1
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
2
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
3
|
Ikeda T, Takahashi K, Higashi M, Komiya H, Asano T, Ogasawara A, Kubota S, Hashiguchi S, Kunii M, Tanaka K, Tada M, Doi H, Takeuchi H, Takei K, Tanaka F. Lateral olfactory tract usher substance (LOTUS), an endogenous Nogo receptor antagonist, ameliorates disease progression in amyotrophic lateral sclerosis model mice. Cell Death Discov 2023; 9:454. [PMID: 38097540 PMCID: PMC10721829 DOI: 10.1038/s41420-023-01758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Nogo-Nogo receptor 1 (NgR1) signaling is significantly implicated in neurodegeneration in amyotrophic lateral sclerosis (ALS). We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of NgR1 that prevents all myelin-associated inhibitors (MAIs), including Nogo, from binding to NgR1. Here we investigated the role of LOTUS in ALS pathogenesis by analyzing G93A-mutated human superoxide dismutase 1 (SOD1) transgenic (Tg) mice, as an ALS model, as well as newly generated LOTUS-overexpressing SOD1 Tg mice. We examined expression profiles of LOTUS and MAIs and compared motor functions and survival periods in these mice. We also investigated motor neuron survival, glial proliferation in the lumbar spinal cord, and neuromuscular junction (NMJ) morphology. We analyzed downstream molecules of NgR1 signaling such as ROCK2, LIMK1, cofilin, and ataxin-2, and also neurotrophins. In addition, we investigated LOTUS protein levels in the ventral horn of ALS patients. We found significantly decreased LOTUS expression in both SOD1 Tg mice and ALS patients. LOTUS overexpression in SOD1 Tg mice increased lifespan and improved motor function, in association with prevention of motor neuron loss, reduced gliosis, increased NMJ innervation, maintenance of cofilin phosphorylation dynamics, decreased levels of ataxin-2, and increased levels of brain-derived neurotrophic factor (BDNF). Reduced LOTUS expression may enhance neurodegeneration in SOD1 Tg mice and ALS patients by activating NgR1 signaling, and in this study LOTUS overexpression significantly ameliorated ALS pathogenesis. LOTUS might serve as a promising therapeutic target for ALS.
Collapse
Affiliation(s)
- Takuya Ikeda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Minatsu Higashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Yokohama City University Graduate School of Medical Life Science, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
4
|
Suematsu Y, Nagoshi N, Shinozaki M, Kase Y, Saijo Y, Hashimoto S, Shibata T, Kajikawa K, Kamata Y, Ozaki M, Yasutake K, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H. Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation. Inflamm Regen 2023; 43:50. [PMID: 37845736 PMCID: PMC10577910 DOI: 10.1186/s41232-023-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI). METHODS Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined. RESULTS The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups. CONCLUSIONS We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.
Collapse
Affiliation(s)
- Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Clinical Regenerative Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutukake-Cho, Toyoake-Shi, Aichi, 470-1192, Japan
| | - Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kaori Yasutake
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata, Niigata, 951-8510, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023; 14:635-652. [PMID: 36856750 PMCID: PMC10501188 DOI: 10.1093/procel/pwad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Collapse
Affiliation(s)
- Ting Tian
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Zeng CW, Tsai HJ. The Promising Role of a Zebrafish Model Employed in Neural Regeneration Following a Spinal Cord Injury. Int J Mol Sci 2023; 24:13938. [PMID: 37762240 PMCID: PMC10530783 DOI: 10.3390/ijms241813938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in a wide range of physical impairments and disabilities. Despite the advances in our understanding of the biological response to injured tissue, no effective treatments are available for SCIs at present. Some studies have addressed this issue by exploring the potential of cell transplantation therapy. However, because of the abnormal microenvironment in injured tissue, the survival rate of transplanted cells is often low, thus limiting the efficacy of such treatments. Many studies have attempted to overcome these obstacles using a variety of cell types and animal models. Recent studies have shown the utility of zebrafish as a model of neural regeneration following SCIs, including the proliferation and migration of various cell types and the involvement of various progenitor cells. In this review, we discuss some of the current challenges in SCI research, including the accurate identification of cell types involved in neural regeneration, the adverse microenvironment created by SCIs, attenuated immune responses that inhibit nerve regeneration, and glial scar formation that prevents axonal regeneration. More in-depth studies are needed to fully understand the neural regeneration mechanisms, proteins, and signaling pathways involved in the complex interactions between the SCI microenvironment and transplanted cells in non-mammals, particularly in the zebrafish model, which could, in turn, lead to new therapeutic approaches to treat SCIs in humans and other mammals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
7
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
8
|
Matsubayashi J, Kawaguchi Y, Kawakami Y, Takei K. Brain-derived neurotrophic factor (BDNF) induces antagonistic action to Nogo signaling by the upregulation of lateral olfactory tract usher substance (LOTUS) expression. J Neurochem 2023; 164:29-43. [PMID: 36448220 DOI: 10.1111/jnc.15732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Neurons in the central nervous system (CNS) have limited capacity for axonal regeneration after trauma and neurological disorders due to an endogenous nonpermissive environment for axon regrowth in the CNS. Lateral olfactory tract usher substance (LOTUS) contributes to axonal tract formation in the developing brain and axonal regeneration in the adult brain as an endogenous Nogo receptor-1 (NgR1) antagonist. However, how LOTUS expression is regulated remains unclarified. This study examined molecular mechanism of regulation in LOTUS expression and found that brain-derived neurotrophic factor (BDNF) increased LOTUS expression in cultured hippocampal neurons. Exogenous application of BDNF increased LOTUS expression at both mRNA and protein levels in a dose-dependent manner. We also found that pharmacological inhibition with K252a and gene knockdown by siRNA of tropomyosin-related kinase B (TrkB), BDNF receptor suppressed BDNF-induced increase in LOTUS expression. Further pharmacological analysis of the TrkB signaling pathway revealed that BDNF increased LOTUS expression through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) cascades, but not phospholipase C-γ (PLCγ) cascade. Additionally, treatment with c-AMP response element binding protein (CREB) inhibitor partially suppressed BDNF-induced LOTUS expression. Finally, neurite outgrowth assay in cultured hippocampal neurons revealed that BDNF treatment-induced antagonism for NgR1 by up-regulating LOTUS expression. These findings suggest that BDNF may acts as a positive regulator of LOTUS expression through the TrkB signaling, thereby inducing an antagonistic action for NgR1 function by up-regulating LOTUS expression. Also, BDNF may synergistically affect axon regrowth through the upregulation of LOTUS expression.
Collapse
Affiliation(s)
- Junpei Matsubayashi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yuki Kawaguchi
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yutaka Kawakami
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.,Department of Anesthesiology, National Center for Neurology and Psychiatry, Kodaira, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
9
|
Kawaguchi Y, Matsubayashi J, Kawakami Y, Nishida R, Kurihara Y, Takei K. LOTUS suppresses amyloid β-induced dendritic spine elimination through the blockade of amyloid β binding to PirB. Mol Med 2022; 28:154. [PMID: 36510132 PMCID: PMC9743548 DOI: 10.1186/s10020-022-00581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide but has no effective treatment. Amyloid beta (Aβ) protein, a primary risk factor for AD, accumulates and aggregates in the brain of patients with AD. Paired immunoglobulin-like receptor B (PirB) has been identified as a receptor of Aβ and Aβ-PirB molecular interactions that cause synapse elimination and synaptic dysfunction. PirB deletion has been shown to suppress Aβ-induced synaptic dysfunction and behavioral deficits in AD model mice, implying that PirB mediates Aβ-induced AD pathology. Therefore, inhibiting the Aβ-PirB molecular interaction could be a successful approach for combating AD pathology. We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of type1 Nogo receptor and PirB and that LOTUS overexpression promotes neuronal regeneration following damage to the central nervous system, including spinal cord injury and ischemic stroke. Therefore, in this study, we investigated whether LOTUS inhibits Aβ-PirB interaction and Aβ-induced dendritic spine elimination. METHODS The inhibitory role of LOTUS against Aβ-PirB (or leukocyte immunoglobulin-like receptor subfamily B member 2: LilrB2) binding was assessed using a ligand-receptor binding assay in Cos7 cells overexpressing PirB and/or LOTUS. We assessed whether LOTUS inhibits Aβ-induced intracellular alterations and synaptotoxicity using immunoblots and spine imaging in a primary cultured hippocampal neuron. RESULTS We found that LOTUS inhibits the binding of Aβ to PirB overexpressed in Cos7 cells. In addition, we found that Aβ-induced dephosphorylation of cofilin and Aβ-induced decrease in post-synaptic density-95 expression were suppressed in cultured hippocampal neurons from LOTUS-overexpressing transgenic (LOTUS-tg) mice compared with that in wild-type mice. Moreover, primary cultured hippocampal neurons from LOTUS-tg mice improved the Aβ-induced decrease in dendritic spine density. Finally, we studied whether human LOTUS protein inhibits Aβ binding to LilrB2, a human homolog of PirB, and found that human LOTUS inhibited the binding of Aβ to LilrB2 in a similar manner. CONCLUSIONS This study implied that LOTUS improved Aβ-induced synapse elimination by suppressing Aβ-PirB interaction in rodents and inhibited Aβ-LilrB2 interaction in humans. Our findings revealed that LOTUS may be a promising therapeutic agent in counteracting Aβ-induced AD pathologies.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Junpei Matsubayashi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yutaka Kawakami
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.419280.60000 0004 1763 8916Department of Anesthesiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Nishida
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yuji Kurihara
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohtaro Takei
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| |
Collapse
|
10
|
Enosawa S. Clinical Trials of Stem Cell Therapy in Japan: The Decade of Progress under the National Program. J Clin Med 2022; 11:7030. [PMID: 36498605 PMCID: PMC9736364 DOI: 10.3390/jcm11237030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Stem cell therapy is a current world-wide topic in medical science. Various therapies have been approved based on their effectiveness and put into practical use. In Japan, research and development-related stem cell therapy, generally referred to as regenerative medicine, has been led by the government. The national scheme started in 2002, and support for the transition to clinical trials has been accelerating since 2011. Of the initial 18 projects that were accepted in the budget for preclinical research, 15 projects have begun clinical trials so far. These include the transplantation of retinal, cardiac, and dopamine-producing cells differentiated from human induced pluripotent stem (iPS) cells and hepatocyte-like cells differentiated from human embryonic stem (ES) cells. The distinctive feature of the stem cell research in Japan is the use of iPS cells. A national framework was also been set-up to attain the final goal: health insurance coverage. Now, insurance covers cell transplantation therapies for the repair and recovery of damaged skin, articular cartilage, and stroke as well as therapies introduced from abroad, such as allogeneic mesenchymal stem cells for graft-versus-host disease and chimeric antigen receptor-T (CAR-T) cell therapy. To prepare this review, original information was sought from Japanese authentic websites, which are reliable but a little hard to access due to the fact of multiple less-organized databases and the language barrier. Then, each fact was corroborated by citing its English version or publication in international journals as much as possible. This review provides a summary of progress over the past decade under the national program and a state-of-the-art factual view of research activities, government policy, and regulation in Japan for the realization of stem cell therapy.
Collapse
Affiliation(s)
- Shin Enosawa
- Division for Advanced Medical Sciences, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
11
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
13
|
Lu T, Shinozaki M, Nagoshi N, Nakamura M, Okano H. 3D imaging of supraspinal inputs to the thoracic and lumbar spinal cord mapped by retrograde tracing and light-sheet microscopy. J Neurochem 2022; 162:352-370. [PMID: 35674500 DOI: 10.1111/jnc.15653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022]
Abstract
The supraspinal inputs play a major role in tuning the hindlimb locomotion function. While most research on spinal cord injury (SCI) with rodents is based on thoracic segments, the difference in connectivity of the supraspinal centers to the thoracic and lumbar cord is still unknown. Here, we combined retrograde tracing and 3D imaging to map the connectivity of supraspinal neurons projecting to thoracic (T9-vertebral) and lumbar (T13-vertebral) spinal levels in adult female mice. We dissected the difference in connections of corticospinal neurons (CSNs), rubrospinal neurons, and reticulospinal neurons projecting to thoracic and lumbar cords. The ratio of double-labeled neurons is higher in T13-vertebral projection CSNs and parvocellular part of the red nucleus (RPC) than in T9-vertebral projection. Using the Cre-DIO system, we precisely targeted CSNs projecting to T9-vertebral or T13-vertebral. We found that abundant axon branches communicated with the red nucleus and reticular formation and distributed from cervical gray matter to the lumbar cord. Their collateral branches showed a distinct innervation pattern in thoracic and lumbar gray matters and a similar distribution pattern in the cervical spinal cord. These results revealed the difference in connectivity between the thoracic and lumbar projection supraspinal centers and clarified the collateralization of thoracic/lumbar projection CSNs throughout the brain and spinal cord. This study highlights brain-spinal cord neural networks and the complexity of the axon terminals of spinal projection CSNs, which could contribute to the development of targeted therapeutic strategies connecting CST fibers and hindlimb function recovery.
Collapse
Affiliation(s)
- Tao Lu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|