-DNA contacts Basic Protocol 3: OP-mediated cleavage, processing, and analysis of DNA fragments using a sequencing gel Support Protocol 1: Preparation of dideoxy sequencing ladders Support Protocol 2: Preparation and running of a denaturing DNA sequencing gel.
Collapse
Affiliation(s)
| | - Gregory D Bowman
- T. C. Jenkins Department of Biophysics, Johns Hopkins
University, Baltimore, Maryland 21218
| |
Collapse
|
4
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
5
|
Ren X, She C, Huang S, Yang T, Tong Y, Yuan X, Shi D, Li X. Chromatin openness of donor cells is directly correlated with the in vitro developmental capabilities of cloned buffalo embryos. Reprod Domest Anim 2022; 57:1113-1124. [PMID: 35689464 DOI: 10.1111/rda.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
The Switch/sucrose nonfermentable (SWI/SNF) chromatin remodelling complex is closely related to chromatin openness and gene transcriptional activity. To understand if the chromatin openness of donor cells was related to the development efficiency of somatic cell cloning embryos, two buffalo fetal fibroblasts (BFF), BFF1 and BFF3, with significantly different cloned blastocyst development rates (18.4% and 30.9% respectively), were selected in this study. The expression of SWI/SNF complex genes, chromatin openness, and transcript level of these two cell lines were analysed, and the effect of ATP on the expression of the SWI/SNF complex genes was further explored. The results showed that compared with BFF1, the expression of SWI/SNF complex family genes was higher in BFF3 at the G0/G1 phase, where SMARCC1, SMARCC2 and SMARCE1 were significantly different (p < .05). Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) results showed that, at the genome-wide level, BFF3 had more open chromatin, especially which having more open chromatin peaks at SMARCA4, SMARCA2, and RBPMS2 (RNA Binding Protein, mRNA Processing Factor 2) sites. In total, 2,712 differentially expressed genes (DEGs) were identified by the RNA-Seq method, with 1380 up- and 1332 down-regulated genes in BFF3. Interestingly, the ATPase-related genes ATP1B1 and ATP11A were extreme significantly up-regulated in BFF3 (p < .01). The ATP content and the expression of SWI/SNF complex genes in both BFF1 and BFF3 decreased when treated with rotenone. The above results demonstrated that the SWI/SNF complex contributed to chromatin opening, and chromatin opening of donor cells was essential for cloned embryo development.
Collapse
Affiliation(s)
- Xuan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Chun She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yi Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Aberrant nucleosome organization in mouse SCNT embryos revealed by ULI-MNase-seq. Stem Cell Reports 2022; 17:1730-1742. [PMID: 35750045 PMCID: PMC9287678 DOI: 10.1016/j.stemcr.2022.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.
Collapse
|
7
|
Li X, Zou C, Li M, Fang C, Li K, Liu Z, Li C. Transcriptome Analysis of In Vitro Fertilization and Parthenogenesis Activation during Early Embryonic Development in Pigs. Genes (Basel) 2021; 12:genes12101461. [PMID: 34680856 PMCID: PMC8535918 DOI: 10.3390/genes12101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Parthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood. For further understanding of the molecular mechanism behind PA embryo failure, we performed transcriptome analysis among pig oocytes (meiosis II, MII) and early embryos at three developmental stages (zygote, morula, and blastocyst) in vitro fertilization (IVF) and PA group. Totally, 11,110 differentially expressed genes (DEGs), 4694 differentially expressed lincRNAs (DELs) were identified, and most DEGs enriched the regulation of apoptotic processes. Through cis- and trans-manner functional prediction, we found that hub lincRNAs were mostly involved in abnormal parthenogenesis embryonic development. In addition, twenty DE imprinted genes showed that some paternally imprinted genes in IVF displayed higher expression than that in PA. Notably, we identified that three DELs of imprinted genes (MEST, PLAGL1, and DIRAS3) were up regulated in IVF, and there was no significant change in PA group. Disordered expression of key genes for embryonic development might play key roles in abnormal parthenogenesis embryonic development. Our study indicates that embryos derived from different production techniques have varied in vitro development to the blastocyst stage, and they also affect the transcription level of corresponding genes, such as imprinted genes. This work will help future research on these genes and molecular-assisted breeding for pig parthenotes.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kui Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Z.L.); (C.L.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Z.L.); (C.L.)
| |
Collapse
|
8
|
Xu Q, Xie W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 2017; 28:237-253. [PMID: 29217127 DOI: 10.1016/j.tcb.2017.10.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023]
Abstract
Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|